8th PhD Summer School in Discrete Mathematics

Vertex-transitive graphs and their local actions I

Gabriel Verret
g.verret@auckland.ac.nz

The University of Auckland

Rogla
2 July 2018

Automorphisms of graphs

A (simple) graph Γ is a pair (V, E) with $E \subseteq\binom{V}{2}$. Elements of V are vertices, elements of E are edges.

An automorphism of Γ is a permutation of V that preserves E.
Automorphisms of Γ form $\operatorname{Aut}(\Gamma)$, the automorphism group of Γ.
(Graphs and groups will generally be finite.)
Notation: If $v \in V$ and $g \in \operatorname{Aut}(\Gamma)$, then v^{g} is the image of v under g.

Vertex-transitive graphs

A graph is vertex-transitive if its automorphism group is transitive (on vertices).
(All vertices identical with respect to the structure of the graph.)

In particular, vertex-transitive \Longrightarrow regular.

Connectedness usually a very mild assumption.

Edge-transitive and arc-transitive graphs

An s-arc of a graph is a sequence of $s+1$ vertices $\left(v_{0}, \ldots, v_{s}\right)$ such that $v_{i} \sim v_{i+1}$ and $v_{i} \neq v_{i+2}$.

A 0 -arc is a vertex. A 1 -arc is just called an arc.
A graph is edge-transitive if its automorphism group acts transitively on edges. (Similarly for arc-transitive, s-arc-transitive.)
$(s+1)$-arc-transitive $+($ minimum valency 2$) \Longrightarrow s$-arc-transitive
arc-transitive \Longrightarrow edge-transitive

Examples

Γ	Name	$\operatorname{Aut}(\Gamma)$	Max s	$\mathrm{ET} ?$
$\mathrm{~K}_{n}$	Complete	$\operatorname{Sym}(n)$	2	Y
K_{n}^{c}	Edgeless	$\operatorname{Sym}(n)$	∞	Y
C_{n}	Cycle	D_{n}	∞	Y
$\mathrm{K}_{n, m}$	Complete bipartite	$\operatorname{Sym}(n) \times \operatorname{Sym}(m)$	X	Y
$m \neq n$				
$\mathrm{~K}_{n, n}$	Complete bipartite	$\operatorname{Sym}(n) 2 \operatorname{Sym}(2)$	3	Y
$\mathrm{K}_{m[n]}$	Bal. comp. multip.	$\operatorname{Sym}(n) 2 \operatorname{Sym}(m)$	1	Y
$\mathrm{C}_{n} \square \mathrm{~K}_{2}$	Prism	$\mathrm{D}_{n} \times C_{2}$	0	N
$n \neq 4$				
Q_{3}	Cube	$C_{2} 2 \operatorname{Sym}(3)$	2	Y
Pet	Petersen	$\operatorname{Sym}(5)$	3	Y

Theorem (Weiss 1981)
There is no 8-arc-transitive graph of valency at least 3.
(Relies on Classification of Finite Simple Groups.)

Other definitions and reminders

If G is a transitive subgroup of $\operatorname{Aut}(\Gamma), \Gamma$ is G-vertex-transitive.

Similarly for G-edge-transitive, etc.

Defined in analogous way: vertex-primitive, G-arc-semiregular, etc.

Lemma (Frattini?)

If G is transitive and $H \leq G$, then $G=H G_{v} \Longleftrightarrow H$ is transitive.

Exercises for Part 1, I

1. Let Γ be G-edge-transitive but not G-vertex-transitive. Show that Γ is bipartite. (Γ is G-bitransitive.)
2. Let Γ be G-edge-transitive and G-vertex-transitive, but not G-arc-transitive. Show that Γ has even valency. (Γ is G-half-arc-transitive.)
3. Start with K_{5}, then subdivide each edge, then "double" each newly created vertex. Show that the resulting graph has order 20 , is regular of valency 4, is edge-transitive but not vertex-transitive. (It is the Folkman Graph.)
4. Show that, if Γ has valency at least 3 , there is a largest s such that Γ is s-arc-transitive.

Exercises for Part 1, II

1. Classify all vertex-primitive graphs having two vertices with the same neighbourhood.
2. Let Γ be a connected G-vertex-transitive graph of valency k and let v be a vertex of Γ. Show that there exist k elements $g_{1}, \ldots g_{k}$ of G such that $G=\left\langle G_{v}, g_{1}, \ldots, g_{k}\right\rangle$.
3. Let Γ be a connected G-arc-transitive graph, let (u, v) be an arc of Γ and let $H=\left\langle G_{u}, G_{v}\right\rangle$. Prove that $G=H$, unless Γ is bipartite, in which case $|G: H|=2$.

Cayley graphs

Definition

Let G be a group and $S \subseteq G$. The Cayley graph $\operatorname{Cay}(G, S)$ on G with connection set S has vertex-set G and $u \sim v$ if and only if $u v^{-1} \in S$.
For this to really be a simple graph, we need $1 \notin S$ and

$$
S=S^{-1}:=\left\{s^{-1} \mid s \in S\right\}
$$

The edge-set will be $\{\{g, s g\} \mid g \in G, s \in S\}$.
$\operatorname{Cay}(G, S)$ is connected if and only if $G=\langle S\rangle$.
Let $\tilde{G} \leq \operatorname{Sym}(G)$ be the right regular representation of G.
Lemma
$\tilde{G} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$.
In particular, Cayley graphs are vertex-transitive.

Examples of Cayley graphs

Γ	G	S	$\operatorname{Aut}(\Gamma)$
C_{n}	\mathbb{Z}_{n}	$\{-1,+1\}$	D_{n}
$\mathrm{~K}_{n}$	G_{n}	G_{n}^{*}	$\operatorname{Sym}(n)$
K_{n}^{c}	G_{n}	\emptyset	$\operatorname{Sym}(n)$
$\mathrm{K}_{n, n}$	$G_{n} \times \mathbb{Z}_{2}$	$G_{n} \times\{1\}$	$\operatorname{Sym}(n) 2 \operatorname{Sym}(2)$
$\mathrm{K}_{m[n]}$	$G_{n} \times G_{m}$	$G_{n} \times G_{m}^{*}$	$\operatorname{Sym}(n) 2 \operatorname{Sym}(m)$
$\mathrm{C}_{n} \square \mathrm{~K}_{2}$	$\mathbb{Z}_{n} \times \mathbb{Z}_{2}$	$\{ \pm(1,0),(0,1)\}$	$\mathrm{D}_{n} \times C_{2}$
Q_{3}	\mathbb{Z}_{2}^{3}	$\left\{e_{1}, e_{2}, e_{3}\right\}$	$C_{2} 2 \operatorname{Sym}(3)$
Pet	$? ?$	$? ?$	$\operatorname{Sym}(5)$

Sabidussi's Theorem

Lemma
If Γ is a graph and G is a regular subgroup of $\operatorname{Aut}(\Gamma)$, then
$\Gamma \cong \operatorname{Cay}(G, S)$ for some S.
Proof.
Pick a vertex v of Γ, label it with $1 \in G$. For every vertex u of Γ, there is a unique $g \in G$ such that $v^{g}=u$. Label u with g. Let S be the labels of the neighbourhood of v. Check this works.

Theorem
$\Gamma \cong \operatorname{Cay}(G, S)$ for some $S \Longleftrightarrow \operatorname{Aut}(\Gamma)$ has a regular subgroup isomorphic to G.

If Aut (Γ) is regular, then Γ is called a GRR (graphical regular representation).

Theorem (Godsil)
Most groups admits GRRs. (The exceptions are known.)

Holomorph of a group

Let G be a group. Note that $\operatorname{Aut}(G) \leq \operatorname{Sym}(G)$.

One can check that $\langle\tilde{G}, \operatorname{Aut}(G)\rangle=\tilde{G} \rtimes \operatorname{Aut}(G)$.

This is the holomorph of G.

In fact, $\tilde{G} \rtimes \operatorname{Aut}(G)$ is the normaliser of \tilde{G} in $\operatorname{Sym}(G)$.

Normaliser of \tilde{G} in $\operatorname{Aut}(\Gamma)$

Let G be a group and let $S \subseteq G$. Let $\operatorname{Aut}(G, S)$ be the set of automorphisms of G fixing S.

Lemma
Let $\Gamma=\operatorname{Cay}(G, S)$. Then $\operatorname{Aut}(G, S) \leq \operatorname{Aut}(\Gamma)$. In fact, $\tilde{G} \rtimes \operatorname{Aut}(G, S)$ is the normaliser of \tilde{G} in $\operatorname{Aut}(\Gamma)$.

Proof.

The first part is an easy calculation. Next, note that the normaliser of \tilde{G} must be contained in $\tilde{G} \rtimes \operatorname{Aut}(G)$ but any element of $\operatorname{Aut}(G)$ fixes the identity so fixes its neighbourhood S.

Examples, revisited

Γ	G	S	$\operatorname{Aut}(G, S)$	$\tilde{G} \rtimes \operatorname{Aut}(G, S)$
C_{n}	\mathbb{Z}_{n}	$\{-1,+1\}$	$\overline{-1}$	D_{n}
$\mathrm{~K}_{n}$	G_{n}	G_{n}^{*}	$\operatorname{Aut}(G)$	$\operatorname{Hol}\left(G_{n}\right)$
$\mathrm{C}_{n} \square \mathrm{~K}_{2}$	$\mathbb{Z}_{n} \times \mathbb{Z}_{2}$	$\{ \pm(1,0),(0,1)\}$	$\overline{-1} \times 1$	$\mathrm{D}_{n} \times \mathrm{C}_{2}$
$n \geq 3$				
Q_{3}	\mathbb{Z}_{2}^{3}	$\left\{e_{1}, e_{2}, e_{3}\right\}$	$\operatorname{Sym}(3)$	$\mathrm{C}_{2} 乙 \operatorname{Sym}(3)$

If $\operatorname{Aut}(\operatorname{Cay}(G, S))=\tilde{G} \rtimes \operatorname{Aut}(G, S)$, then $\operatorname{Cay}(G, S)$ is a normal Cayley graph.

Exercises on Cayley graphs

1. Complete the proofs of basic facts about Cayley graphs. (Connectedness, Sabidussi's Theorem, normaliser of \tilde{G}.)
2. Prove that a vertex-transitive graph of prime order is Cayley.
3. Prove that a Cayley graph of valency at least 3 on an abelian group has girth at most 4.
4. Let G be an abelian group with an element of order at least 3 . Prove that G does not admit a GRR.
5. Show that the Petersen graph is not a Cayley graph. (You may assume that $\operatorname{Aut}(P e t) \cong \operatorname{Sym}(5)$.)
6. For what values of n is K_{n} a normal Cayley graph?
7. $\left(^{*}\right)$ Show that an edge-transitive Cayley graph on an abelian group is arc-transitive.
