8th PhD Summer School in Discrete Maths Finite Permutation Groups Lecture 2: Imprimitivity and decompositions

> Colva M. Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

> > Rogla, 3 July 2018

Equivalence of representations

Definition 17 Let $\rho : G \to \text{Sym}(\Omega)$, $\tau : G \to \text{Sym}(\Gamma)$ be perm reps. Then ρ and τ are equivalent if there exists a bijection $\lambda : \Omega \to \Gamma$ s.t. for all $\omega \in \Omega$ and $g \in G$:

$$(\omega^{(g\rho)})\lambda = (\omega\lambda)^{(g\tau)}$$

Actions are equivalent iff the corresponding perm reps are.

Lemma 18

Let G act transitively on Ω and Γ , and let $H = G_{\omega}$ for some $\omega \in \Omega$. The actions are equivalent iff $H = G_{\gamma}$ for some $\gamma \in \Gamma$.

Theorem 19

Let G act transitively on Ω , with point stabiliser H. This action is equivalent to the action μ_H on the right cosets of H. Two right coset actions μ_H and μ_K are equivalent iff H and K are

conjugate subgroups of G.

§4: Semidirect and wreath products

Automorphism groups

Defn: An automorphism of a gp G is an isomorphism $\phi : G \to G$. Defn: Aut $(G) = \{\phi : \phi \text{ is an automorphism of } G\} \subseteq Sym(G)$ is the automorphism group of G.

Lemma 20 $\operatorname{Aut}(G) < \operatorname{Sym}(G).$ Defn: Let $g \in G$. The map $c_g : G \to G$, $x \mapsto g^{-1}xg$ is an inner automorphism of G. Inn $(G) = \{c_g : g \in G\} \subseteq Aut(G)$ is the inner automorphism group of G. Theorem 21 $\operatorname{Inn}(G) \trianglelefteq \operatorname{Aut}(G).$ Defn: $Z(G) = \{g \in G : gh = hg \forall h \in G\}$ is the centre of G. Theorem 22 $\operatorname{Inn}(G) \cong G/Z(G).$

Extensions and semi-direct products

Defn: G - group, $1 < N \lhd G$. If $G/N \cong H$ then G is an extension of N by H. Write G = N.H.

Defn: N, H – groups. $\phi : H \rightarrow Aut(N)$ homom. The (external) semi-direct product of N by H w.r.t. ϕ is

$$N:_{\phi} H = \{(n,h) : n \in N, h \in H\}$$

with product

$$(n_1, h_1)(n_2, h_2) = (n_1(n_2^{(h_1^{-1}\phi)}), h_1h_2).$$

Often just write N : H if the action of N on H is clear.

Theorem 23 Let N, H and ϕ be as above. Then

- 1. $G = N :_{\phi} H$ is a group.
- 2. *G* has a normal subgroup $\overline{N} \cong N$ and a subgroup $\overline{H} \cong H$, s.t. $\overline{N} \cap \overline{H} = 1$, and $G/\overline{N} \cong \overline{H}$.

Internal semi-direct products

Defn:
$$G$$
 - group s.t. $\exists 1 \le N \le G$ and $1 \le H \le G$ s.t.
1. $N \cap H = 1$
2. $NH = G$

Then G is an (internal) semi-direct product or split extension of N by H. Write G = N : H.

Notice:
$$n_1h_1 \cdot n_2h_2 = n_1h_1n_2h_1^{-1}h_1h_2 = n_1n_2^{h_1^{-1}}h_1h_2$$
.

Theorem 24

Let G be an internal semi-direct product of N by H. Then H acts on N via automorphisms. Let $\phi : H \mapsto \operatorname{Aut}(N)$ be the corresponding perm rep. Then $G \cong N :_{\phi} H$.

Wreath products

Defn: Let K be a group, and let H act on \underline{n} . The wreath product of K by H, written $K \wr H$, is the semidirect product $K^n : H$, where H acts on K^n by permuting co-ordinates:

$$(k_1,\ldots,k_n)^h = (k_{1^{h^{-1}}},\ldots,k_{n^{h^{-1}}}).$$

Why is the action "backwards"? Write (k_1, k_2, k_3) as $\{(k_1, 1), (k_2, 2), (k_3, 3)\}$. Let $\sigma = (1 \ 2 \ 3)$ act on the second co-ordinates: $\{(k_1, 2), (k_2, 3), (k_3, 1)\}$. Which k_i now goes with second entry 1? $k_{1\sigma^{-1}}$.

Product in $K \wr H$ is: $(k_{11}, ..., k_{1n})h_1(k_{21}, ..., k_{2n})h_2 = (k_{11}k_{21^{h_1}}, ..., k_{1n}k_{2n^{h_1}})h_1h_2.$ Theorem 25 $K \wr H$ is a group of order $|K|^n|H|.$ The base group is $K^n = \{(k_1, ..., k_n)1_H : k_i \in K\} \leq K \wr H.$

$\S5$: Imprimitivity

Blocks

Defn: Let $\Delta \subseteq \Omega$ be a nonempty subset of Ω , and let G act transitively on Ω . Then Δ is a block for G if for all $g \in G$ either $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$.

Defn: Let G act transitively on Ω . If all blocks have size 1 or $|\Omega|$ then G is primitive, otherwise G is imprimitive.

Lemma 26

Let G act transitively on Ω , and let $\Delta \subseteq \Omega$ be a block for G. Then

$$\Sigma = \{\Delta^g : g \in G\}$$

is a partition of Ω , and each set in Σ is a block for G.

 Σ is a system of imprimitivity for G.

If G is imprimitive then G acts on Σ , as well as on Ω .

Point stabilisers in primitive groups

Defn: Let G act on Ω , and let $\Delta \subset \Omega$. The setwise stabiliser of Δ in G is

$$G_{\{\Delta\}} = \{g \in G : \Delta^g = \Delta\}.$$

Lemma 27

 $1. \ G_{\{\Delta\}} \leq G.$

2. If G is transitive and Δ is a block for G, then $G_{\{\Delta\}}$ is transitive on Δ .

Theorem 28

Let G act transitively on Ω , with $|\Omega| \ge 2$. Let $\alpha \in G$. G is primitive if and only if G_{α} is a maximal subgroup of G.

Corollary 29

A regular permutation group is primitive iff it has prime degree.

The imprimitive action of a wreath product

Lemma 30 Let K act on Δ , and let H act on <u>n</u>. Then $G = K \wr H$ acts on $\Delta \times \underline{n}$ by $(\delta, i)^{(k_1,...,k_n)h} = (\delta^{k_i}, i^h).$

Lemma 31

If n > 1 and K and H are transitive, then the action of $K \wr H$ in Lemma 30 is transitive but imprimitive, with blocks

$$\Delta \times \{i\} = \{(\delta, i) : \delta \in \Delta\}$$

for each $i \in \underline{n}$.

$\S6$: Decompositions of permutation groups

Intransitive to transitive

Lemma 32

Let $G \leq \text{Sym}(\Omega)$ be intransitive, and let $\Delta = \alpha^{G}$. Then the map $G \rightarrow \text{Sym}(\Delta)$ that sends each $g \in G$ to the permutation of Δ that it induces is a homomorphism.

Defn: This map is the restriction of G to Δ . Write as $G \to G^{\Delta}$, $g \mapsto g|_{\Delta}$. The image $G^{\Delta} \leq \text{Sym}(\Delta)$ is a transitive constituent of G.

Abuse notation: think of G^{Δ} as a subgp of $Sym(\Omega)$, fixing $\Omega \setminus \Delta$.

Defn: Let $H \leq G_1 \times \cdots \times G_k$. Then H is a subdirect product of G_1, \ldots, G_k if $\forall i \in \underline{k}, \forall g_i \in G_i, \exists h = (h_1, \ldots, h_k) \in H$ s.t. $h_i = g_i$. Theorem 33 Let $G \leq \text{Sym}(\Omega)$, and let $\Delta_1, \ldots, \Delta_k$ be the orbits of G. Then G is equal to a subdirect product of $G^{\Delta_1} \times \cdots \times G^{\Delta_k}$.