An infinite-dimensional \Box_q -module obtained from the *q*-shuffle algebra for affine \mathfrak{sl}_2

Sarah Post Paul Terwilliger

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffle

We will first recall the notion of a tridiagonal pair.

We will give three examples of a tridiagonal pair, using representations of the **Onsager algebra**, the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$, and the *q*-**Onsager algebra**.

Motivated by these algebras we will bring in an algebra \Box_q .

We will introduce an infinite-dimensional \Box_q -module, said to be **NIL**.

We will describe the NIL \square_q -module from sixteen points of view.

In this description we will use the **free algebra** \mathbb{V} on two generators, as well as a *q*-shuffle algebra structure on \mathbb{V} .

The concept of a **tridiagonal pair** was introduced in 1999 by Tatsuro Ito, Kenichiro Tanabe, and Paul Terwilliger.

This concept is defined as follows.

Let \mathbb{F} denote a field.

Let V denote a vector space over \mathbb{F} with finite positive dimension.

Consider two \mathbb{F} -linear maps $A: V \to V$ and $A^*: V \to V$.

The definition of a tridiagonal pair

The above pair A, A^* is called a **tridiagonal pair** whenever:

- (i) each of A, A^* is diagonalizable;
- (ii) there exists an ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \le i \le d),$$

where $V_{-1} = 0$ and $V_{d+1} = 0$;

(iii) there exists an ordering $\{V_i^*\}_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \le i \le \delta),$$

where $V_{-1}^*=0$ and $V_{\delta+1}^*=0$;

(iv) there does not exist a subspace $W \subseteq V$ such that $AW \subseteq W$, $A^*W \subseteq W$, $W \neq 0$, $W \neq V$.

Referring to the above definition, it turns out that $d=\delta$.

This common value is called the **diameter** of the pair.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Refer to the above tridiagonal pair A, A^* .

For $0 \le i \le d$, let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) for the eigenspace V_i (resp. V_i^*).

The sequence $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) is an ordering of the eigenvalues of A (resp. A^*).

This ordering is called **standard**.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

We now give some examples of a tridiagonal pair.

Our examples come from representation theory.

We will consider some representations of the following three algebras:

- The Onsager algebra \mathcal{O} ;
- The positive part U_q^+ of $U_q(\widehat{\mathfrak{sl}}_2)$;
- The q-Onsager algebra \mathcal{O}_q .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The **Onsager algebra** \mathcal{O} is the Lie algebra over \mathbb{C} defined by generators A, A^* and relations

$$[A, [A, [A, A^*]]] = 4[A, A^*],$$
$$[A^*, [A^*, [A^*, A]]] = 4[A^*, A].$$

The above equations are called the Dolan/Grady relations.

(ロ) (同) (E) (E) (E)

Let V denote a finite-dimensional irreducible O-module.

Then the \mathcal{O} -generators A, A^* act on V as a tridiagonal pair.

For this tridiagonal pair the eigenvalues of A and A^* look as follows in standard order:

$$d-2i \qquad (0\leq i\leq d).$$

(ロ) (同) (目) (日) (日) (の)

The positive part U_q^+

From now on, fix a nonzero $q\in\mathbb{F}$ that is not a root of unity.

Define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad n = 0, 1, 2, \dots$$

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Let U_q^+ denote the associative \mathbb{F} -algebra defined by generators A, A^* and relations

$$A^{3}A^{*} - [3]_{q}A^{2}A^{*}A + [3]_{q}AA^{*}A^{2} - A^{*}A^{3} = 0,$$

$$A^{*3}A - [3]_q A^{*2}AA^* + [3]_q A^*AA^{*2} - AA^{*3} = 0.$$

The above equations are called the *q*-Serre relations.

We call U_q^+ the **positive part of** $U_q(\widehat{\mathfrak{sl}}_2)$.

Let V denote a finite-dimensional irreducible U_q^+ -module on which the U_q^+ -generators A, A^* are not nilpotent.

Then A, A^* act on V as a tridiagonal pair.

For this tridiagonal pair the eigenvalues of A and A^* look as follows in standard order:

$$\begin{array}{ll} A: & aq^{d-2i} & (0 \leq i \leq d), \\ A^*: & bq^{d-2i} & (0 \leq i \leq d). \end{array}$$

The scalars *a*, *b* depend on the U_a^+ -module *V*.

Let \mathcal{O}_q denote the associative \mathbb{F} -algebra defined by generators A, A^* and relations

$$A^{3}A^{*} - [3]_{q}A^{2}A^{*}A + [3]_{q}AA^{*}A^{2} - A^{*}A^{3}$$
$$= (q^{2} - q^{-2})^{2}(A^{*}A - AA^{*}),$$

$$A^{*3}A - [3]_q A^{*2}AA^* + [3]_q A^*AA^{*2} - AA^{*3}$$

= $(q^2 - q^{-2})^2 (AA^* - A^*A).$

The above equations are called the *q*-Dolan/Grady relations.

We call \mathcal{O}_q the *q*-**Onsager algebra**.

(ロ) (同) (E) (E) (E)

The *q*-Dolan/Grady relations first appeared in Algebraic Combinatorics, in the study of *Q*-polynomial distance-regular graphs (Terwilliger 1993).

The *q*-Onsager algebra was formally introduced by Terwilliger in 2003.

Starting around 2005, Pascal Baseilhac applied the *q*-Onsager algebra to Integrable Systems.

Let V denote a finite-dimensional irreducible \mathcal{O}_q -module on which the \mathcal{O}_q -generators A, A^* are diagonalizable.

Then A, A^* act on V as a tridiagonal pair. For this pair the eigenvalues of A and A^* look as follows in standard order:

$$\begin{array}{ll} A: & aq^{d-2i} + a^{-1}q^{2i-d} & (0 \leq i \leq d), \\ A^*: & bq^{d-2i} + b^{-1}q^{2i-d} & (0 \leq i \leq d). \end{array}$$

The scalars *a*, *b* depend on the \mathcal{O}_q -module *V*.

Consider how the algebras U_a^+ and \mathcal{O}_q are related.

These algebras have at least a superficial resemblance, since for the q-Serre relations and q-Dolan/Grady relations their left-hand sides match.

We now consider how U_q^+ and \mathcal{O}_q are related at an algebraic level.

To do this, we bring in another algebra \Box_q .

Let $\mathbb{Z}_4=\mathbb{Z}/4\mathbb{Z}$ denote the cyclic group of order 4.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Definition

Let \Box_q denote the associative $\mathbb F\text{-algebra}$ with generators $\{x_i\}_{i\in\mathbb Z_4}$ and relations

$$\begin{aligned} \frac{qx_ix_{i+1}-q^{-1}x_{i+1}x_i}{q-q^{-1}} &= 1, \\ x_i^3x_{i+2}-[3]_qx_i^2x_{i+2}x_i+[3]_qx_ix_{i+2}x_i^2-x_{i+2}x_i^3 &= 0. \end{aligned}$$

(ロ) (同) (E) (E) (E)

The algebra \Box_q has the following \mathbb{Z}_4 symmetry.

There exists an automorphism ρ of \Box_q that sends $x_i \mapsto x_{i+1}$ for $i \in \mathbb{Z}_4$. Moreover $\rho^4 = 1$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The algebra \Box_q is related to U_q^+ in the following way.

Definition

Define the subalgebras \Box_q^{even} , \Box_q^{odd} of \Box_q such that (i) \Box_q^{even} is generated by x_0, x_2 ; (ii) \Box_q^{odd} is generated by x_1, x_3 .

Theorem

The following (i)–(iii) hold:

- (i) there exists an \mathbb{F} -algebra isomorphism $U_q^+ \to \Box_q^{\text{even}}$ that sends $A \mapsto x_0$ and $A^* \mapsto x_2$;
- (ii) there exists an \mathbb{F} -algebra isomorphism $U_q^+ \to \Box_q^{\text{odd}}$ that sends $A \mapsto x_1$ and $A^* \mapsto x_3$;
- (iii) the following is an isomorphism of \mathbb{F} -vector spaces:

$$\Box_q^{\text{even}} \otimes \Box_q^{\text{odd}} \to \Box_q u \otimes v \mapsto uv$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

We just showed how the vector space \Box_q is isomorphic to $U_q^+ \otimes U_q^+.$

We now describe how \Box_q is related to the *q*-Onsager algebra \mathcal{O}_q .

< □ > < @ > < 注 > < 注 > ... 注

Theorem

Pick nonzero $a, b \in \mathbb{F}$. Then there exists a unique \mathbb{F} -algebra homomorphism $\natural : \mathcal{O}_q \to \Box_q$ that sends

$$A\mapsto ax_0+a^{-1}x_1, \qquad \qquad B\mapsto bx_2+b^{-1}x_3.$$

The homomorphism atural is injective.

< □ > < @ > < 注 > < 注 > ... 注

Motivated by the previous theorem, we wish to better understand the algebra \Box_q .

So we consider the \Box_q -modules.

The finite-dimensional irreducible \Box_q -modules were classified up to isomorphism by Yang Yang 2017.

Our topic here is a certain infinite-dimensional \Box_q -module, said to be NIL.

Definition

Let V denote a \Box_q -module. A vector $\xi \in V$ is called NIL whenever $x_1\xi = 0$ and $x_3\xi = 0$ and $\xi \neq 0$.

Definition

A $\Box_q\text{-module}\ V$ is called NIL whenever V is generated by a NIL vector.

(ロ) (同) (E) (E) (E)

Theorem

Up to isomorphism, there exists a unique NIL \Box_q -module, which we denote by **U**.

The \Box_q -module **U** is irreducible and infinite-dimensional.

The NIL \square_q -module **U**

Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Theorem The \Box_{a} -module **U** has a unique sequence of subspaces $\{\mathbf{U}_{n}\}_{n \in \mathbb{N}}$ such that (i) $U_0 \neq 0;$ (ii) the sum $\mathbf{U} = \sum_{n \in \mathbb{N}} \mathbf{U}_n$ is direct; (iii) for $n \in \mathbb{N}$. $x_0 \mathbf{U}_n \subset \mathbf{U}_{n+1}$ $x_1 \mathbf{U}_n \subset \mathbf{U}_{n-1}$ $x_2 \mathbf{U}_n \subset \mathbf{U}_{n+1}, \qquad x_3 \mathbf{U}_n \subset \mathbf{U}_{n-1}.$ where $U_{-1} = 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Theorem

The sequence $\{\mathbf{U}_n\}_{n\in\mathbb{N}}$ is described as follows.

The subspace U_0 has dimension 1.

The nonzero vectors in U_0 are precisely the NIL vectors in U, and each of these vectors generates U.

Let ξ denote a NIL vector in **U**. Then for $n \in \mathbb{N}$, the subspace **U**_n is spanned by the vectors

 $u_1u_2\cdots u_n\xi,$ $u_i\in\{x_0,x_2\},$ $1\leq i\leq n.$

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffl

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Shortly we will describe the \Box_q -module **U** in more detail.

To prepare, we comment on free algebras and q-shuffle algebras.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

From now on, \mathbb{V} denotes the free associative \mathbb{F} -algebra on two generators A, B.

For $n \in \mathbb{N}$, a word of length n in \mathbb{V} is a product $v_1v_2 \cdots v_n$ such that $v_i \in \{A, B\}$ for $1 \le i \le n$.

The **standard basis** for \mathbb{V} consists of the words.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

There exists a symmetric bilinear form (,) : $\mathbb{V} \times \mathbb{V} \to \mathbb{F}$ with respect to which the standard basis is orthonormal.

Recall that the algebra $End(\mathbb{V})$ consists of the \mathbb{F} -linear maps from \mathbb{V} to \mathbb{V} .

For $X \in \text{End}(\mathbb{V})$ there exists a unique $X^* \in \text{End}(\mathbb{V})$ such that $(Xu, v) = (u, X^*v)$ for all $u, v \in \mathbb{V}$.

The element X^* is called the **adjoint of** X with respect to (,).

We define an invertible $K \in End(\mathbb{V})$ as follows.

Definition

The map K is the automorphism of the free algebra \mathbb{V} that sends $A \mapsto q^2 A$ and $B \mapsto q^{-2} B$.

We have $K^* = K$.

The map K acts on the standard basis for \mathbb{V} in the following way.

For a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$egin{aligned} \mathcal{K}(v) &= vq^{\langle v_1, A
angle + \langle v_2, A
angle + \cdots + \langle v_n, A
angle}, \ \mathcal{K}^{-1}(v) &= vq^{\langle v_1, B
angle + \langle v_2, B
angle + \cdots + \langle v_n, B
angle} \end{aligned}$$

where

$$\begin{array}{c|c} \langle , \rangle & A & B \\ \hline A & 2 & -2 \\ B & -2 & 2 \end{array}$$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Definition

We define four maps in $\operatorname{End}(\mathbb{V})$, denoted

$$\begin{array}{ll} A_L, & B_L, & A_R, & B_R. \end{array}$$
 For $v \in \mathbb{V},$
$$A_L(v) = Av, \qquad B_L(v) = Bv, \qquad A_R(v) = vA, \qquad B_R(v) = vB. \end{array}$$

< □ > < @ > < 注 > < 注 > ... 注

We now consider

$$A_L^*, \qquad B_L^*, \qquad A_R^*, \qquad B_R^*.$$

Lemma

For a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$\begin{aligned} A_L^*(v) &= v_2 \cdots v_n \delta_{v_1,A}, \\ A_R^*(v) &= v_1 \cdots v_{n-1} \delta_{v_n,A}, \end{aligned} \qquad \begin{aligned} B_L^*(v) &= v_2 \cdots v_n \delta_{v_1,B}, \\ B_R^*(v) &= v_1 \cdots v_{n-1} \delta_{v_n,B}. \end{aligned}$$

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffl

We have been discussing the free algebra $\ensuremath{\mathbb{V}}.$

There is another algebra structure on \mathbb{V} , called the *q*-shuffle algebra. This is due to M. Rosso 1995.

The *q*-shuffle product will be denoted by \star .

For $X \in \{A, B\}$ and a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$X \star v = \sum_{i=0}^{n} v_1 \cdots v_i X v_{i+1} \cdots v_n q^{\langle v_1, X \rangle + \langle v_2, X \rangle + \cdots + \langle v_i, X \rangle},$$
$$v \star X = \sum_{i=0}^{n} v_1 \cdots v_i X v_{i+1} \cdots v_n q^{\langle v_n, X \rangle + \langle v_{n-1}, X \rangle + \cdots + \langle v_{i+1}, X \rangle}$$

The map K is an automorphism of the q-shuffle algebra \mathbb{V} .

Definition

We define four maps in $\operatorname{End}(\mathbb{V})$, denoted

$$\begin{array}{ccc} A_{\ell}, & B_{\ell}, & A_r, & B_r. \end{array}$$

For $v \in \mathbb{V},$
$$A_{\ell}(v) = A \star v, \quad B_{\ell}(v) = B \star v, \quad A_r(v) = v \star A, \quad B_r(v) = v \star B_{\ell}(v) = v$$

< □ > < @ > < 注 > < 注 > ... 注

Some more adjoints

We now consider

$$A^*_\ell, \qquad B^*_\ell, \qquad A^*_r, \qquad B^*_r.$$

Lemma

For a word $v = v_1 v_2 \cdots v_n$ in \mathbb{V} ,

$$\begin{aligned} A_{\ell}^{*}(v) &= \sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i},A} q^{\langle v_{1},A \rangle + \langle v_{2},A \rangle + \dots + \langle v_{i-1},A \rangle}, \\ B_{\ell}^{*}(v) &= \sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i},B} q^{\langle v_{1},B \rangle + \langle v_{2},B \rangle + \dots + \langle v_{i-1},B \rangle}, \\ A_{r}^{*}(v) &= \sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i},A} q^{\langle v_{n},A \rangle + \langle v_{n-1},A \rangle + \dots + \langle v_{i+1},A \rangle}, \\ B_{r}^{*}(v) &= \sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i},B} q^{\langle v_{n},B \rangle + \langle v_{n-1},B \rangle + \dots + \langle v_{i+1},B \rangle}. \end{aligned}$$

Sarah Post, Paul Terwilliger

We now compare the free algebra \mathbb{V} with the *q*-shuffle algebra \mathbb{V} .

To do this, we recall the concept of a derivation.

Let $\mathcal A$ denote an associative $\mathbb F\text{-algebra},$ and let $\varphi,\,\phi$ denote automorphisms of $\mathcal A.$

By a (φ, ϕ) -derivation of \mathcal{A} we mean an \mathbb{F} -linear map $\delta : \mathcal{A} \to \mathcal{A}$ such that for all $u, v \in \mathcal{A}$,

$$\delta(uv) = \varphi(u)\delta(v) + \delta(u)\phi(v).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The following two lemmas are due to M. Rosso and J. Green 1995.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Lemma

For the q-shuffle algebra \mathbb{V} ,

(i)
$$A_L^*$$
 is a (K, I) -derivation;

(ii)
$$B_L^*$$
 is a (K^{-1}, I) -derivation;

(iii)
$$A_R^*$$
 is a (I, K) -derivation;

(iv)
$$B_R^*$$
 is a (I, K^{-1}) -derivation.

(日本)(日本)(日本)

3

We will need some relations satisfied by K, K^{-1} and

 A_L^* , B_L^* , A_R^* , B_R^* , A_ℓ , B_ℓ , A_r , B_r .

We acknowledge that these relations are already known to the experts, such as Kashiwara 1991, Rosso 1995, Green 1995.

Some relations

Theorem

We have

$$KA_L^* = q^{-2}A_L^*K,$$

 $KA_R^* = q^{-2}A_R^*K,$

$$\begin{split} & \mathsf{K}\mathsf{B}^*_\mathsf{L} = q^2\mathsf{B}^*_\mathsf{L}\mathsf{K}, \\ & \mathsf{K}\mathsf{B}^*_\mathsf{R} = q^2\mathsf{B}^*_\mathsf{R}\mathsf{K}, \end{split}$$

$$\begin{split} & \mathsf{K}\mathsf{A}_\ell = q^2 \mathsf{A}_\ell \mathsf{K}, \qquad \qquad \mathsf{K}\mathsf{B}_\ell = q^{-2} \mathsf{B}_\ell \mathsf{K} \\ & \mathsf{K}\mathsf{A}_r = q^2 \mathsf{A}_r \mathsf{K}, \qquad \qquad \mathsf{K}\mathsf{B}_r = q^{-2} \mathsf{B}_r \mathsf{K} \end{split}$$

$$\begin{array}{ll} A_L^* A_R^* = A_R^* A_L^*, & B_L^* B_R^* = B_R^* B_L^*, \\ A_L^* B_R^* = B_R^* A_L^*, & B_L^* A_R^* = A_R^* B_L^*, \end{array}$$

$$A_{\ell}A_{r} = A_{r}A_{\ell},$$
$$A_{\ell}B_{r} = B_{r}A_{\ell},$$

Sarah Post, Paul Terwilliger

$$B_{\ell}B_{r} = B_{r}B_{\ell},$$

$$B_{\ell}A_{r} = A_{r}B_{\ell},$$

Some relations, cont.

Theorem

We have

$$A_L^*B_r = B_r A_L^*,$$

$$A_R^*B_\ell = B_\ell A_R^*,$$

$$egin{aligned} B_L^*A_r &= A_rB_L^*,\ B_R^*A_\ell &= A_\ell B_R^*, \end{aligned}$$

$$\begin{split} &A_L^*B_\ell=q^{-2}B_\ell A_L^*,\\ &A_R^*B_r=q^{-2}B_r A_R^*, \end{split}$$

$$B_L^* A_\ell = q^{-2} A_\ell B_L^*,$$

$$B_R^* A_r = q^{-2} A_r B_R^*,$$

$$\begin{aligned} A_L^* A_\ell - q^2 A_\ell A_L^* &= I, \\ B_L^* B_\ell - q^2 B_\ell B_L^* &= I, \end{aligned}$$

$$\begin{aligned} A_{L}^{*}A_{r} - A_{r}A_{L}^{*} &= K, \\ A_{D}^{*}A_{\ell} - A_{\ell}A_{D}^{*} &= K. \\ \text{Sarah Post, Paul Terwilliger} \end{aligned}$$

$$\begin{aligned} A_R^*A_r - q^2A_rA_R^* &= I, \\ B_R^*B_r - q^2B_rB_R^* &= I, \end{aligned}$$

$$B_{L}^{*}B_{r} - B_{r}B_{L}^{*} = K^{-1},$$

$$B_{D}^{*}B_{\ell} - B_{\ell}B_{D}^{*} = K^{-1}.$$

An infinite-dimensional \Box_{q} -module obtained from the q-shuffl

Theorem

We have

$$\begin{split} &A_{\ell}^{3}B_{\ell} - [3]_{q}A_{\ell}^{2}B_{\ell}A_{\ell} + [3]_{q}A_{\ell}B_{\ell}A_{\ell}^{2} - B_{\ell}A_{\ell}^{3} = 0, \\ &B_{\ell}^{3}A_{\ell} - [3]_{q}B_{\ell}^{2}A_{\ell}B_{\ell} + [3]_{q}B_{\ell}A_{\ell}B_{\ell}^{2} - A_{\ell}B_{\ell}^{3} = 0, \\ &A_{r}^{3}B_{r} - [3]_{q}A_{r}^{2}B_{r}A_{r} + [3]_{q}A_{r}B_{r}A_{r}^{2} - B_{r}A_{r}^{3} = 0, \\ &B_{r}^{3}A_{r} - [3]_{q}B_{r}^{2}A_{r}B_{r} + [3]_{q}B_{r}A_{r}B_{r}^{2} - A_{r}B_{r}^{3} = 0. \end{split}$$

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffl

Applying the adjoint map to the above relations, we obtain the following relations satisfied by K, K^{-1} and

$$A_L$$
, B_L , A_R , B_R , A_ℓ^* , B_ℓ^* , A_r^* , B_r^* .

Some more relations

Theorem

We have

$$\begin{split} & \mathsf{K}\mathsf{A}_L = q^2 \mathsf{A}_L \mathsf{K}, \\ & \mathsf{K}\mathsf{A}_R = q^2 \mathsf{A}_R \mathsf{K}, \end{split}$$

$$KB_L = q^{-2}B_LK,$$

$$KB_R = q^{-2}B_RK,$$

$$\begin{split} & \mathsf{K}\mathsf{A}^*_\ell = q^{-2}\mathsf{A}^*_\ell\mathsf{K}, \\ & \mathsf{K}\mathsf{A}^*_r = q^{-2}\mathsf{A}^*_r\mathsf{K}, \end{split}$$

$$\begin{split} & \mathsf{K}\mathsf{B}^*_\ell = \mathsf{q}^2\mathsf{B}^*_\ell\mathsf{K}, \\ & \mathsf{K}\mathsf{B}^*_\mathsf{r} = \mathsf{q}^2\mathsf{B}^*_\mathsf{r}\mathsf{K}, \end{split}$$

$$A_L A_R = A_R A_L, \qquad B_L B_R = B_R B_L, A_L B_R = B_R A_L, \qquad B_L A_R = A_R B_L,$$

$$\begin{aligned} A_\ell^* A_r^* &= A_r^* A_\ell^*, \\ A_\ell^* B_r^* &= B_r^* A_\ell^*, \end{aligned}$$

Sarah Post, Paul Terwilliger

$$\begin{split} B_\ell^* B_r^* &= B_r^* B_\ell^*, \\ B_\ell^* A_r^* &= A_r^* B_\ell^*, \end{split}$$

Some more relations, cont.

Theorem

We have

$$\begin{aligned} A_L B_r^* &= B_r^* A_L, \\ A_R B_\ell^* &= B_\ell^* A_R, \end{aligned}$$

$$B_L A_r^* = A_r^* B_L,$$

$$B_R A_\ell^* = A_\ell^* B_R,$$

$$\begin{split} A_L B_\ell^* &= q^2 B_\ell^* A_L, \\ A_R B_r^* &= q^2 B_r^* A_R, \end{split}$$

$$egin{aligned} & B_L A_\ell^* = q^2 A_\ell^* B_L, \ & B_R A_r^* = q^2 A_r^* B_R, \end{aligned}$$

$$\begin{aligned} A_{\ell}^* A_L - q^2 A_L A_{\ell}^* &= I, \\ B_{\ell}^* B_L - q^2 B_L B_{\ell}^* &= I, \end{aligned}$$

$$\begin{aligned} A_r^* A_R - q^2 A_R A_r^* &= I, \\ B_r^* B_R - q^2 B_R B_r^* &= I, \end{aligned}$$

$$B_r^* B_L - B_L B_r^* = K^{-1},$$

$$B_{\ell}^* B_R - B_R B_{\ell}^* = K^{-1}.$$

An infinite-dimensional \Box_q -module obtained from the q-shuffl

 $A_r^* A_L - A_L A_r^* = K,$ $A_\ell^* A_R - A_R A_\ell^* = K.$ Sarah Post, Paul Terwilliger

Theorem

We have

$$\begin{aligned} &(A_{\ell}^{*})^{3}B_{\ell}^{*} - [3]_{q}(A_{\ell}^{*})^{2}B_{\ell}^{*}A_{\ell}^{*} + [3]_{q}A_{\ell}^{*}B_{\ell}^{*}(A_{\ell}^{*})^{2} - B_{\ell}^{*}(A_{\ell}^{*})^{3} = 0, \\ &(B_{\ell}^{*})^{3}A_{\ell}^{*} - [3]_{q}(B_{\ell}^{*})^{2}A_{\ell}^{*}B_{\ell}^{*} + [3]_{q}B_{\ell}^{*}A_{\ell}^{*}(B_{\ell}^{*})^{2} - A_{\ell}^{*}(B_{\ell}^{*})^{3} = 0, \\ &(A_{r}^{*})^{3}B_{r}^{*} - [3]_{q}(A_{r}^{*})^{2}B_{r}^{*}A_{r}^{*} + [3]_{q}A_{r}^{*}B_{r}^{*}(A_{r}^{*})^{2} - B_{r}^{*}(A_{r}^{*})^{3} = 0, \\ &(B_{r}^{*})^{3}A_{r}^{*} - [3]_{q}(B_{r}^{*})^{2}A_{r}^{*}B_{r}^{*} + [3]_{q}B_{r}^{*}A_{r}^{*}(B_{r}^{*})^{2} - A_{r}^{*}(B_{r}^{*})^{3} = 0. \end{aligned}$$

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffl

・ロト ・回 ト ・ヨト ・ヨト

Э

Let J denote the 2-sided ideal of the free algebra $\mathbb V$ generated by

$$J^{+} = A^{3}B - [3]_{q}A^{2}BA + [3]_{q}ABA^{2} - BA^{3},$$

$$J^{-} = B^{3}A - [3]_{q}B^{2}AB + [3]_{q}BAB^{2} - AB^{3}.$$

The quotient algebra \mathbb{V}/J is isomorphic to U_q^+ .

(日) (同) (E) (E) (E)

Lemma

The subspace J is invariant under $K^{\pm 1}$ and

$$A_L, \quad B_L, \quad A_R, \quad B_R, \quad A_\ell^*, \quad B_\ell^*, \quad A_r^*, \quad B_r^*.$$

On the quotient \mathbb{V}/J ,

$$A_{L}^{3}B_{L} - [3]_{q}A_{L}^{2}B_{L}A_{L} + [3]_{q}A_{L}B_{L}A_{L}^{2} - B_{L}A_{L}^{3} = 0,$$

$$B_{L}^{3}A_{L} - [3]_{q}B_{L}^{2}A_{L}B_{L} + [3]_{q}B_{L}A_{L}B_{L}^{2} - A_{L}B_{L}^{3} = 0,$$

$$A_{R}^{3}B_{R} - [3]_{q}A_{R}^{2}B_{R}A_{R} + [3]_{q}A_{R}B_{R}A_{R}^{2} - B_{R}A_{R}^{3} = 0,$$

$$B_{R}^{3}A_{R} - [3]_{q}B_{R}^{2}A_{R}B_{R} + [3]_{q}B_{R}A_{R}B_{R}^{2} - A_{R}B_{R}^{3} = 0.$$

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffl

<ロ> (四) (四) (三) (三) (三) (三)

- Let U denote the subalgebra of the q-shuffle algebra $\mathbb V$ generated by A,B.
- The algebra U is isomorphic to U_q^+ (Rosso 1995).

(日) (同) (E) (E) (E)

The subalgebra U of the q-shuffle algebra V, cont.

Lemma

The subspace U is invariant under $K^{\pm 1}$ and

$$A_L^*$$
, B_L^* , A_R^* , B_R^* , A_ℓ , B_ℓ , A_r , B_r .

On U,

$$(A_L^*)^3 B_L^* - [3]_q (A_L^*)^2 B_L^* A_L^* + [3]_q A_L^* B_L^* (A_L^*)^2 - B_L^* (A_L^*)^3 = 0, (B_L^*)^3 A_L^* - [3]_q (B_L^*)^2 A_L^* B_L^* + [3]_q B_L^* A_L^* (B_L^*)^2 - A_L^* (B_L^*)^3 = 0, (A_R^*)^3 B_R^* - [3]_q (A_R^*)^2 B_R^* A_R^* + [3]_q A_R^* B_R^* (A_R^*)^2 - B_R^* (A_R^*)^3 = 0, (B_R^*)^3 A_R^* - [3]_q (B_R^*)^2 A_R^* B_R^* + [3]_q B_R^* A_R^* (B_R^*)^2 - A_R^* (B_R^*)^3 = 0.$$

Sarah Post, Paul Terwilliger An infinite-dimensional \Box_q -module obtained from the q-shuffl

(日) (同) (E) (E) (E)

- We are now ready to state our main results, which are about the \Box_q -module **U**.
- For notational convenience define $Q = 1 q^2$.

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

The main results

Theorem

For each row in the tables below, the vector space \mathbb{V}/J becomes a \Box_q -module on which the generators $\{x_i\}_{i\in\mathbb{Z}_4}$ act as indicated.

module label	<i>x</i> 0	<i>x</i> ₁		<i>x</i> ₂	<i>x</i> 3	
Ι	A_L	$Q(A_{\ell}^* - B_r^*)$	[•] K)	B_L	$Q(B_{\ell}^* - A_r^* \kappa)$	$(^{-1})$
IS	A_R	$Q(A_r^* - B_\ell^*)$	K)	B_R	$Q(B_r^* - A_\ell^* \kappa)$	$(^{-1})$
IT	B_L	$Q(B^*_\ell - A^*_r)$	$(^{-1})$	A_L	$Q(A_{\ell}^* - B_r^*)$	K)
IST	B _R	$Q(B_r^* - A_\ell^* h)$	$(^{-1})$	A_R	$Q(A_r^* - B_\ell^*)$	K)
module label		<i>x</i> ₀	<i>x</i> ₁		<i>x</i> ₂	<i>x</i> 3
module label II	Q(.	$\frac{x_0}{A_L - KB_R}$	$\frac{x_1}{A_\ell^*}$	Q(B	$\frac{x_2}{L-K^{-1}A_R}$	$\frac{x_3}{B_\ell^*}$
	Q(.	$\frac{A_L - KB_R}{A_R - KB_L}$	-		-	
II	Q(.	$A_L - KB_R$)	A_{ℓ}^*	Q(B	$L - K^{-1}A_R$	B_{ℓ}^*

Each \Box_q -module in the tables is isomorphic to **U**.

Sarah Post, Paul Terwilliger

The main results, cont.

Theorem

For each row in the tables below, the vector space U becomes a \Box_q -module on which the generators $\{x_i\}_{i \in \mathbb{Z}_4}$ act as indicated.

module label	<i>x</i> 0	<i>x</i> ₁		<i>x</i> ₂	<i>x</i> 3	
III	A_ℓ	$Q(A_L^* - B_R^*)$,K)	B_ℓ	$Q(B_L^* - A_R^*)$	$(X^{-1})^{-1}$
IIIS	A _r	$Q(A_R^* - B_L^*)$	(K)	Br	$Q(B_R^* - A_L^*)$	$(^{-1})$
IIIT	B_ℓ	$Q(B_L^* - A_R^*)$	$(^{-1})$	A_ℓ	$Q(A_L^* - \bar{B}_R^*)$	K)
IIIST	Br	$Q(B_R^* - A_L^*)$	$(^{-1})$	Ar	$Q(A_R^* - B_L^*)$	*K)
						-
module label		<i>x</i> ₀	x_1		<i>x</i> ₂	<i>x</i> 3
IV	Q	$(A_{\ell} - KB_r)$	A_L^*	Q(E	$B_{\ell} - K^{-1}A_r$	B_L^*
IVS	Q	$(A_r - KB_\ell)$	A_R^*	Q(E	$B_r - K^{-1}A_\ell$	B_R^*
IVT	Q(E	$B_\ell - K^{-1}A_r$	B_L^*	Q($(A_{\ell} - KB_r)$	A_L^*
IVST	Q(E	$B_r - K^{-1}A_\ell$	$B_R^{\overline{*}}$	Q($(A_r - KB_\ell)$	$A_R^{\bar{*}}$

Each \Box_q -module in the tables is isomorphic to **U**.

Sarah Post, Paul Terwilliger

Theorem

For the above \Box_q -modules on \mathbb{V}/J , the elements x_1 and x_3 act on the algebra \mathbb{V}/J as a derivation of the following sort:

module label	<i>x</i> ₁	<i>x</i> ₃
I, II	(K, I)-derivation	(K^{-1}, I) -derivation
IS, IIS	(I, K)-derivation	(I, K^{-1}) -derivation
IT, IIT ((K^{-1}, I) -derivation	(K, I)-derivation
IST, IIST ((I, K^{-1}) -derivation	(I, K)-derivation

(日本)(日本)(日本)

Theorem

For the above \Box_q -modules on U, the elements x_1 and x_3 act on the algebra U as a derivation of the following sort:

module label	<i>x</i> ₁	<i>x</i> ₃
III, IV	(K, I)-derivation	(K^{-1}, I) -derivation
IIIS, IVS	(I, K)-derivation	(I, K^{-1}) -derivation
IIIT, IVT	(K^{-1}, I) -derivation	(K, I)-derivation
IIIST, IVST	(I, K^{-1}) -derivation	(I, K)-derivation

▲圖 → ▲ 国 → ▲ 国 →

In this talk, we recalled the notion of a tridiagonal pair, and used it to motivate the algebra \Box_q .

We introduced an infinite-dimensional \Box_q -module, said to be NIL.

We described the NIL \square_q -module from sixteen points of view.

In this description we made use of the free algebra \mathbb{V} on two generators A, B as well as a *q*-shuffle algebra structure on \mathbb{V} .

THANK YOU FOR YOUR ATTENTION!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで