8th PhD Summer School in Discrete Maths Finite Permutation Groups Lecture 1: Group actions

> Colva M. Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

> > Rogla, 2 July 2018

$\S1$: The symmetric group

Permutations

Let Ω be a nonempty set.

Defn: A permutation of Ω is a bijection from Ω to Ω . Defn: We multiply two permutations x and y on Ω by composition of functions:

$$(\alpha)(xy) = (\alpha x)y$$

for all $\alpha \in \Omega$.

Defn: The symmetric group on Ω , written $Sym(\Omega)$, is the set of all permutations of Ω , under composition of functions.

Defn: Let $\underline{n} = \{1, \ldots, n\}$. Write \underline{S}_n for $\underline{Sym}(\underline{n})$.

Theorem 1 Let $|\Omega| = n$. Then $Sym(\Omega)$ is a group of order n!.

Disjoint cycles

 Ω – finite.

Defn: An *r*-cycle, written $c = (a_1 a_2 \dots a_r)$, is the permutation

$$\begin{array}{cccc} a_1 & \mapsto a_2 \\ a_2 & \mapsto a_3 \\ & \vdots \\ a_{r-1} & \mapsto a_r \\ a_r & \mapsto a_1 \end{array}$$

and fixing $\Omega \setminus \{a_1, \ldots, a_r\}$.

Defn: Cycles c_1 and c_2 are disjoint if no point moved by c_1 is moved by c_2 .

Lemma 2

Let c_1 and c_2 be disjoint cycles on Ω . Then $c_1c_2 = c_2c_1$.

Theorem 3

Every $\sigma \in Sym(\Omega)$ can be written as a product of disjoint cycles. This product is unique up to the order of the cycles.

Transpositions

 Ω – finite.

Defn: A transposition is a 2-cycle.

Lemma 4 Every $\sigma \in Sym(\Omega)$ can be written as a product of transpositions.

Proof. $c = (a_1 \ a_2 \ \dots a_r) - a_r \ r$ -cycle. Then $c = (a_{r-1} \ a_r)(a_{r-2}a_{r-1}) \cdots (a_2 \ a_3)(a_1 \ a_2).$

Result now follows from Theorem 3.

Warning! The decomposition of a cycle into transpositions is not unique: $(1\ 2\ 3) = (2\ 3)(1\ 2) = (1\ 3)(2\ 3)$.

Even and odd permutations

 Ω – finite.

Defn: A permutation σ is even if σ can be written as a product of an even number of transpositions.

 σ is odd if σ can be written as a product of an odd number of transpositions.

Theorem 5

Every permutation $\sigma \in Sym(\Omega)$ is either even or odd, but not both.

```
Defn: Alt(\Omega) = \{ \sigma \in Sym(\Omega) : \sigma \text{ is even} \}.
```

Theorem 6 $\operatorname{Alt}(\Omega) \trianglelefteq \operatorname{Sym}(\Omega)$. The index $|\operatorname{Sym}(\Omega) : \operatorname{Alt}(\Omega)| = 2$.

Defn: $Alt(\Omega)$ is the alternating group.

§2: Actions and representations

Actions

Defn: A permutation group is any $H \leq \text{Sym}(\Omega)$, where $\Omega \neq \emptyset$. Definition 7 An action of a gp G on a nonempty set Ω is a function $\mu : \Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. for all $\alpha \in \Omega$, $g, h \in G$ (A1) $\alpha^{1_G} = \alpha$; and (A2) $\alpha^{(gh)} = (\alpha^g)^h$.

Say that G acts on Ω .

Example 8

- 1. Sym(Ω) acts on Ω by $\alpha^{\sigma} = \alpha \sigma$. So every perm group on Ω acts on Ω : the natural action.
- 2. G group. G acts on itself by right multiplication: $(\alpha, g)\mu = \alpha^g := \alpha g$. The right regular action.
- 3. G group. $H \leq G$. Let $\Omega = \{Ha : a \in G\}$. Then G acts on Ω by $(Ha, g)\mu_H = (Ha)^g = Hag$. The right coset action.

Permutation representations

G – group. Ω – nonempty set.

Defn: A permutation representation (perm rep) of G on Ω is a homom $\rho : G \to Sym(\Omega)$.

Theorem 9

Let G act on Ω via $\mu : \Omega \times G \rightarrow \Omega$, $(\alpha, g) \mapsto \alpha^{g}$. For each $g \in G$, let

 $\rho_{g}: \alpha \mapsto \alpha^{g}.$

Then the map $\rho_{\mu}: G \to \operatorname{Sym}(\Omega)$, $g \mapsto \rho_g$ is a perm rep.

Theorem 10 Let ρ be a perm rep of G on Ω . Then $\mu_{\rho} : \Omega \times G \to G$, $(\alpha, g) \mapsto \alpha(g\rho)$ is an action.

Theorem 11

The operations of Theorems 9 and 10 are mutually inverse: there is a natural bijection between actions of G on Ω and perm reps of G on Ω .

Properties of actions

Defn: The kernel of an action is the kernel of the corresponding perm rep.

Defn: The degree of an action of G on Ω , or of a permutation group on Ω , or of a perm rep $\rho : G \to \text{Sym}(\Omega)$ is $|\Omega|$.

Defn: An action or representation is faithful if the kernel is trivial.

```
Theorem 12
If a perm rep \rho is faithful then \text{Im}\rho \cong G. If G is finite and \text{Im}\rho \cong G then \rho is faithful.
```

Proof.

First isomorphism theorem.

Examples of representations

- Recall the natural action of a perm group G ≤ Sym(Ω) (Example 8.1). The corresponding perm rep is the identity map ι embedding G in Sym(Ω).
 ι is faithful, and has degree |Ω|.
- The right regular action (g, h)µ = gh corresponds to the Cayley rep or the right regular rep. It has degree |G|.
 Cayley's Theorem Every gp G is isomorphic to a perm gp.
- Let H ⊆ G. The conjugation action of G on H is µ: H × G → H, (h,g) ↦ g⁻¹hg. The kernel of this action is C_G(H) = {g ∈ G | hg = gh for all h ∈ H}, the centraliser of H in G.

$\S3$: Orbits and stabilisers

Orbits

These defns apply to actions, perm reps and perm gps.

Defn: The orbit of $\alpha \in \Omega$ under G is $\alpha^{G} = \{ \alpha^{g} : g \in G \}.$

Lemma 13 Let $\alpha, \beta \in \Omega$. Then either $\alpha^{G} = \beta^{G}$ or $\alpha^{G} \cap \beta^{G} = \emptyset$. That is, the set of all orbits of G forms a partition of Ω .

Defn: If G has a single orbit on Ω then G is transitive; otherwise G is intransitive.

Example 14

- 1. Let $H \leq G$; μ_H right coset action of G on H. This action is transitive, of degree |G:H|.
- 2. If $n \ge 3$ then A_n is transitive on k-subsets of \underline{n} for $1 \le k \le n$.
- Let G act on itself by conjugation. The orbits of G are the conjugacy classes: the sets {x⁻¹gx : x ∈ G}. If G ≠ 1 then this action is intransitive.

Stabilisers and the Orbit-Stabiliser Theorem

Defn: Let G act on Ω and $\alpha \in \Omega$. The stabiliser in G of α is

$$\mathcal{G}_{\alpha} = \{ \mathbf{g} \in \mathbf{G} : \alpha^{\mathbf{g}} = \alpha \}.$$

Theorem 15

- 1. $G_{\alpha} \leq G$.
- 2. Let $\beta = \alpha^{g}$. Then $G_{\beta} = G_{\alpha}^{g}$.
- 3. $\alpha^{g} = \alpha^{h}$ if and only if $G_{\alpha}g = G_{\alpha}h$.
- 4. The orbit-stabiliser theorem: $|\alpha^{G}| = |G : G_{\alpha}|$.

Defn: *G* is regular if *G* is transitive and $G_{\alpha} = 1$. Corollary 16 Let *G* act transitively on Ω , let $\alpha \in \Omega$.

- 1. $\{G_{\omega} : \omega \in \Omega\} = \{G_{\alpha}^{g} : g \in G\}.$
- 2. The kernel of the action is $\bigcap_{g \in G} G_{\alpha}^{g}$ the core of G_{α} in G.
- 3. If G is finite then: G is regular if and only if $|G| = |\Omega|$.