
Vertex- and edge-transitivity in products of finite and
infinite graphs, and in graphs of polynomial growth

Wilfried Imrich, Montanuniversität Leoben, Austria

8th PhD Summer School in Discrete Mathematics

Rogla, Slovenia

July 1 - 6, 2018



Preface

This talk contains a collection of results related to the courses of

Colva Roney-Dougal on finite permutation groups and that of

Gabriel Verret on vertex-transitive graphs and their local actions.

The first part pertains to s-transitive infinite graphs, supplementing

results about finite s-transitive graphs presented by Gabriel Verret.

The second part treats edge- and vertex-transitivity of lexicographic,

Cartesian, direct and strong products of finite graphs
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and edge- and vertex-transitivity of weak Cartesian products of finite

and infinite graphs. It also illustrates results about products of

permutation groups presented by Colva Roney-Dougal.

The third is about graphs with primitive automorphisms groups and

the role of powers of the Johnson graph with respect to the

Cartesian product in the investigation of graphs with primitive

automorphism groups.

We end with the Infinite Motion Conjecture of Tom Tucker.
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1. s-Transitivity and Growth in Graphs

In this part is concerned with the interplay of s-transitivity, growth,

and the structure of infinite graphs and their groups.

It mainly lists some of the results that were collected in a 1991

survey on graphs with polynomial growth∗.

Several basic definitions from Gabriel Verret’s course, such as that

of s-transitivity or primitivity, are omitted.

∗Imrich and Seifter, A survey on graphs with polynomial growth, Discrete Mathe-
matics 95 (1991), 101 – 117.

4



Let Γ be the class of connected, locally finite∗ infinite graphs.

For a graph G ∈ Γ the ball of radius n and center v0 ∈ V (G) is

Bn(v0) = {v ∈ V (G) : d(v0, v) ≤ n}.

For the homogenous tree Td of degree d > 2 we have

|Bn(v0)| ≥ (d− 1)n.

∗Every vertex has finite degree (valence).
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We say Td has exponential growth (d− 1)n.

If ∃k such that |Bn(v0)| = O(nk), then G has polynomial growth∗.

It is clear what we mean by linear and quadratic growth.

For example, the two-sided infinite path, rays and the ladder
depicted below have linear growth.

Note that we defined growth only for graphs in Γ.
∗k is independent of the base point v0.
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Theorem (Godsil, Imrich, Seifter, Watkins, Woess 1989∗) Let G be

a vertex-transitive graph of polynomial growth. Then G is imprimitive.

We have the following generalization of a result of Weiss 1981:

Theorem (Seifter 1991†) Let G be an s-transitive graph of polyno-

mial growth and valence at least 3 in Γ. Then s ≤ 7.

Compare this with the fact that Td, which has exponential growth

for d > 2, is s-transitive for any s ≥ 0.

∗A note on bounded automorphisms of infinite graphs, Graphs and Combinatorics
5 (1989), 339 – 349)

†Properties of graphs with polynomial growth, J. Combin. Theory Ser. B 52
(1991) 222–235.
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An automorphism α is bounded if there is a constant k depending

on α such that d(v, α(v)) ≤ k for all v ∈ V (G). The bounded

automorphisms form a group B(G).

Theorem (Seifter 1991∗) Let G be a graph of valence at least 3 in

Γ. If B(G) is transitive on V (G), then G cannot be 3-transitive.

Theorem (Seifter 1991) Let G be an s-transitive graph with polyno-

mial growth in Γ. If G has valence at least 3 and s ≥ 2, then Aut(G)

is a finitely generated almost nilpotent group.

∗Both results on this page are from Seifter, Properties of graphs with polynomial
growth, J. Combin. Theory Ser. B 52 (1991) 222–235.
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Let G1, G2 be graphs. A homomorphism p : V (G1) → V (G2) of

V (G1) onto V (G2) is a covering, if it is a local isomorphism.

In other words, for every v ∈ V (G1) the mapping p induces a bijection

between the edges incident with v and those incident with p(v).

Theorem (Godsil, Seifter 1991∗) Let G be an s-transitive graph,

s ≥ 0, of polynomial growth in Γ. Then there exist infinitely many

finite graphs H1, H2, . . . such that:

(1) G is a covering graph of every Hi, i ≥ 1.

(2) Each Hk is a covering graph of H1, . . . Hk−1.

(3) If s ≥ 2, then each Hi is at least s-transitive.

∗Graphs with polynomial growth are covering graphs, Graphs and Combinatorics 8
(1992), 233-241
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2. Products of graphs

The Cartesian product G2H, the direct product G×H, the strong

product G �H, and the lexicographic product G ◦H,

each has as its vertex set the Cartesian product V (G)× V (H).

Edges are as follows:

E(G2H) =
{
(x, u)(y, v) | (xy ∈ E(G) ∧ u = v) ∨ (x = y ∧ uv ∈ E(H))

}
,

E(G×H) =
{
(x, u)(y, v) | xy ∈ E(G) ∧ uv ∈ E(H)

}
,

E(G �H) = E(G2H) ∪ E(G×H),

E(G ◦H) =
{
(x, u)(y, v) | xy ∈ E(G) ∨ (x = y ∧ uv ∈ E(H))

}
.
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Examples

K2

K2 K2✷K2

K2

K2 K2 ×K2

K2

K2 K2 ⊠ K2

C5✷K2

Cartesian product Direct Product

C5 ×K2
C5 ⊠ K2

Strong product
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Lexicographic product

This is the only non-commutative product of the four products

treated here.
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2.a. Vertex transitivity in finite products

The Cartesian, the strong and lexicographic product of two finite

graphs are vertex transitive if and only if the factors are.

For the direct product this is true if the factors are non-bipartite.

For proofs we refer to the Handbook of Product Graphs by

Hammack, Imrich and Klavžar, CRC Press 2011.
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In the case of bipartite graphs products can be vertex transitive even

when not all factors are vertex-transitive:

Note that we admit loops for the direct product in order to have a

unit. It is the one vertex graph with a loop, denoted K∗
1.

(We will also write K∗
n for the complete graph Kn with a loop at

every vertex.)
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2.b. Edge-transitivity in lexicographic products of finite graphs∗

Theorem Let G be a connected graph that is not complete and

H be any graph. Then G ◦ H is edge-transitive if and only if G is

edge-transitive and H is edgeless.

Theorem The lexicographic product G◦H of a non-trivial complete

graph G by a graph H is edge-transitive if and only if H is the product

of a complete graph by an edgeless graph.

This means that G ◦H can be represented in the form K ◦N , where

K is complete and N edgeless.
∗W. Imrich, A. Iranmanesh, S. Klavžar and A. Soltani, Edge-transitive lexicographic
and Cartesian products, Discuss. Math. Graph Theory 36 (2016), 857–865.
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2.c. Edge-transitivity in Cartesian products of finite graphs∗

Theorem A connected graph that is not prime with respect to the

Cartesian product is edge-transitive if and only if it is the power of a

connected, edge- and vertex-transitive graph.

Corollary A connected graph that is not prime with respect to the

Cartesian product G is half-transitive if and only if it is the power of

a connected, half-transitive graph.

∗W. Imrich, A. Iranmanesh, S. Klavžar and A. Soltani, Edge-transitive lexicographic
and Cartesian products, Discuss. Math. Graph Theory 36 (2016), 857–865.
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2.d. Edge-transitivity in non-bipartite finite direct products∗

Theorem Suppose A×B is connected and non-bipartite. Then it is

edge-transitive if and only if either

(1) both factors are edge-transitive and at least one is arc-transitive,

(2) or one factor is edge-transitive (and non-trivial) and the other

is a K∗
n.

∗Unless otherwise stated, the results in Sections 2.d - 2.f are from Hammack, Imrich
and Klavžar, Edge-transitive products, J. Algebraic Combin. 43 (2016), 837–850.

17



Corollary Every connected, non-trivial, edge-transitive non-bipartite

graph G has form G = K∗
n ×H (possibly with n = 1), where

H is non-trivial, has no factor K∗
n, and at most one half-transitive

(prime) factor, while all other (prime) factors, if any, are arc-transitive.

Furthermore, G is half-transitive if H has a half-transitive factor. Oth-

erwise G is arc-transitive.
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For bipartite graphs we have the following proposition:

Proposition Suppose A has an odd cycle and B is bipartite. If both

A×K2 and B are edge-transitive and one is arc-transitive, then A×B
is edge-transitive.

We conjecture that the converse also holds.
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2.e. Edge-transitivity in strong products of finite graphs

Theorem The strong product G = A � B of two connected, non-

trivial graphs is edge-transitive if and only if both factors are complete.
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2.f. The weak Cartesian product

Let Gι, ι ∈ I, be a set of graphs.

Then the Cartesian product G =�ι∈I Gι is defined as follows:

V (G) is the set of all functions x : ι 7→ xι, with xι ∈ V (Gι).

Two vertices x and y are adjacent in G if there exist a κ ∈ I such

that xκyκ ∈ E(Gκ) and xι = yι for ι ∈ I \ κ.

If I is finite, then G is connected if and only if all Gι are connected.

If I is infinite and if the Gι are non-trivial, then G is disconnected,

even if all factors Gι are connected.

21



A weak Cartesian product of graphs Gι, ι ∈ I, is a connected
component of the Cartesian product of the Gι.

To identify the component it suffices to specify a vertex in it, say a.

We write �a
ι∈I Gι for the connected component of G that contains a.

Clearly V (�a
ι∈I Gι) consists of a and all vertices of �ι∈I Gι that

differ from a in only finitely many coordinates.

Every connected graph has a unique representation as a weak
Cartesian product of prime graphs∗.

∗This and the following proposition are (independently) from D. Miller and I. They
date back to the early 1970’s. For details compare the Handbook of Product
Graphs by Hammack, Imrich and Klavžar, CRC Press 2011.
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Proposition Let G = �a
ι∈I Gι, where the Gι, ι ∈ I, are connected

and prime. Then every φ ∈ Aut(G) is of the form

φ(x)ι = φι(xπ(ι)),

where π is a permutation of I and φι ∈ Aut(Gι) for all ι ∈ I. Further-

more, φ(a)ι ̸= aι for only finitely many ι.

The condition that φ(a)ι ̸= aι for only finitely many ι always holds if

I is finite. Then φ(x)ι = φι(xπ(ι)) completely describes Aut(G).

The replacements π−1 → ψ, x→ α, ι→ λ and φ→ t transform this

formula into αtλ = (αλ)ψt, a formula from this morning’s lecture by

Colva Roney-Dougal. Her example for it was K32K2.
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She also showed that Aut(K32K2)
∼= Aut(K3 ∪K2). For finite I

(and prime, connected Gι) this also holds in general:

Aut(�
ι∈I

Gι) ∼= Aut(
∪
ι∈I

Gι).

Theorem The weak Cartesian product G = �a
ι∈I Gι of connected,

prime graphs Gι is vertex-transitive under the following necessary and

sufficient condition:

If v is a vertex of a Gκ that is not vertex-transitive, then there is an

infinite set K ⊆ I, and isomorphisms φλ,κ : Gλ → Gκ for every λ ∈ K,

with φλ,κ(aλ) = v.
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Corollary If all Gι, ι ∈ I, are vertex-transitive, then G = �a
ι∈I Gι is

also vertex transitive.

Corollary If I is finite, then G is v.t. if and only if all Gι, ι ∈ I, are

v.t.

Lemma Let H be a connected, prime graph with two vertex-orbits,

and G = �a
ι∈I Gι, where Gι

∼= H and ℵ0 ≤ |I|. Then G is v.t. or has

infinitely many vertex-orbits.
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Lemma Let H be a connected, e.t. and v.t.

Consider G =�a
ι∈I Hι, where Hι ∼= H and 2 ≤ |I|.

Then G is also e.t.and v.t.

Furthermore, G is half-transitive if and only if H is half-transitive.

Lemma Let H be connected, e.t. but not v.t., with vertex orbits V1
and V2.

Consider G = �a
ι∈I Hι, Hι

∼= H, 2 ≤ |I|, where infinitely many aι are

in V1, and infinitely many in V2.

Then G is e.t. (but only half-transitive) and v.t.
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Theorem Let G be a connected, e.t. graph that is not prime with

respect to the Cartesian product.

Then G is the Cartesian or weak Cartesian power of a connected,

e.t. graph H.

G is always v.t, even when H is not.
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3. Primitive Permutation Groups∗

Let G be a permutation group acting on a set V .

A partition π of V is distinguishing if the only element of G that
fixes each cell of π is the identity.

The distinguishing number of G is the minimum number of cells in a
distinguishing partition.

Serres† proved 1997 that if G is primitive on V and |V | ≥ 32, then its
distinguishing number is 2. He used the classification of finite simple

groups.
∗C. Godsil, Distinguishing primitive permutation groups, arXiv:0806.2078v2, 2009
†Ákos Seress. Primitive groups with no regular orbits on the set of subsets. Bull.
London Math. Soc. 29 (1997), 697-704.
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Godsil does it differently, the bound is then 336. He also needs the

classification.

But, as Godsil’s proof uses results that invoke Cartesian powers of

Johnson graphs a short outline is presented.

The proof uses four main results. First a few definitions.

The degree of a permutation group G on a set V is the size of V ,

and the minimum degree of G is the minimum number of points

moved by a nonidentity element of G.

The minimum degree of G is also known as the motion m(G) of G.
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Godsil proves that if G is a permutation group with distinguishing

number at least 3 and the minimum degree of G is δ, then

|G| ≥ 1+ 2δ/2.

This is also known as the Motion Lemma∗ and usually stated in the

form that G has distinguishing number ≤ 2 if

2m(G)/2 ≥ |G|.

∗A.Russell and R. Sundaram, A note on the asymptotics and computational com-
plexity of graph distinguishability, Electron. J. Combin. 5 (1998), R23.
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The Johnson graph J(m, ℓ) has the ℓ subsets of {1, ...,m} as its

vertices, and two ℓ-subsets are adjacent if their intersection has size

ℓ− 1. J(m, ℓ) and J(m,m− ℓ) are isomorphic, and so we will assume

that 2ℓ ≤ m. The complete graphs are Johnson graphs (with ℓ = 1).

The next two results invoked by Godsil also depend on the

classification of finite simple groups.
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Theorem (Guralnick and Magaard 1998∗) Let G be a primitive per-

mutation group of degree v. If the minimal degree of G is at most

v/2, then one the following holds:

(a) G is affine over GF (2)† and its minimal degree is v/2.

(b) G is a transitive subgroup of the automorphism group of the

Cartesian power of a Johnson graph.

∗On the minimal degree of a primitive permutation group, J. Algebra 207 (1998),
127-145.

†For a definition see today’s lecture of Colva Roney-Dougal.
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Theorem (Maróti 2002∗) Let G be a primitive permutation group

of degree v. Then one of the following holds:

(a) G is a transitive subgroup of the automorphism group of the

Cartesian power of a Johnson graph.

(b) v ∈ {11,12,23,24} and G is one of the Mathieu groups.

(c) |G| < v1+⌈log2 v⌉.

∗On the orders of primitive groups, J. Algebra 258 (2002), 631-640.
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Klavžar and I proved 2006∗ that the distinguishing number of the

product of two complete graphs is 2, except for K2
2 ,K

3
2 and K2

3.

Putting it all together one obtains relatively quickly that if G is

primitive and on V and if |V | ≥ 336, then the distinguishing number

of G is 2.

∗Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006), 250-260.
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4. The Infinite Motion Conjecture

We conclude with a conjecture that generalizes the Motion Lemma.

One says a graph G is 2-distinguishable if Aut(G) has distinguishing

number ≤ 2, and defines the motion m(G) of G as m(Aut(G)).

By the Motion Lemma a finite graph G is then 2-distinguishable if

2m(G)/2 ≥ |Aut(G))|.

Suppose G ∈ Γ has infinite motion, i.e. m(G) = ℵ0. Because the size

of the automorphism group of a graph in Γ is at most 2ℵ0, we have

2m(G)/2 = 2ℵ0 ≥ |Aut(G)|.
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If the Motion Lemma also held for infinite graphs, we could

conclude that G is 2-distinguishable.

This is the Infinite Motion Conjecture of Tom Tucker:

Conjecture (Tucker 2011∗) Every graph in Γ with infinite motion is

2-distinguishable.

This conjecture is still open despite many interesting and deep

partial results.

∗Distinguishing Maps, Electron. J. Combin. 18 (2011), R50.
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THE END
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