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31: The symmetric group



Permutations

Let Q be a nonempty set.

Defn: A permutation of € is a bijection from Q to Q.

Defn: We multiply two permutations x and y on Q by composition
of functions:

(@) (xy) = (ax)y
for all a € Q.

Defn: The symmetric group on £, written Sym(2), is the set of all
permutations of €, under composition of functions.

Defn: Let n={1,...,n}. Write S, for Sym(n).

Theorem 1
Let |2] = n. Then Sym(Q2) is a group of order n!.



Disjoint cycles

Q — finite.
Defn: An r-cycle, written ¢ = (a1 az ... a,), is the permutation
ay +H» ar
ay > as
ar—1 > ar
a, rai

and fixing Q\ {a1,...,a}.

Defn: Cycles ¢ and ¢, are disjoint if no point moved by ¢; is
moved by c.

Lemma 2
Let ¢ and ¢y be disjoint cycles on Q2. Then c1c, = cpcy.

Theorem 3

Every o € Sym(2) can be written as a product of disjoint cycles.
This product is unique up to the order of the cycles.



Transpositions

Q — finite.

Defn: A transposition is a 2-cycle.

Lemma 4
Every o € Sym(Q2) can be written as a product of transpositions.

Proof.

c=1(a; a ...a,) —an r-cycle. Then
c=(ar—1 ar)(ar—2ar—1) - - - (a2 a3)(a1 a2).
Result now follows from Theorem 3. O

Warning! The decomposition of a cycle into transpositions is not
unique: (123)=(23)(12)=(13)(23).



Even and odd permutations

Q — finite.

Defn: A permutation o is even if ¢ can be written as a product of
an even number of transpositions.

o is odd if o can be written as a product of an odd number of
transpositions.

Theorem 5
Every permutation o € Sym(Q) is either even or odd, but not both.

Defn: Alt(Q2) = {o € Sym(Q) : o is even}.

Theorem 6
Alt(Q2) < Sym(Q). The index |Sym(R2) : Alt(Q)| = 2.

Defn: Alt(Q) is the alternating group.



32: Actions and representations



Actions
Defn: A permutation group is any H < Sym(2), where Q # (.

Definition 7
An action of a gp G on a nonempty set 2 is a function
w:QxG—9Q (a,g) ~afst foralaeQ g,he G
(A1) a'¢ = a; and
(A2) ol&h) = (a8)h.
Say that G acts on Q.
Example 8

1. Sym(f2) acts on Q by a” = ao.

So every perm group on £ acts on : the natural action.

2. G — group. G acts on itself by right multiplication:
(o, g)v = o := ag. The right regular action.

3. G—group. H< G. Let Q@ ={Ha:a€ G}. Then G acts on
Q by (Ha, g)uy = (Ha)® = Hag. The right coset action.



Permutation representations

G — group. Q — nonempty set.
Defn: A permutation representation (perm rep) of G on Q is a
homom p: G — Sym().

Theorem 9
Let G acton Q viapu:Q2x G — Q, (a,g) — 8. Foreach g € G,
let

pg i af.

Then the map p,, : G — Sym(RQ), g — pg is a perm rep.

Theorem 10
Let p be a perm rep of G on Q. Then p,: Q2 x G = G,
(o, g) — a(gp) is an action.

Theorem 11

The operations of Theorems 9 and 10 are mutually inverse: there
is a natural bijection between actions of G on 0 and perm reps of
G on Q.



Properties of actions

Defn: The kernel of an action is the kernel of the corresponding
perm rep.

Defn: The degree of an action of G on €, or of a permutation
group on €2, or of a perm rep p: G — Sym(Q) is |Q].
Defn: An action or representation is faithful if the kernel is trivial.

Theorem 12
If a perm rep p is faithful then Imp = G. If G is finite and

Imp = G then p is faithful.
Proof.

First isomorphism theorem.



Examples of representations

1. Recall the natural action of a perm group G < Sym()
(Example 8.1). The corresponding perm rep is the identity
map ¢ embedding G in Sym().
¢ is faithful, and has degree |Q|.

2. The right regular action (g, h)u = gh corresponds to the
Cayley rep or the right regular rep.

It has degree |G|.
Cayley’s Theorem Every gp G is isomorphic to a perm gp.

3. Let H < G. The conjugation action of G on H is
pw:HxG— H, (hg)— g thg.
The kernel of this action is Cg(H) = {g € G | hg = gh for all
h € H}, the centraliser of H in G.



§3: Orbits and stabilisers



Orbits
These defns apply to actions, perm reps and perm gps.
Defn: The orbit of & € Q under G is a® = {a® : g € G}.

Lemma 13
Let o, 8 € Q. Then either a® = 8¢ or a® N B¢ = 0.
That is, the set of all orbits of G forms a partition of Q.

Defn: If G has a single orbit on Q then G is transitive; otherwise
G is intransitive.

Example 14
1. Let H < G; py — right coset action of G on H.
This action is transitive, of degree |G : H|.

2. If n> 3 then A, is transitive on k-subsets of n for 1 < k < n.

3. Let G act on itself by conjugation. The orbits of G are the
conjugacy classes: the sets {x !gx : x € G}.
If G # 1 then this action is intransitive.



Stabilisers and the Orbit-Stabiliser Theorem
Defn: Let G act on Q and a € Q. The stabiliser in G of a is

Go={g€G : af=a}
Theorem 15
1. G, <G.
2. Let = a#. Then Gg = G§.
3. a8 =o' if and only if G,g = Guh.
4. The orbit-stabiliser theorem: |a®| = |G : G,|.

Defn: G is regular if G is transitive and G, = 1.

Corollary 16

Let G act transitively on €2, let o € €.
1. {G,:weQ}={GE : ge G}
2. The kernel of the action is Ngeg GE — the core of Gy in G.
3. If G is finite then: G is regular if and only if |G| = |Q|.



