8th PhD Summer School in Discrete Mathematics Vertex-transitive graphs and their local actions I

Gabriel Verret g.verret@auckland.ac.nz

The University of Auckland

Rogla 2 July 2018

Automorphisms of graphs

A (simple) graph Γ is a pair (V, E) with $E \subseteq {\binom{V}{2}}$. Elements of V are vertices, elements of E are edges.

An automorphism of Γ is a permutation of V that preserves E. Automorphisms of Γ form $Aut(\Gamma)$, the automorphism group of Γ .

(Graphs and groups will generally be finite.)

Notation: If $v \in V$ and $g \in Aut(\Gamma)$, then v^g is the image of v under g.

Vertex-transitive graphs

A graph is vertex-transitive if its automorphism group is transitive (on vertices).

(All vertices identical with respect to the structure of the graph.)

In particular, vertex-transitive \implies regular.

Connectedness usually a very mild assumption.

Edge-transitive and arc-transitive graphs

An *s*-arc of a graph is a sequence of s + 1 vertices (v_0, \ldots, v_s) such that $v_i \sim v_{i+1}$ and $v_i \neq v_{i+2}$.

A 0-arc is a vertex. A 1-arc is just called an arc.

A graph is edge-transitive if its automorphism group acts transitively on edges. (Similarly for arc-transitive, *s*-arc-transitive.)

(s + 1)-arc-transitive + (minimum valency 2) \implies s-arc-transitive

 $\operatorname{arc-transitive} \Longrightarrow \operatorname{edge-transitive}$

Examples

Г	Name	$Aut(\Gamma)$	Max <i>s</i>	ET?
Kn	Complete	$\operatorname{Sym}(n)$	2	Y
K _n ^c	Edgeless	$\operatorname{Sym}(n)$	∞	Y
\mathbf{C}_n	Cycle	D_n	∞	Y
К <i>п,т</i>	Complete bipartite	$\operatorname{Sym}(n) \times Sym(m)$	Х	Y
m eq n				
K _{n,n}	Complete bipartite	$\operatorname{Sym}(n) \wr \operatorname{Sym}(2)$	3	Y
$\mathbf{K}_{m[n]}$	Bal. comp. multip.	$\operatorname{Sym}(n)\wr\operatorname{Sym}(m)$	1	Y
$C_n \Box K_2$	Prism	$D_n \times C_2$	0	N
$n \neq 4$				
Q_3	Cube	$C_2 \wr \operatorname{Sym}(3)$	2	Y
Pet	Petersen	Sym(5)	3	Y

Theorem (Weiss 1981)

There is no 8-arc-transitive graph of valency at least 3. (Relies on Classification of Finite Simple Groups.)

Other definitions and reminders

If G is a transitive subgroup of $Aut(\Gamma)$, Γ is G-vertex-transitive.

Similarly for G-edge-transitive, etc.

Defined in analogous way: vertex-primitive, G-arc-semiregular, etc.

Lemma (Frattini?) If G is transitive and $H \leq G$, then $G = HG_v \iff H$ is transitive.

Exercises for Part 1, I

- 1. Let Γ be *G*-edge-transitive but not *G*-vertex-transitive. Show that Γ is bipartite. (Γ is *G*-bitransitive.)
- 2. Let Γ be *G*-edge-transitive and *G*-vertex-transitive, but not *G*-arc-transitive. Show that Γ has even valency. (Γ is *G*-half-arc-transitive.)
- 3. Start with K_5 , then subdivide each edge, then "double" each newly created vertex. Show that the resulting graph has order 20, is regular of valency 4, is edge-transitive but not vertex-transitive. (It is the Folkman Graph.)
- 4. Show that, if Γ has valency at least 3, there is a largest *s* such that Γ is *s*-arc-transitive.

Exercises for Part 1, II

- 1. Classify all vertex-primitive graphs having two vertices with the same neighbourhood.
- 2. Let Γ be a connected *G*-vertex-transitive graph of valency k and let v be a vertex of Γ . Show that there exist k elements g_1, \ldots, g_k of *G* such that $G = \langle G_v, g_1, \ldots, g_k \rangle$.
- Let Γ be a connected G-arc-transitive graph, let (u, v) be an arc of Γ and let H = ⟨G_u, G_v⟩. Prove that G = H, unless Γ is bipartite, in which case |G : H| = 2.

Cayley graphs

Definition

Let G be a group and $S \subseteq G$. The Cayley graph Cay(G, S) on G with connection set S has vertex-set G and $u \sim v$ if and only if $uv^{-1} \in S$.

For this to really be a simple graph, we need $1 \notin S$ and

$$S = S^{-1} := \{s^{-1} \mid s \in S\}.$$

The edge-set will be $\{\{g, sg\} \mid g \in G, s \in S\}$.

Cay(G, S) is connected if and only if $G = \langle S \rangle$.

Let $\tilde{G} \leq \operatorname{Sym}(G)$ be the right regular representation of G.

$\begin{array}{l} \mathsf{Lemma}\\ \tilde{\mathcal{G}} \leq \mathrm{Aut}(\mathrm{Cay}(\mathcal{G},\mathcal{S})). \end{array}$

In particular, Cayley graphs are vertex-transitive.

Examples of Cayley graphs

Г	G	S	$\operatorname{Aut}(\Gamma)$
С <i>п</i>	\mathbb{Z}_n	$\{-1,+1\}$	D _n
K _n	Gn	G_n^*	$\operatorname{Sym}(n)$
K _n ^c	Gn	Ø	$\operatorname{Sym}(n)$
$K_{n,n}$	$G_n imes \mathbb{Z}_2$	$G_n \times \{1\}$	$\operatorname{Sym}(n)\wr\operatorname{Sym}(2)$
$K_{m[n]}$	$G_n \times G_m$	$G_n imes G_m^*$	$\operatorname{Sym}(n)\wr\operatorname{Sym}(m)$
$C_n \Box K_2$	$\mathbb{Z}_n \times \mathbb{Z}_2$	$\{\pm(1,0),(0,1)\}$	$D_n imes C_2$
Q_3	\mathbb{Z}_2^3	$\{e_1, e_2, e_3\}$	$C_2 \wr \mathrm{Sym}(3)$
Pet	??	??	Sym(5)

Sabidussi's Theorem

Lemma

If Γ is a graph and G is a regular subgroup of $Aut(\Gamma)$, then $\Gamma \cong Cay(G, S)$ for some S.

Proof.

Pick a vertex v of Γ , label it with $1 \in G$. For every vertex u of Γ , there is a unique $g \in G$ such that $v^g = u$. Label u with g. Let S be the labels of the neighbourhood of v. Check this works.

Theorem

 $\Gamma \cong \operatorname{Cay}(G, S)$ for some $S \iff \operatorname{Aut}(\Gamma)$ has a regular subgroup isomorphic to G.

If ${\rm Aut}(\Gamma)$ is regular, then Γ is called a GRR (graphical regular representation).

Theorem (Godsil)

Most groups admits GRRs. (The exceptions are known.)

Holomorph of a group

Let G be a group. Note that $Aut(G) \leq Sym(G)$.

One can check that $\langle \tilde{G}, \operatorname{Aut}(G) \rangle = \tilde{G} \rtimes \operatorname{Aut}(G)$.

This is the holomorph of G.

In fact, $\tilde{G} \rtimes \operatorname{Aut}(G)$ is the normaliser of \tilde{G} in $\operatorname{Sym}(G)$.

Normaliser of \tilde{G} in Aut(Γ)

Let G be a group and let $S \subseteq G$. Let Aut(G, S) be the set of automorphisms of G fixing S.

Lemma

Let $\Gamma = \operatorname{Cay}(G, S)$. Then $\operatorname{Aut}(G, S) \leq \operatorname{Aut}(\Gamma)$. In fact, $\tilde{G} \rtimes \operatorname{Aut}(G, S)$ is the normaliser of \tilde{G} in $\operatorname{Aut}(\Gamma)$.

Proof.

The first part is an easy calculation. Next, note that the normaliser of \tilde{G} must be contained in $\tilde{G} \rtimes \operatorname{Aut}(G)$ but any element of $\operatorname{Aut}(G)$ fixes the identity so fixes its neighbourhood S.

Examples, revisited

Г	G	S	$\operatorname{Aut}(G,S)$	$\tilde{G} \rtimes \operatorname{Aut}(G,S)$
Cn	\mathbb{Z}_n	$\{-1,+1\}$	$\overline{-1}$	D_n
Kn	Gn	G_n^*	$\operatorname{Aut}(G)$	$\operatorname{Hol}(G_n)$
$C_n \Box K_2$	$\mathbb{Z}_n \times \mathbb{Z}_2$	$\{\pm(1,0),(0,1)\}$	$\overline{-1} \times 1$	$D_n imes C_2$
$n \ge 3$				
Q_3	\mathbb{Z}_2^3	$\{e_1, e_2, e_3\}$	Sym(3)	$C_2 \wr Sym(3)$

If $\operatorname{Aut}(\operatorname{Cay}(G, S)) = \tilde{G} \rtimes \operatorname{Aut}(G, S)$, then $\operatorname{Cay}(G, S)$ is a normal Cayley graph.

Exercises on Cayley graphs

- 1. Complete the proofs of basic facts about Cayley graphs. (Connectedness, Sabidussi's Theorem, normaliser of \tilde{G} .)
- 2. Prove that a vertex-transitive graph of prime order is Cayley.
- 3. Prove that a Cayley graph of valency at least 3 on an abelian group has girth at most 4.
- 4. Let G be an abelian group with an element of order at least 3. Prove that G does not admit a GRR.
- 5. Show that the Petersen graph is not a Cayley graph. (You may assume that $Aut(Pet) \cong Sym(5)$.)
- 6. For what values of n is K_n a normal Cayley graph?
- 7. (*) Show that an edge-transitive Cayley graph on an abelian group is arc-transitive.