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Automorphisms of graphs

A (simple) graph Γ is a pair (V ,E ) with E ⊆
(V
2

)
. Elements of V

are vertices, elements of E are edges.

An automorphism of Γ is a permutation of V that preserves E .

Automorphisms of Γ form Aut(Γ), the automorphism group of Γ.

(Graphs and groups will generally be finite.)

Notation: If v ∈ V and g ∈ Aut(Γ), then vg is the image of v
under g .



Vertex-transitive graphs

A graph is vertex-transitive if its automorphism group is transitive
(on vertices).

(All vertices identical with respect to the structure of the graph.)

In particular, vertex-transitive =⇒ regular.

Connectedness usually a very mild assumption.



Edge-transitive and arc-transitive graphs

An s-arc of a graph is a sequence of s + 1 vertices (v0, . . . , vs)
such that vi ∼ vi+1 and vi 6= vi+2.

A 0-arc is a vertex. A 1-arc is just called an arc.

A graph is edge-transitive if its automorphism group acts
transitively on edges. (Similarly for arc-transitive, s-arc-transitive.)

(s + 1)-arc-transitive + (minimum valency 2) =⇒ s-arc-transitive

arc-transitive =⇒ edge-transitive



Examples

Γ Name Aut(Γ) Max s ET?

Kn Complete Sym(n) 2 Y
Kc

n Edgeless Sym(n) ∞ Y
Cn Cycle Dn ∞ Y
Kn,m Complete bipartite Sym(n)× Sym(m) X Y
m 6= n
Kn,n Complete bipartite Sym(n) o Sym(2) 3 Y
Km[n] Bal. comp. multip. Sym(n) o Sym(m) 1 Y
Cn�K2 Prism Dn × C2 0 N
n 6= 4
Q3 Cube C2 o Sym(3) 2 Y
Pet Petersen Sym(5) 3 Y

Theorem (Weiss 1981)

There is no 8-arc-transitive graph of valency at least 3.

(Relies on Classification of Finite Simple Groups.)



Other definitions and reminders

If G is a transitive subgroup of Aut(Γ), Γ is G -vertex-transitive.

Similarly for G -edge-transitive, etc.

Defined in analogous way: vertex-primitive, G -arc-semiregular, etc.

Lemma (Frattini?)

If G is transitive and H ≤ G , then G = HGv ⇐⇒ H is transitive.



Exercises for Part 1, I

1. Let Γ be G -edge-transitive but not G -vertex-transitive. Show
that Γ is bipartite. (Γ is G -bitransitive.)

2. Let Γ be G -edge-transitive and G -vertex-transitive, but not
G -arc-transitive. Show that Γ has even valency. (Γ is
G -half-arc-transitive.)

3. Start with K5, then subdivide each edge, then “double” each
newly created vertex. Show that the resulting graph has order
20, is regular of valency 4, is edge-transitive but not
vertex-transitive. (It is the Folkman Graph.)

4. Show that, if Γ has valency at least 3, there is a largest s such
that Γ is s-arc-transitive.



Exercises for Part 1, II

1. Classify all vertex-primitive graphs having two vertices with
the same neighbourhood.

2. Let Γ be a connected G -vertex-transitive graph of valency k
and let v be a vertex of Γ. Show that there exist k elements
g1, . . . gk of G such that G = 〈Gv , g1, . . . , gk〉.

3. Let Γ be a connected G -arc-transitive graph, let (u, v) be an
arc of Γ and let H = 〈Gu,Gv 〉. Prove that G = H, unless Γ is
bipartite, in which case |G : H| = 2.



Cayley graphs

Definition
Let G be a group and S ⊆ G . The Cayley graph Cay(G , S) on G
with connection set S has vertex-set G and u ∼ v if and only if
uv−1 ∈ S .

For this to really be a simple graph, we need 1 /∈ S and

S = S−1 := {s−1 | s ∈ S}.

The edge-set will be {{g , sg} | g ∈ G , s ∈ S}.

Cay(G , S) is connected if and only if G = 〈S〉.

Let G̃ ≤ Sym(G ) be the right regular representation of G .

Lemma
G̃ ≤ Aut(Cay(G ,S)).

In particular, Cayley graphs are vertex-transitive.



Examples of Cayley graphs

Γ G S Aut(Γ)

Cn Zn {−1,+1} Dn

Kn Gn G ∗
n Sym(n)

Kc
n Gn ∅ Sym(n)

Kn,n Gn × Z2 Gn × {1} Sym(n) o Sym(2)
Km[n] Gn × Gm Gn × G ∗

m Sym(n) o Sym(m)
Cn�K2 Zn × Z2 {±(1, 0), (0, 1)} Dn × C2

Q3 Z3
2 {e1, e2, e3} C2 o Sym(3)

Pet ?? ?? Sym(5)



Sabidussi’s Theorem

Lemma
If Γ is a graph and G is a regular subgroup of Aut(Γ), then
Γ ∼= Cay(G ,S) for some S .

Proof.
Pick a vertex v of Γ, label it with 1 ∈ G . For every vertex u of Γ,
there is a unique g ∈ G such that vg = u. Label u with g . Let S
be the labels of the neighbourhood of v . Check this works.

Theorem
Γ ∼= Cay(G ,S) for some S ⇐⇒ Aut(Γ) has a regular subgroup
isomorphic to G .

If Aut(Γ) is regular, then Γ is called a GRR (graphical regular
representation).

Theorem (Godsil)

Most groups admits GRRs. (The exceptions are known.)



Holomorph of a group

Let G be a group. Note that Aut(G ) ≤ Sym(G ).

One can check that 〈G̃ ,Aut(G )〉 = G̃ oAut(G ).

This is the holomorph of G .

In fact, G̃ oAut(G ) is the normaliser of G̃ in Sym(G ).



Normaliser of G̃ in Aut(Γ)

Let G be a group and let S ⊆ G . Let Aut(G , S) be the set of
automorphisms of G fixing S .

Lemma
Let Γ = Cay(G ,S). Then Aut(G ,S) ≤ Aut(Γ). In fact,
G̃ oAut(G ,S) is the normaliser of G̃ in Aut(Γ).

Proof.
The first part is an easy calculation. Next, note that the normaliser
of G̃ must be contained in G̃ oAut(G ) but any element of
Aut(G ) fixes the identity so fixes its neighbourhood S .



Examples, revisited

Γ G S Aut(G ,S) G̃ oAut(G , S)

Cn Zn {−1,+1} −1 Dn

Kn Gn G ∗
n Aut(G ) Hol(Gn)

Cn�K2 Zn × Z2 {±(1, 0), (0, 1)} −1× 1 Dn × C2

n ≥ 3
Q3 Z3

2 {e1, e2, e3} Sym(3) C2 o Sym(3)

If Aut(Cay(G ,S)) = G̃ oAut(G ,S), then Cay(G ,S) is a normal
Cayley graph.



Exercises on Cayley graphs

1. Complete the proofs of basic facts about Cayley graphs.
(Connectedness, Sabidussi’s Theorem, normaliser of G̃ .)

2. Prove that a vertex-transitive graph of prime order is Cayley.

3. Prove that a Cayley graph of valency at least 3 on an abelian
group has girth at most 4.

4. Let G be an abelian group with an element of order at least 3.
Prove that G does not admit a GRR.

5. Show that the Petersen graph is not a Cayley graph. (You
may assume that Aut(Pet) ∼= Sym(5).)

6. For what values of n is Kn a normal Cayley graph?

7. (*) Show that an edge-transitive Cayley graph on an abelian
group is arc-transitive.


