8th PhD Summer School in Discrete Maths Finite Permutation Groups Lecture 3: Primitive permutation groups

> Colva M. Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

> > Rogla, 4 July 2018



# $\S6$ : Decompositions of permutation groups

#### Intransitive to transitive

For today: let  $\Omega$  be finite.

Lemma 32

Let  $G \leq \operatorname{Sym}(\Omega)$  be intransitive, and let  $\Delta = \alpha^{G}$ . Then the map  $G \to \operatorname{Sym}(\Delta)$  that sends each  $g \in G$  to the permutation of  $\Delta$  that it induces is a homomorphism.

Defn: This map is the restriction of G to  $\Delta$ . Write as  $G \to G^{\Delta}$ ,  $g \mapsto g|_{\Delta}$ .

The image  $G^{\Delta} \leq \operatorname{Sym}(\Delta)$  is a transitive constituent of G.

Abuse notation: think of  $G^{\Delta}$  as a subgp of  $Sym(\Omega)$ , fixing  $\Omega \setminus \Delta$ .

Defn: Let  $H \leq G_1 \times \cdots \times G_k$ . Then H is a subdirect product of  $G_1, \ldots, G_k$  if  $\forall i \in \underline{k}, \forall g_i \in G_i, \exists h = (h_1, \ldots, h_k) \in H$  s.t.  $h_i = g_i$ .

#### Theorem 33

Let  $G \leq \text{Sym}(\Omega)$ , and let  $\Delta_1, \ldots, \Delta_k$  be the orbits of G. Then G is equal to a subdirect product of  $G^{\Delta_1} \times \cdots \times G^{\Delta_k}$ .

Imprimitive groups embed in wreath products

Theorem 34 Let  $G \leq \text{Sym}(\Omega)$  be imprimitive, with  $\Delta = \Delta_1$  a block and  $\Sigma = {\Delta_i : i \in \underline{n}} = {\Delta^g : g \in G}.$ Let  $K = {x \in \text{Sym}(\Omega) : \Delta_i^x \in \Sigma \text{ for } 1 \leq i \leq n} \leq \text{Sym}(\Omega).$ Let  $\Gamma = \Delta \times \underline{n}$ , and let  $W = \text{Sym}(\Delta) \wr S_n \leq \text{Sym}(\Gamma)$ , with the imprimitive action. Then

1. *K* is permutation isomorphic to *W*: there exists a bijection  $\lambda : \Omega \to \Gamma$  and an isom  $\psi : K \to W$  s.t.  $\forall \alpha \in \Omega, k \in K$ ,

$$(\alpha^k)\lambda = (\alpha\lambda)^{k\psi}.$$

2.  $\psi$  can be chosen s.t.  $G\psi \leq G_{\Delta}^{\Delta} \wr G^{\Sigma} \leq W$ .

## Imprimitive to primitive

Previous slide: if G is imprimitive, then G is permutation isomorphic to a subgroup of  $G_{\Delta}^{\Delta} \wr G^{\Sigma}$ .

If  $G_{\Delta}^{\Delta}$  or  $G^{\Sigma}$  are imprimitive, we may iterate this process.

Summary If G is imprimitive, then G embeds in an iterated wreath product W of primitive groups, in such a way that the actions of each block stabiliser in W, and actions on each system of imprimitivity, are the same as those of G.

#### Example 35

Let  $G = \mathbb{Z}_8$ , acting regularly. Then  $\Sigma = \{\Delta_0 = \{0,4\}, \Delta_1 = \{1,5\}, \Delta_2 = \{2,6\}, \Delta_3 = \{3,7\}\}$ is a system of imprimitivity for G, and G acts as  $\mathbb{Z}_4$  on  $\Sigma$ . Hence  $G \leq \mathbb{Z}_2 \wr \mathbb{Z}_4$ . This action of  $\mathbb{Z}_4$  is still imprimitive:  $\overline{\Delta} = \{\Delta_0, \Delta_2\}$  is a block. Hence G embeds in  $\mathbb{Z}_2 \wr \mathbb{Z}_2 \wr \mathbb{Z}_2$ . Each  $\mathbb{Z}_2$  acts primitively.

# §7: Normal subgroups of primitive groups

# Orbits of normal subgroups

Theorem 36 Let  $G \leq \text{Sym}(\Omega)$  be transitive, and let  $N \leq G$ . The orbits of N form a system of imprimitivity for G.

Corollary 37 Let  $G \leq \text{Sym}(\Omega)$  be primitive, and let  $1 \neq N \trianglelefteq G$ . Then N is transitive.

# Minimal normal subgroups

Defn: A minimal normal subgroup of a group  $G \neq 1$  is a normal subgroup  $1 \neq K \trianglelefteq G$  s.t. if 1 < H < K then H is not normal in G.

#### Theorem 38

- G finite group,  $N \trianglelefteq G$ .
  - 1. Let K be a minimal normal subgroup of G. Then either  $K \leq N$  or  $K \cap N = 1$ .
  - 2. Every minimal normal subgroup K of G is a direct product of simple groups  $T_1 \cong T_2 \cong \cdots \cong T_k$ . Each  $T_i \trianglelefteq K$  and the  $T_i$  are pairwise conjugate in G (so are all isomorphic).

#### The socle

Defn: The socle of a group G, written soc(G), is the subgroup generated by the minimal normal subgroups of G.

#### Theorem 39

Let  $G \leq \text{Sym}(\Omega)$  be primitive, with  $|\Omega| < \infty$ . Let  $K \leq G$  be minimal normal. Then one of the following holds:

- (i) K is regular and abelian. Then  $soc(G) = K = C_G(K)$ .
- (ii) K is regular and non-abelian,  $C_G(K)$  is minimal normal in G,  $C_G(K)$  is perm isom to K, and  $soc(G) \cong K \times C_G(K)$ .
- (iii) K is non-abelian, with  $C_G(K) = 1$  and soc(G) = K.

#### Corollary 40

Let  $G \leq \text{Sym}(\Omega)$  be primitive, with  $|\Omega| < \infty$ . Then soc(G) is a direct product of isomorphic simple groups.

# §8: Primitive groups with regular socles

#### Affine geometries

Let  $\mathbb{F}_q$  be the (unique) finite field of order q. Let  $V = \mathbb{F}_q^d$ . Defn: The affine geometry  $AG_d(q)$  has:

- points: all vectors in V.
- affine subspaces: all translates of subspaces of V, i.e. all sets

$$S + v = \{u + v : u \in S\}, \text{ for } S \leq V, v \in V.$$

An affine automorphism of  $AG_d(q)$  is  $\sigma \in Sym(V)$  that maps affine subspaces to affine subspaces.

### The affine general linear group

Let q = p be prime. Lemma 41 For  $a \in GL_d(p)$  and  $v \in \mathbb{F}_p^d$ , let  $t_{a,v} : \mathbb{F}_p^d \to \mathbb{F}_p^d$ ,  $u \mapsto ua + v$ . Then  $t_{a,v} \in Aut(AG_d(p))$ .

Defn: Let  $\operatorname{AGL}_d(p) = \{t_{a,v} : a \in \operatorname{GL}_d(p), v \in \mathbb{F}_p^d\}$  – the affine general linear group.

Theorem 42 Let  $G = AGL_d(p)$ . (i)  $G \leq Sym(p^d)$ . (ii) Let  $V = \mathbb{F}_p^d$ . Then (V, +) is permutation isomorphic to  $\{t_{1,v} : v \in V\} \leq G$  and V acts regularly. (iii)  $G \cong V : GL_d(p) = V : Aut(V) = V : G_{\underline{0}}$ .

# Primitive groups of affine type

Defn:  $H \leq \operatorname{GL}_d(q)$  is reducible if there exists  $0 < U < V = \mathbb{F}_q^d$  s.t.  $U^h = U$  for all  $h \in H$ . Otherwise H is irreducible.

Example 43

The group of all matrices of the form  $\begin{pmatrix} 1 & 0 & 0 \\ x & a & b \\ y & c & d \end{pmatrix} \in GL_3(q)$ 

fixes  $\langle (1,0,0) \rangle$ , so is reducible.

The group of all matrices of the form  $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ y & c & d \end{pmatrix} \in GL_3(q)$ 

fixes  $\langle (1,0,0), (0,1,0) \rangle$ , so is reducible.

 $\operatorname{GL}_d(q)$  is irreducible.

Theorem 44 Let  $G \leq \operatorname{AGL}_d(p)$ , with  $(V, +) \leq G$ . G is primitive iff  $G_0 < \operatorname{GL}_d(p)$  is irreducible.

# Classification of primitive groups with regular socles

Let  $G \leq \text{Sym}(\Omega)$  be primitive, with  $|\Omega| < \infty$ . Assume that H = soc(G) is regular.

Theorem 45

Let  $N = N_{Sym(\Omega)}(H)$ . Then  $N \cong H$ : Aut(H) = Hol(H), and  $G = H : G_{\alpha}$ .

Theorem 46 If H is abelian, then G is perm isom to some  $K \leq AGL_d(p)$ , with  $H \cong V \leq AGL_d(p)$ . In particular  $|\Omega| = p^d$ .

#### Theorem 47

If H is non-abelian then there exists a non-abelian simple T s.t.

- 1.  $H \cong T_1 \times \cdots \times T_m$  for some m, with  $T_i \cong T$ ;
- 2.  $G_{\alpha}$  acts faithfully and transitively on the  $T_i$ , so  $G_{\alpha} \leq S_m$ ;
- 3.  $N_{G_{\alpha}}(T_1)$  has a composition factor isomorphic to T, and so T is a comp factor of some  $K \leq S_{m-1}$ . In particular,  $m \geq 6$ .