Bermond/Bollobas Problem and Ramanujan Graphs

Not scheduled
15m
UP FHS (Koper)

UP FHS

Koper

Titov trg 5,Koper

Speaker

Prof. Robert Jajcay (Comenius University, Bratislava, and University of Primorska, Koper)

Description

If we denote by $n(k, d)$ the order of the largest undirected graphs of maximum degree $k$ and diameter $d$, and let $M(k,d)$ denote the corresponding Moore bound, then $n(k,d) \leq M(k,d)$, for all $ k \geq 3, d \geq 2 $. While the inequality has been proven strict for all but very few pairs $k$ and $d$, the exact relation between the values $n(k,d)$ and $M(k,d)$ is unknown, and the uncertainty of the situation is captured by a question of Bermond and Bollobas who asked whether it is true that for any a positive integer $c>0$ there exist a pair $k$ and $d$, such that $n(k, d)\leq M(k,d)-c$. We show a surprising connection of this question to the value $2\sqrt{k-1}$, which is also essential in the definition of the Ramanujan graphs which are $k$-regular graphs having the property that their second largest eigenvalue (in modulus) does not exceed $2 \sqrt{k-1}$. We further reinforce this surprising connection by showing an interesting consequence of a negative answer to the problem of Bermond and Bollobas. Namely, we show that if there exists a $c > 0$ such that $ n(k,d) \geq M(k,d) - c $, for all $ k \geq 3, d \geq 2 $, then for any fixed $k$ and all sufficiently large $d$'s, the largest undirected graphs of degree $k$ and diameter $d$ must be Ramanujan graphs. Since Ramanujan graphs are scarce, our result seems to suggest a positive answer to the question of Bermond and Bollobas. This is a joint work with Slobodan Filipovski.

Primary author

Prof. Robert Jajcay (Comenius University, Bratislava, and University of Primorska, Koper)

Co-author

Mr Slobodan Filipovski (University of Primorska, Koper)

Presentation Materials

There are no materials yet.