8th PhD Summer School in Discrete Maths Finite Permutation Groups
 Lecture 4: The O'Nan-Scott Theorem \& Applications

Colva M. Roney-Dougal
colva.roney-dougal@st-andrews.ac.uk

Rogla, 5 July 2018

§9: Primitive groups with non-regular socles

Product action wreath products

Theorem 20
Let $G=B \backslash A$, where B acts on Δ, with $|\Delta|<\infty$, and A acts on \underline{n}. Then G acts on $\Delta^{n}=\left\{\left(\delta_{1}, \ldots, \delta_{n}\right): \delta_{i} \in \Delta\right\}$ via

$$
\begin{aligned}
\left(\delta_{1}, \ldots, \delta_{n}\right)^{\left(b_{1}, \ldots, b_{n}\right) a} & =\left(\delta_{1}^{b_{1}}, \ldots, \delta_{n}^{b_{n}}\right)^{a} \\
& =\left(\delta_{1^{a^{-1}}}^{b_{1^{a}-1}}, \ldots, \delta_{n^{a^{-1}}}^{b_{a^{-1}}}\right)
\end{aligned}
$$

Defn: This action of $B \backslash A$ is the product action.
Theorem 21
Let $G=B$ 亿 A, with the product action.

1. G is faithful iff the actions of A and B are both faithful.
2. G is primitive iff B is primitive and not regular, and A is transitive.

The diagonal action

Let T be a non-abelian finite simple group, let $m \geq 2$.
Defn: The diagonal subgroup $D \leq T^{m}$ is $\{(t, \ldots, t): t \in T\}$.
The right coset action of T^{m} on $D \cong T$ gives a permutation representation $\rho_{D}: T^{m} \rightarrow \operatorname{Sym}\left(T^{m-1}\right)$.
Denote $D\left(t_{1}, \ldots, t_{n}\right)$ by $\left[t_{1}, \ldots, t_{n}\right]=\left[t_{n}^{-1} t_{1}, \ldots, t_{n}^{-1} t_{n-1}, 1\right]$.
Lemma 22
ρ_{D} is faithful and transitive.
Theorem 23
Let $H=T^{m} \rho_{D} \leq \operatorname{Sym}\left(T^{m-1}\right)$. Let $N=N_{\operatorname{Sym}\left(T^{m-1}\right)}(H)$. Then
(i) there exists $W \unlhd N$ with $W \cong T$ 亿 S_{m};
(ii) $N / W \cong \operatorname{Aut}(T) / \operatorname{Inn}(T)=\operatorname{Out}(T)$.

Primitive groups of diagonal type

Defn: $G \leq \operatorname{Sym}(\Omega)$ is a group of diagonal type if there exists a non-abelian simple T, and an integer $m \geq 2$, s.t.

- up to perm isom, $G \leq\left(T \imath S_{m}\right) \cdot(\operatorname{Aut}(T) / \operatorname{Inn}(T))$, with $\Omega=\left\{\left[t_{1}, \ldots, t_{n}\right]: t_{i} \in T\right\} ;$
- the base group $T^{m} \unlhd G$.

Theorem 24
A group G of diagonal type is primitive iff either
(i) $m=2$; or
(ii) $m \geq 3$ and the conjugation action of G on the set
$\left\{T_{1}, \ldots, T_{m}\right\}$ of minimal normal subgroups of T^{m} is primitive.

§10: The O'Nan-Scott Theorem

The O'Nan-Scott Theorem

Let G be a primitive group of degree n, with socle H. Then $H \cong T^{m}$ for some simple T and $m \geq 1$. The group G is perm isom to one of the following groups U.

1. H is regular and one of the following happens:
$1.1 T$ is abelian. Then $H \cong\left(\mathbb{F}_{p}^{m},+\right), n=p^{m}, U \leq \operatorname{AGL}_{d}(p)$. Affine type
1.2 T is non-abelian. Then $m \geq 6$. Twisted wreath
2. H is not regular. Then T is non-abelian and one of the following happens:
2.1 $H=T$, so $m=1$, and $T \unlhd U \leq \operatorname{Aut}(T)$, with U_{α} any maximal subgroup of U. Almost simple
$2.2 m \geq 2, n=|T|^{m-1}$ and $T^{m} \unlhd U \leq T^{m} .\left(\mathrm{S}_{m} \times \operatorname{Out}(T)\right)$ with the diagonal action. Diagonal type
$2.3 m=r s$ with $s>1, n=d^{s}$, and there exists a primitive group K of degree d s.t. $T^{m} \unlhd U \leq K \imath \mathrm{~S}_{s}$ with the product action. The group K is almost simple or of diagonal type. Product action type

An example: S_{8}

Let $H \leq \mathrm{S}_{8}$. Then H can be:

- intransitive: stabilise a k-set for $1 \leq k \leq 3$;
- imprimitive: blocks size 2 or 4;
- $8=2^{3}$, so G can be an affine type subgroup of $A G L_{3}(2)$.
- Almost simple: $\mathrm{PSL}_{2}(7), \mathrm{PGL}_{2}(7), \mathrm{A}_{8}, \mathrm{~S}_{8}$.

Maximal subgroups			
Order	Index	Structure	G .2
2520	8	$\mathrm{~A}_{7}$	$: \mathrm{S}_{7}$
1344	15	$2^{3}: \mathrm{L}_{3}(2)$	$2^{4}: \mathrm{S}_{4}$,
1344	15	$2^{3}: \mathrm{L}_{3}(2)$	$\mathrm{L}_{3}(2): 2$
720	28	$\mathrm{~S}_{6}$	$: \mathrm{S}_{6} \times 2$
576	35	$2^{4}:\left(\mathrm{S}_{3} \times \mathrm{S}_{3}\right)$	$:\left(\mathrm{S}_{4} \times \mathrm{S}_{4}\right): 2$
360	56	$\left(A_{5} \times 3\right): 2$	$: \mathrm{S}_{5} \times \mathrm{S}_{3}$

Application: Classifying primitive permutation groups

Two main tasks

1. Find the irreducible subgroups of $\mathrm{GL}_{d}(p)$, for the groups of affine type.
2. Find the almost simple primitive groups.

Theorem 25 (Bray, Holt, CMRD 13)
Let G be an almost simple group such that Z.G has a faithful representation as a subgroup of $\mathrm{GL}_{d}(q)$ for $d \leq 12$, with Z being mapped to a subgroup of $Z\left(\mathrm{GL}_{d}(q)\right)$. Then the maximal subgroups of G are known.

Theorem 26 (CMRD 05; Coutts, Quick \& CMRD 11)
The primitive groups of degree up to 4095 are known.

Application: Random generation

Let x, y be chosen uniformly at random from A_{n}. What is the probability that $H=\langle x, y\rangle=\mathrm{A}_{n}$?

- If $H \neq \mathrm{A}_{n}$, then $\exists M \leq_{\max } \mathrm{A}_{n}$ s.t. $H \leq M$.
- $\mathbb{P}(x, y \in M)=1 /\left|\mathrm{A}_{n}: M\right|^{2}$.
- Hence

$$
\mathbb{P}\left(H \neq \mathrm{A}_{n}\right) \leq \sum_{M \leq \max \mathrm{A}_{n}} \frac{1}{\left|\mathrm{~A}_{n}: M\right|^{2}}
$$

Maximal subgroups of A_{n} : intransitive, transitive or primitive.
Theorem 27 (Liebeck 84)
Let $G \leq S_{n}$ be primitive and almost simple. Then either $|G|<n^{9}$ or G is one of two specified families of permutation groups.
Can also bound the number of almost simple subgroups.
Theorem 28 (Morgan \& CMRD '15)

$$
1-\frac{1}{n}-\frac{8.8}{n^{2}} \leq \mathbb{P}\left(H=\mathrm{A}_{n}\right) \leq 1-\frac{1}{n}-\frac{0.93}{n^{2}}
$$

§11: Some simple primitive groups

Some almost simple primitive groups

Theorem 29
A_{n} is simple for all $n \geq 5$.
Corollary 30
For $n \geq 5$, the action of A_{n} or S_{n} on the cosets of any maximal subgroup is an almost simple primitive group.

Defn: $\mathrm{SL}_{d}(q) \unlhd \mathrm{GL}_{d}(q)$ is all matrices of determinant 1 .
$\mathrm{GL}_{d}(q)$ and $\mathrm{SL}_{d}(q)$ act faithfully on vectors in \mathbb{F}_{q}^{d}.

- This action is intransitive: $0 g=0$ for all $g \in \mathrm{GL}_{d}(q)$.
$\mathrm{GL}_{d}(q)$ and $\mathrm{SL}_{d}(q)$ act transitively on all nonzero vectors in \mathbb{F}_{q}^{d}.
- If $q>2$ then this action is imprimitive: let $v \in \mathbb{F}_{q}^{d} \backslash\{0\}$, and let $\lambda \in \mathbb{F}_{q}^{*}$. Then $(\lambda v) g=\lambda(v g)$, so $\langle v\rangle$ is a block.

Introducing $\mathrm{PSL}_{d}(q)$ and $\mathrm{PGL}_{d}(q)$

Let $\Omega=\left\{\langle v\rangle: v \in \mathbb{F}_{q}^{d} \backslash\{0\}\right\}$ be the system of imprimitivity for this action of $\mathrm{GL}_{d}(q)$.
Then $\mathrm{GL}_{d}(q)$ and $\mathrm{SL}_{d}(q)$ act on Ω.
Lemma 31

1. $|\Omega|=\left(q^{d}-1\right) /(q-1)$.
2. The kernel of the action of $\mathrm{GL}_{d}(q)$ is

$$
\left\{\lambda I_{d}: \lambda \in \mathbb{F}_{q}^{*}\right\}=Z\left(\operatorname{GL}_{d}(q)\right)
$$

3. The action of $\mathrm{SL}_{d}(q)$ is 2-transitive, and hence primitive.

Defn: $\mathrm{PSL}_{d}(q)$ is the image of $\mathrm{SL}_{d}(q)$ repn, so $\mathrm{PSL}_{d}(q) \leq \operatorname{Sym}(\Omega) . \mathrm{PGL}_{d}(q)$ is image of $\mathrm{GL}_{d}(q)$.
Theorem 32
The groups $\mathrm{PSL}_{d}(q)$ are simple, except for $\mathrm{PSL}_{2}(2) \cong \mathrm{S}_{3}$ and $\mathrm{PSL}_{2}(3) \cong \mathrm{A}_{4} . \mathrm{PSL}_{d}(q) \unlhd \mathrm{PGL}_{d}(q)$.

Pairwise non-isomorphism

Theorem 33
The simple groups $\mathrm{PSL}_{d}(q)$ are pairwise non-isomorphic, and are not isomorphic to the alternating groups, except for

$$
\begin{gathered}
\mathrm{PSL}_{2}(4) \cong \operatorname{PSL}_{2}(5) \cong \mathrm{A}_{5}, \\
\operatorname{PSL}_{2}(7) \cong \operatorname{PSL}_{3}(2), \\
\mathrm{PSL}_{2}(9) \cong \mathrm{A}_{6}, \quad \mathrm{PSL}_{4}(2) \cong \mathrm{A}_{8}
\end{gathered}
$$

Lemma 34
Let (a, b) denote the greatest common divisor of a and b. Then

$$
\left|\operatorname{PSL}_{d}(q)\right|=\frac{1}{(q-1, d)} q^{d(d-1) / 2} \prod_{i=2}^{d}\left(q^{i}-1\right)
$$

A faithful linear representation of $\mathrm{PSL}_{2}(7)$

Defn: Let $G \leq S_{n}$. Then there is a faithful linear representation of G via permutation matrices; i.e. a homom $\rho_{p}: G \rightarrow \operatorname{GL}_{n}(q)$, $g \mapsto m$, where:

1. $m_{i j} \in\{0,1\}$ for all i, j;
2. $m_{i j}=1 \Leftrightarrow i^{g}=j$.
$\mathrm{SL}_{2}(7)=\left\langle a:=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right), b:=\left(\begin{array}{ll}6 & 1 \\ 6 & 0\end{array}\right)\right\rangle$.
Label the 1 -dim subspaces of \mathbb{F}_{7}^{2} by

$$
\infty=\langle(0,1)\rangle, i=\langle(1, i)\rangle \text { for } 0 \leq i \leq 6
$$

$\mathrm{SL}_{2}(7)$ acts on $\Omega=\{\infty, 0, \ldots, 7\}$.
$\operatorname{PSL}_{2}(7)=\left\langle\bar{a}=\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)\left(\begin{array}{ll}3 & 5\end{array}\right), \bar{b}=(\infty 60)(135)\right\rangle \leq \operatorname{Sym}(\Omega)$.
$v_{\infty}, v_{0}, v_{1}, \ldots, v_{6}-$ standard basis of $V=\mathbb{F}_{2}^{8}$.
Let $\rho_{p}: \mathrm{SL}_{2}(7) \rightarrow \mathrm{GL}_{8}(2)$ be rep via permutation matrices, then $\operatorname{Im}\left(\rho_{p}\right)=\mathrm{PSL}_{2}(7)$.

$\operatorname{PSL}_{2}(7) \cong \operatorname{PSL}_{3}(2)$

$$
\begin{aligned}
& \text { Let } v=(1,1, \ldots, 1) \in V=\mathbb{F}_{2}^{8} \text {. } \\
& \text { Let } U=\left\langle v, u_{1}=\sum_{i=\infty, 0,1,3} v_{i}, u_{2}=\sum_{i=\infty, 1,2,4} v_{i}\right. \text {, } \\
& \left.u_{3}=\sum_{i=\infty, 2,3,5} v_{i}\right\rangle \leq V .
\end{aligned}
$$

Lemma 35
$v^{\mathrm{PSL}_{2}(7)}=v$ and $U^{\mathrm{PSL}_{2}(7)}=U$.
Proof.
Use $\mathrm{PSL}_{2}(7)=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 6\end{array}\right),\left(\begin{array}{ll}\infty & 0\end{array}\right)\left(\begin{array}{ll}1 & 5\end{array}\right)\right\rangle$.

- So $\operatorname{PSL}_{2}(7)$ acts on $U /\langle v\rangle=\{u+\langle v\rangle: u \in U\}$, dimension 3.
- $\mathrm{PSL}_{2}(7)$ is simple and action is nontrivial so action is faithful.
- $\operatorname{So} \operatorname{PSL}_{2}(7) \leq \mathrm{GL}_{3}(2) \cong \operatorname{PSL}_{3}(2)$.
- But $\left|\mathrm{PSL}_{2}(7)\right|=168=\left|\mathrm{PSL}_{3}(2)\right|$.
- $\operatorname{So} \mathrm{PSL}_{2}(7) \cong \mathrm{PSL}_{3}(2)$.

