8th PhD Summer School in Discrete Maths Finite Permutation Groups Lecture 4: The O'Nan–Scott Theorem & Applications

Colva M. Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

Rogla, 5 July 2018

§9: Primitive groups with non-regular socles

Product action wreath products

Theorem 20 Let $G = B \wr A$, where B acts on Δ , with $|\Delta| < \infty$, and A acts on <u>n</u>. Then G acts on $\Delta^n = \{(\delta_1, \ldots, \delta_n) : \delta_i \in \Delta\}$ via

$$(\delta_1, \dots, \delta_n)^{(b_1, \dots, b_n)a} = (\delta_1^{b_1}, \dots, \delta_n^{b_n})^a = (\delta_{1^{a^{-1}}}^{b_{1^{a^{-1}}}}, \dots, \delta_{n^{a^{-1}}}^{b_{n^{a^{-1}}}})$$

Defn: This action of $B \wr A$ is the product action.

Theorem 21

Let $G = B \wr A$, with the product action.

- 1. G is faithful iff the actions of A and B are both faithful.
- 2. *G* is primitive iff *B* is primitive and not regular, and *A* is transitive.

The diagonal action

Let *T* be a non-abelian finite simple group, let $m \ge 2$. Defn: The diagonal subgroup $D \le T^m$ is $\{(t, ..., t) : t \in T\}$. The right coset action of T^m on $D \cong T$ gives a permutation representation $\rho_D : T^m \to \text{Sym}(T^{m-1})$. Denote $D(t_1, ..., t_n)$ by $[t_1, ..., t_n] = [t_n^{-1}t_1, ..., t_n^{-1}t_{n-1}, 1]$. Lemma 22 ρ_D is faithful and transitive.

Theorem 23 Let $H = T^m \rho_D \leq \text{Sym}(T^{m-1})$. Let $N = N_{\text{Sym}(T^{m-1})}(H)$. Then (i) there exists $W \leq N$ with $W \cong T \wr S_m$; (ii) $N/W \cong \text{Aut}(T)/\text{Inn}(T) = \text{Out}(T)$.

Primitive groups of diagonal type

Defn: $G \leq \text{Sym}(\Omega)$ is a group of diagonal type if there exists a non-abelian simple T, and an integer $m \geq 2$, s.t.

- up to perm isom, $G \leq (T \wr S_m).(\operatorname{Aut}(T)/\operatorname{Inn}(T))$, with $\Omega = \{[t_1, \ldots, t_n] : t_i \in T\};$
- the base group $T^m \trianglelefteq G$.

Theorem 24

A group G of diagonal type is primitive iff either

(ii) $m \ge 3$ and the conjugation action of G on the set $\{T_1, \ldots, T_m\}$ of minimal normal subgroups of T^m is primitive.

$\S10:$ The O'Nan–Scott Theorem

The O'Nan-Scott Theorem

Let G be a primitive group of degree n, with socle H. Then $H \cong T^m$ for some simple T and $m \ge 1$. The group G is perm isom to one of the following groups U.

- 1. H is regular and one of the following happens:
 - 1.1 T is abelian. Then $H \cong (\mathbb{F}_p^m, +)$, $n = p^m$, $U \leq \mathrm{AGL}_d(p)$. Affine type
 - 1.2 T is non-abelian. Then $m \ge 6$. Twisted wreath
- 2. *H* is not regular. Then T is non-abelian and one of the following happens:
 - 2.1 H = T, so m = 1, and $T \leq U \leq Aut(T)$, with U_{α} any maximal subgroup of U. Almost simple
 - 2.2 $m \ge 2$, $n = |T|^{m-1}$ and $T^m \le U \le T^m.(S_m \times Out(T))$ with the diagonal action. Diagonal type
 - 2.3 m = rs with s > 1, $n = d^s$, and there exists a primitive group K of degree d s.t. $T^m \leq U \leq K \wr S_s$ with the product action. The group K is almost simple or of diagonal type. Product action type

An example: S_8

Let $H \leq S_8$. Then H can be:

- intransitive: stabilise a k-set for $1 \le k \le 3$;
- imprimitive: blocks size 2 or 4;
- ▶ $8 = 2^3$, so G can be an affine type subgroup of AGL₃(2).
- Almost simple: $PSL_2(7)$, $PGL_2(7)$, A_8 , S_8 .

Maximal subgroups			
Order	Index	Structure	G.2
2520	8	A ₇	: S ₇
1344	15	⁷ 7 2 ³ :L ₃ (2)	
1344	15	2 ³ :L ₃ (2)	2 ⁴ :S ₄ ,] L ₃ (2):2
720	28	s ₆	: S ₆ x 2
576	35	2 ⁴ :(S ₃ xS ₃)	: (S ₁₁ xS ₁₁):2
360	56	(A ₅ x3):2	: S ₅ x S ₃
200	50	\$*5*37*2	• 5 • 3

Application: Classifying primitive permutation groups

Two main tasks

- 1. Find the irreducible subgroups of $\operatorname{GL}_d(p)$, for the groups of affine type.
- 2. Find the almost simple primitive groups.

Theorem 25 (Bray, Holt, CMRD 13)

Let G be an almost simple group such that Z.G has a faithful representation as a subgroup of $\operatorname{GL}_d(q)$ for $d \leq 12$, with Z being mapped to a subgroup of $Z(\operatorname{GL}_d(q))$. Then the maximal subgroups of G are known.

Theorem 26 (CMRD 05; Coutts, Quick & CMRD 11) The primitive groups of degree up to 4095 are known.

Application: Random generation

Let x, y be chosen uniformly at random from A_n . What is the probability that $H = \langle x, y \rangle = A_n$?

▶ If $H \neq A_n$, then $\exists M \leq_{\max} A_n$ s.t. $H \leq M$.

$$\blacktriangleright \mathbb{P}(x, y \in M) = 1/|\mathbf{A}_n : M|^2$$

Hence

$$\mathbb{P}(H \neq A_n) \leq \sum_{M \leq \max A_n} \frac{1}{|A_n : M|^2}$$

Maximal subgroups of A_n : intransitive, transitive or primitive.

Theorem 27 (Liebeck 84)

Let $G \leq S_n$ be primitive and almost simple. Then either $|G| < n^9$ or G is one of two specified families of permutation groups. Can also bound the number of almost simple subgroups.

Theorem 28 (Morgan & CMRD '15)

$$1 - \frac{1}{n} - \frac{8.8}{n^2} \le \mathbb{P}(H = A_n) \le 1 - \frac{1}{n} - \frac{0.93}{n^2}$$

$\S{11}$: Some simple primitive groups

Some almost simple primitive groups

Theorem 29 A_n is simple for all $n \ge 5$.

Corollary 30

For $n \ge 5$, the action of A_n or S_n on the cosets of any maximal subgroup is an almost simple primitive group.

Defn: $SL_d(q) \trianglelefteq GL_d(q)$ is all matrices of determinant 1.

 $\operatorname{GL}_d(q)$ and $\operatorname{SL}_d(q)$ act faithfully on vectors in \mathbb{F}_q^d .

• This action is intransitive: 0g = 0 for all $g \in GL_d(q)$.

 $\operatorname{GL}_d(q)$ and $\operatorname{SL}_d(q)$ act transitively on all nonzero vectors in \mathbb{F}_q^d .

If q > 2 then this action is imprimitive: let v ∈ 𝔽^d_q \ {0}, and let λ ∈ 𝔽^{*}_q. Then (λv)g = λ(vg), so ⟨v⟩ is a block.

Introducing $PSL_d(q)$ and $PGL_d(q)$

Let $\Omega = \{ \langle v \rangle : v \in \mathbb{F}_q^d \setminus \{0\} \}$ be the system of imprimitivity for this action of $\operatorname{GL}_d(q)$. Then $\operatorname{GL}_d(q)$ and $\operatorname{SL}_d(q)$ act on Ω .

Lemma 31

1.
$$|\Omega| = (q^d - 1)/(q - 1).$$

- 2. The kernel of the action of $\operatorname{GL}_d(q)$ is $\{\lambda I_d : \lambda \in \mathbb{F}_q^*\} = Z(\operatorname{GL}_d(q)).$
- 3. The action of $SL_d(q)$ is 2-transitive, and hence primitive.

Defn: $\operatorname{PSL}_d(q)$ is the image of $\operatorname{SL}_d(q)$ repn, so $\operatorname{PSL}_d(q) \leq \operatorname{Sym}(\Omega)$. $\operatorname{PGL}_d(q)$ is image of $\operatorname{GL}_d(q)$.

Theorem 32

The groups $PSL_d(q)$ are simple, except for $PSL_2(2) \cong S_3$ and $PSL_2(3) \cong A_4$. $PSL_d(q) \trianglelefteq PGL_d(q)$.

Pairwise non-isomorphism

Theorem 33

The simple groups $PSL_d(q)$ are pairwise non-isomorphic, and are not isomorphic to the alternating groups, except for

$$\begin{array}{l} \operatorname{PSL}_2(4)\cong\operatorname{PSL}_2(5)\cong\operatorname{A}_5,\\ \operatorname{PSL}_2(7)\cong\operatorname{PSL}_3(2),\\ \operatorname{PSL}_2(9)\cong\operatorname{A}_6,\quad\operatorname{PSL}_4(2)\cong\operatorname{A}_8\end{array}$$

Lemma 34

Let (a, b) denote the greatest common divisor of a and b. Then

$$|\mathrm{PSL}_d(q)| = rac{1}{(q-1,d)} q^{d(d-1)/2} \prod_{i=2}^d (q^i-1).$$

A faithful linear representation of $PSL_2(7)$

Defn: Let $G \leq S_n$. Then there is a faithful linear representation of G via permutation matrices; i.e. a homom $\rho_p : G \to \operatorname{GL}_n(q)$, $g \mapsto m$, where:

1.
$$m_{ij} \in \{0, 1\}$$
 for all $i, j;$
2. $m_{ij} = 1 \Leftrightarrow i^g = j.$
 $\operatorname{SL}_2(7) = \langle a := \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}, b := \begin{pmatrix} 6 & 1 \\ 6 & 0 \end{pmatrix} \rangle.$
Label the 1-dim subspaces of \mathbb{F}_7^2 by

$$\infty = \langle (0,1)
angle, i = \langle (1,i)
angle$$
 for $0 \leq i \leq 6$.

SL₂(7) acts on $\Omega = \{\infty, 0, \dots, 7\}$. PSL₂(7) = $\langle \overline{a} = (1 \ 4 \ 2)(3 \ 5 \ 6), \overline{b} = (\infty \ 6 \ 0)(1 \ 3 \ 5) \rangle \leq \text{Sym}(\Omega)$.

 $v_{\infty}, v_0, v_1, \ldots, v_6$ – standard basis of $V = \mathbb{F}_2^8$. Let $\rho_p : SL_2(7) \to GL_8(2)$ be rep via permutation matrices, then $Im(\rho_p) = PSL_2(7)$.

$\mathrm{PSL}_2(7)\cong\mathrm{PSL}_3(2)$

Let
$$v = (1, 1, ..., 1) \in V = \mathbb{F}_2^8$$
.
Let $U = \langle v, u_1 = \sum_{i=\infty,0,1,3} v_i, u_2 = \sum_{i=\infty,1,2,4} v_i, u_3 = \sum_{i=\infty,2,3,5} v_i \rangle \leq V$.

Lemma 35 $v^{\text{PSL}_2(7)} = v$ and $U^{\text{PSL}_2(7)} = U$.

Proof.

Use $PSL_2(7) = \langle (1 \ 4 \ 2)(3 \ 5 \ 6), (\infty \ 6 \ 0)(1 \ 3 \ 5) \rangle.$

- ▶ So $PSL_2(7)$ acts on $U/\langle v \rangle = \{u + \langle v \rangle : u \in U\}$, dimension 3.
- PSL₂(7) is simple and action is nontrivial so action is faithful.
- So $\operatorname{PSL}_2(7) \leq \operatorname{GL}_3(2) \cong \operatorname{PSL}_3(2)$.
- But $|PSL_2(7)| = 168 = |PSL_3(2)|$.
- So $PSL_2(7) \cong PSL_3(2)$.