An infinite-dimensional \Box_q -module obtained from the *q*-shuffle algebra for affine \mathfrak{sl}_2 **Paul Terwilliger**

aur rerwninge

Abstract

Let \mathbb{F} denote a field, and pick a nonzero $q \in \mathbb{F}$ that is not a root of unity. Let $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$ denote the cyclic group of order 4. Define a unital associative \mathbb{F} -algebra \Box_q by generators $\{x_i\}_{i \in \mathbb{Z}_4}$ and relations

$$\frac{qx_ix_{i+1} - q^{-1}x_{i+1}x_i}{q - q^{-1}} = 1,$$

$$x_i^3x_{i+2} - [3]_q x_i^2 x_{i+2}x_i + [3]_q x_i x_{i+2} x_i^2 - x_{i+2} x_i^3 = 0,$$

where $[3]_q = (q^3 - q^{-3})/(q - q^{-1})$. We will review how \Box_q is related to the q-Onsager algebra. We will review the classification of the finitedimensional irreducible \Box_q -modules, and how these modules give an example of a tridiagonal pair. Our new results concern a set of infinitedimensional \Box_q -modules, said to be NIL. Let W denote a \Box_q -module. A vector $\xi \in W$ is called NIL whenever $x_1\xi = 0$ and $x_3\xi = 0$ and $\xi \neq 0$. The \Box_q -module W is called NIL whenever W is generated by a NIL vector.

We show that up to isomorphism there exists a unique NIL \Box_q module, and it is irreducible and infinite-dimensional. We describe this module from sixteen points of view. In this description an important role is played by the *q*-shuffle algebra for affine \mathfrak{sl}_2 . This is joint work with Sarah Post.