8th PhD Summer School in Discrete Maths
 Finite Permutation Groups
 Lecture 3: Primitive permutation groups

Colva M. Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

Rogla, 4 July 2018

§6: Decompositions of permutation groups

Intransitive to transitive

For today: let Ω be finite.
Lemma 32
Let $G \leq \operatorname{Sym}(\Omega)$ be intransitive, and let $\Delta=\alpha^{G}$. Then the map $G \rightarrow \operatorname{Sym}(\Delta)$ that sends each $g \in G$ to the permutation of Δ that it induces is a homomorphism.
Defn: This map is the restriction of G to Δ. Write as $G \rightarrow G^{\Delta}$, $\left.g \mapsto g\right|_{\Delta}$.
The image $G^{\Delta} \leq \operatorname{Sym}(\Delta)$ is a transitive constituent of G.
Abuse notation: think of G^{Δ} as a subgp of $\operatorname{Sym}(\Omega)$, fixing $\Omega \backslash \Delta$.
Defn: Let $H \leq G_{1} \times \cdots \times G_{k}$. Then H is a subdirect product of G_{1}, \ldots, G_{k} if $\forall i \in \underline{k}, \forall g_{i} \in G_{i}, \exists h=\left(h_{1}, \ldots, h_{k}\right) \in H$ s.t. $h_{i}=g_{i}$.

Theorem 33
Let $G \leq \operatorname{Sym}(\Omega)$, and let $\Delta_{1}, \ldots, \Delta_{k}$ be the orbits of G. Then G is equal to a subdirect product of $G^{\Delta_{1}} \times \cdots \times G^{\Delta_{k}}$.

Imprimitive groups embed in wreath products

Theorem 34
Let $G \leq \operatorname{Sym}(\Omega)$ be imprimitive, with $\Delta=\Delta_{1}$ a block and
$\Sigma=\left\{\Delta_{i}: \quad i \in \underline{n}\right\}=\left\{\Delta^{g}: g \in G\right\}$.
Let $K=\left\{x \in \operatorname{Sym}(\Omega): \Delta_{i}^{x} \in \Sigma\right.$ for $\left.1 \leq i \leq n\right\} \leq \operatorname{Sym}(\Omega)$.
Let $\Gamma=\Delta \times \underline{n}$, and let $W=\operatorname{Sym}(\Delta)$ 亿 $\mathrm{S}_{n} \leq \operatorname{Sym}(\Gamma)$, with the imprimitive action.
Then

1. K is permutation isomorphic to W : there exists a bijection $\lambda: \Omega \rightarrow \Gamma$ and an isom $\psi: K \rightarrow W$ s.t. $\forall \alpha \in \Omega, k \in K$,

$$
\left(\alpha^{k}\right) \lambda=(\alpha \lambda)^{k \psi}
$$

2. ψ can be chosen s.t. $G \psi \leq G_{\Delta}^{\Delta}$ l $G^{\Sigma} \leq W$.

Imprimitive to primitive

Previous slide: if G is imprimitive, then G is permutation isomorphic to a subgroup of $G_{\Delta}^{\Delta} 乙 G^{\Sigma}$.
If G_{Δ}^{Δ} or G^{Σ} are imprimitive, we may iterate this process.
Summary If G is imprimitive, then G embeds in an iterated wreath product W of primitive groups, in such a way that the actions of each block stabiliser in W, and actions on each system of imprimitivity, are the same as those of G.

Example 35

Let $G=\mathbb{Z}_{8}$, acting regularly. Then
$\Sigma=\left\{\Delta_{0}=\{0,4\}, \Delta_{1}=\{1,5\}, \Delta_{2}=\{2,6\}, \Delta_{3}=\{3,7\}\right\}$
is a system of imprimitivity for G, and G acts as \mathbb{Z}_{4} on Σ.
Hence $G \leq \mathbb{Z}_{2} \imath \mathbb{Z}_{4}$.
This action of \mathbb{Z}_{4} is still imprimitive: $\bar{\Delta}=\left\{\Delta_{0}, \Delta_{2}\right\}$ is a block.
Hence G embeds in $\mathbb{Z}_{2} \backslash \mathbb{Z}_{2} \backslash \mathbb{Z}_{2}$.
Each \mathbb{Z}_{2} acts primitively.

§7: Normal subgroups of primitive groups

Orbits of normal subgroups

Theorem 36
Let $G \leq \operatorname{Sym}(\Omega)$ be transitive, and let $N \unlhd G$.
The orbits of N form a system of imprimitivity for G.

Corollary 37
Let $G \leq \operatorname{Sym}(\Omega)$ be primitive, and let $1 \neq N \unlhd G$. Then N is transitive.

Minimal normal subgroups

Defn: A minimal normal subgroup of a group $G \neq 1$ is a normal subgroup $1 \neq K \unlhd G$ s.t. if $1<H<K$ then H is not normal in G.

Theorem 38
G - finite group, $N \unlhd G$.

1. Let K be a minimal normal subgroup of G. Then either $K \leq N$ or $K \cap N=1$.
2. Every minimal normal subgroup K of G is a direct product of simple groups $T_{1} \cong T_{2} \cong \ldots \cong T_{k}$. Each $T_{i} \unlhd K$ and the T_{i} are pairwise conjugate in G (so are all isomorphic).

The socle

Defn: The socle of a group G, written $\operatorname{soc}(G)$, is the subgroup generated by the minimal normal subgroups of G.

Theorem 39
Let $G \leq \operatorname{Sym}(\Omega)$ be primitive, with $|\Omega|<\infty$. Let $K \unlhd G$ be minimal normal. Then one of the following holds:
(i) K is regular and abelian. Then $\operatorname{soc}(G)=K=C_{G}(K)$.
(ii) K is regular and non-abelian, $C_{G}(K)$ is minimal normal in G, $C_{G}(K)$ is perm isom to K, and $\operatorname{soc}(G) \cong K \times C_{G}(K)$.
(iii) K is non-abelian, with $C_{G}(K)=1$ and $\operatorname{soc}(G)=K$.

Corollary 40
Let $G \leq \operatorname{Sym}(\Omega)$ be primitive, with $|\Omega|<\infty$. Then $\operatorname{soc}(G)$ is a direct product of isomorphic simple groups.

§8: Primitive groups with regular socles

Affine geometries

Let \mathbb{F}_{q} be the (unique) finite field of order q. Let $V=\mathbb{F}_{q}^{d}$.
Defn: The affine geometry $\mathrm{AG}_{d}(q)$ has:

- points: all vectors in V.
- affine subspaces: all translates of subspaces of V, i.e. all sets

$$
S+v=\{u+v: u \in S\}, \text { for } S \leq V, v \in V
$$

An affine automorphism of $\mathrm{AG}_{d}(q)$ is $\sigma \in \operatorname{Sym}(V)$ that maps affine subspaces to affine subspaces.

The affine general linear group

Let $q=p$ be prime.
Lemma 41
For $a \in \mathrm{GL}_{d}(p)$ and $v \in \mathbb{F}_{p}^{d}$, let $t_{a, v}: \mathbb{F}_{p}^{d} \rightarrow \mathbb{F}_{p}^{d}, u \mapsto u a+v$.
Then $t_{a, v} \in \operatorname{Aut}\left(\operatorname{AG}_{d}(p)\right)$.
Defn: Let $\operatorname{AGL}_{d}(p)=\left\{t_{a, v}: a \in \operatorname{GL}_{d}(p), v \in \mathbb{F}_{p}^{d}\right\}$ - the affine general linear group.
Theorem 42
Let $G=\mathrm{AGL}_{d}(p)$.
(i) $G \leq \operatorname{Sym}\left(p^{d}\right)$.
(ii) Let $V=\mathbb{F}_{p}^{d}$. Then $(V,+)$ is permutation isomorphic to $\left\{t_{1, v}: v \in V\right\} \unlhd G$ and V acts regularly.
(iii) $G \cong V: \operatorname{GL}_{d}(p)=V: \operatorname{Aut}(V)=V: G_{\underline{0}}$.

Primitive groups of affine type

Defn: $H \leq \mathrm{GL}_{d}(q)$ is reducible if there exists $0<U<V=\mathbb{F}_{q}^{d}$ s.t. $U^{h}=U$ for all $h \in H$. Otherwise H is irreducible.
Example 43
The group of all matrices of the form $\left(\begin{array}{lll}1 & 0 & 0 \\ x & a & b \\ y & c & d\end{array}\right) \in \operatorname{GL}_{3}(q)$ fixes $\langle(1,0,0)\rangle$, so is reducible.
The group of all matrices of the form $\left(\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ y & c & d\end{array}\right) \in \operatorname{GL}_{3}(q)$ fixes $\langle(1,0,0),(0,1,0)\rangle$, so is reducible.
$\mathrm{GL}_{d}(q)$ is irreducible.
Theorem 44
Let $G \leq \mathrm{AGL}_{d}(p)$, with $(V,+) \unlhd G$.
G is primitive iff $G_{\underline{0}} \leq \mathrm{GL}_{d}(p)$ is irreducible.

Classification of primitive groups with regular socles

Let $G \leq \operatorname{Sym}(\Omega)$ be primitive, with $|\Omega|<\infty$. Assume that $H=\operatorname{soc}(G)$ is regular.

Theorem 45
Let $N=N_{\operatorname{Sym}(\Omega)}(H)$. Then $N \cong H: \operatorname{Aut}(H)=\operatorname{Hol}(H)$, and $G=H: G_{\alpha}$.

Theorem 46
If H is abelian, then G is perm isom to some $K \leq \operatorname{AGL}_{d}(p)$, with $H \cong V \unlhd \operatorname{AGL}_{d}(p)$. In particular $|\Omega|=p^{d}$.

Theorem 47
If H is non-abelian then there exists a non-abelian simple T s.t.

1. $H \cong T_{1} \times \cdots \times T_{m}$ for some m, with $T_{i} \cong T$;
2. G_{α} acts faithfully and transitively on the T_{i}, so $G_{\alpha} \leq S_{m}$;
3. $N_{G_{\alpha}}\left(T_{1}\right)$ has a composition factor isomorphic to T, and so T is a comp factor of some $K \leq \mathrm{S}_{m-1}$. In particular, $m \geq 6$.
