An infinite-dimensional \square_{q}-module obtained from the q-shuffle algebra for affine $\mathfrak{s l}_{2}$

Sarah Post Paul Terwilliger

We will first recall the notion of a tridiagonal pair.
We will give three examples of a tridiagonal pair, using representations of the Onsager algebra, the positive part of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$, and the q-Onsager algebra.

Motivated by these algebras we will bring in an algebra \square_{q}.
We will introduce an infinite-dimensional \square_{q}-module, said to be NIL.

We will describe the NIL \square_{q}-module from sixteen points of view.
In this description we will use the free algebra \mathbb{V} on two generators, as well as a q-shuffle algebra structure on \mathbb{V}.

Tridiagonal pairs

The concept of a tridiagonal pair was introduced in 1999 by Tatsuro Ito, Kenichiro Tanabe, and Paul Terwilliger.

This concept is defined as follows.
Let \mathbb{F} denote a field.
Let V denote a vector space over \mathbb{F} with finite positive dimension.
Consider two \mathbb{F}-linear maps $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$.

The definition of a tridiagonal pair
The above pair A, A^{*} is called a tridiagonal pair whenever:
(i) each of A, A^{*} is diagonalizable;
(ii) there exists an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A such that

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

where $V_{-1}=0$ and $V_{d+1}=0$;
(iii) there exists an ordering $\left\{V_{i}^{*}\right\}_{i=0}^{\delta}$ of the eigenspaces of A^{*} such that

$$
A V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*} \quad(0 \leq i \leq \delta)
$$

where $V_{-1}^{*}=0$ and $V_{\delta+1}^{*}=0 ;$
(iv) there does not exist a subspace $W \subseteq V$ such that $A W \subseteq W$, $A^{*} W \subseteq W, W \neq 0, W \neq V$.

Definition of a tridiagonal pair, cont.

Referring to the above definition, it turns out that $d=\delta$.
This common value is called the diameter of the pair.

Refer to the above tridiagonal pair A, A^{*}.
For $0 \leq i \leq d$, let $\theta_{i}\left(\right.$ resp. $\left.\theta_{i}^{*}\right)$ denote the eigenvalue of A (resp. $\left.A^{*}\right)$ for the eigenspace $V_{i}\left(\right.$ resp. $\left.V_{i}^{*}\right)$.

The sequence $\left\{\theta_{i}\right\}_{i=0}^{d}$ (resp. $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$) is an ordering of the eigenvalues of A (resp. $\left.A^{*}\right)$.

This ordering is called standard.

Three examples of a tridiagonal pair

We now give some examples of a tridiagonal pair.

Our examples come from representation theory.
We will consider some representations of the following three algebras:

- The Onsager algebra \mathcal{O};
- The positive part U_{q}^{+}of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$;
- The q-Onsager algebra \mathcal{O}_{q}.

The Onsager algebra \mathcal{O} is the Lie algebra over \mathbb{C} defined by generators A, A^{*} and relations

$$
\begin{aligned}
{\left[A,\left[A,\left[A, A^{*}\right]\right]\right] } & =4\left[A, A^{*}\right], \\
{\left[A^{*},\left[A^{*},\left[A^{*}, A\right]\right]\right] } & =4\left[A^{*}, A\right] .
\end{aligned}
$$

The above equations are called the Dolan/Grady relations.

Let V denote a finite-dimensional irreducible \mathcal{O}-module.
Then the \mathcal{O}-generators A, A^{*} act on V as a tridiagonal pair.
For this tridiagonal pair the eigenvalues of A and A^{*} look as follows in standard order:

$$
d-2 i \quad(0 \leq i \leq d)
$$

The positive part U_{q}^{+}

From now on, fix a nonzero $q \in \mathbb{F}$ that is not a root of unity.
Define

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} \quad n=0,1,2, \ldots
$$

The positive part U_{q}^{+}

Let U_{q}^{+}denote the associative \mathbb{F}-algebra defined by generators A, A^{*} and relations

$$
\begin{gathered}
A^{3} A^{*}-[3]_{q} A^{2} A^{*} A+[3]_{q} A A^{*} A^{2}-A^{*} A^{3}=0, \\
A^{* 3} A-[3]_{q} A^{* 2} A A^{*}+[3]_{q} A^{*} A A^{* 2}-A A^{* 3}=0
\end{gathered}
$$

The above equations are called the q-Serre relations.
We call U_{q}^{+}the positive part of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

The positive part U_{q}^{+}, cont.

Let V denote a finite-dimensional irreducible U_{q}^{+}-module on which the U_{q}^{+}-generators A, A^{*} are not nilpotent.

Then A, A^{*} act on V as a tridiagonal pair.
For this tridiagonal pair the eigenvalues of A and A^{*} look as follows in standard order:

$$
\begin{array}{lcc}
A: & a q^{d-2 i} & (0 \leq i \leq d) \\
A^{*}: & b q^{d-2 i} & (0 \leq i \leq d)
\end{array}
$$

The scalars a, b depend on the U_{q}^{+}-module V.

The q-Onsager algebra \mathcal{O}_{q}

Let \mathcal{O}_{q} denote the associative \mathbb{F}-algebra defined by generators A, A^{*} and relations

$$
\begin{gathered}
A^{3} A^{*}-[3]_{q} A^{2} A^{*} A+[3]_{q} A A^{*} A^{2}-A^{*} A^{3} \\
=\left(q^{2}-q^{-2}\right)^{2}\left(A^{*} A-A A^{*}\right), \\
A^{* 3} A-[3]_{q} A^{* 2} A A^{*}+[3]_{q} A^{*} A A^{* 2}-A A^{* 3} \\
=\left(q^{2}-q^{-2}\right)^{2}\left(A A^{*}-A^{*} A\right) .
\end{gathered}
$$

The above equations are called the q-Dolan/Grady relations.
We call \mathcal{O}_{q} the q-Onsager algebra.

A bit of history

The q-Dolan/Grady relations first appeared in Algebraic Combinatorics, in the study of Q-polynomial distance-regular graphs (Terwilliger 1993).

The q-Onsager algebra was formally introduced by Terwilliger in 2003.

Starting around 2005, Pascal Baseilhac applied the q-Onsager algebra to Integrable Systems.

The q-Onsager algebra \mathcal{O}_{q}, cont.

Let V denote a finite-dimensional irreducible \mathcal{O}_{q}-module on which the \mathcal{O}_{q}-generators A, A^{*} are diagonalizable.

Then A, A^{*} act on V as a tridiagonal pair. For this pair the eigenvalues of A and A^{*} look as follows in standard order:

$$
\begin{array}{lcc}
A: & a q^{d-2 i}+a^{-1} q^{2 i-d} & (0 \leq i \leq d) \\
A^{*}: \quad b q^{d-2 i}+b^{-1} q^{2 i-d} & (0 \leq i \leq d)
\end{array}
$$

The scalars a, b depend on the \mathcal{O}_{q}-module V.

Comparing U_{q}^{+}and \mathcal{O}_{q}

Consider how the algebras U_{q}^{+}and \mathcal{O}_{q} are related.
These algebras have at least a superficial resemblance, since for the q-Serre relations and q-Dolan/Grady relations their left-hand sides match.

We now consider how U_{q}^{+}and \mathcal{O}_{q} are related at an algebraic level.
To do this, we bring in another algebra \square_{q}.
Let $\mathbb{Z}_{4}=\mathbb{Z} / 4 \mathbb{Z}$ denote the cyclic group of order 4 .

Definition

Let \square_{q} denote the associative \mathbb{F}-algebra with generators $\left\{x_{i}\right\}_{i \in \mathbb{Z}_{4}}$ and relations

$$
\begin{gathered}
\frac{q x_{i} x_{i+1}-q^{-1} x_{i+1} x_{i}}{q-q^{-1}}=1, \\
x_{i}^{3} x_{i+2}-[3]_{q} x_{i}^{2} x_{i+2} x_{i}+[3]_{q} x_{i} x_{i+2} x_{i}^{2}-x_{i+2} x_{i}^{3}=0 .
\end{gathered}
$$

The algebra \square_{q} has the following \mathbb{Z}_{4} symmetry.
There exists an automorphism ρ of \square_{q} that sends $x_{i} \mapsto x_{i+1}$ for $i \in \mathbb{Z}_{4}$. Moreover $\rho^{4}=1$.

The algebras \square_{q} and U_{q}^{+}

The algebra \square_{q} is related to U_{q}^{+}in the following way.

Definition

Define the subalgebras $\square_{q}^{\text {even }}$, $\square_{q}^{\text {odd }}$ of \square_{q} such that
(i) $\square_{q}^{\text {even }}$ is generated by x_{0}, x_{2};
(ii) $\square_{q}^{\text {odd }}$ is generated by x_{1}, x_{3}.

The algebras \square_{q} and U_{q}^{+}, cont.

Theorem

The following (i)-(iii) hold:
(i) there exists an \mathbb{F}-algebra isomorphism $U_{q}^{+} \rightarrow \square_{q}^{\text {even }}$ that sends $A \mapsto x_{0}$ and $A^{*} \mapsto x_{2}$;
(ii) there exists an \mathbb{F}-algebra isomorphism $U_{q}^{+} \rightarrow \square_{q}^{\text {odd }}$ that sends $A \mapsto x_{1}$ and $A^{*} \mapsto x_{3} ;$
(iii) the following is an isomorphism of \mathbb{F}-vector spaces:

We just showed how the vector space \square_{q} is isomorphic to $U_{q}^{+} \otimes U_{q}^{+}$.

We now describe how \square_{q} is related to the q-Onsager algebra \mathcal{O}_{q}.

Theorem

Pick nonzero $a, b \in \mathbb{F}$. Then there exists a unique \mathbb{F}-algebra homomorphism $\square: \mathcal{O}_{q} \rightarrow \square_{q}$ that sends

$$
A \mapsto a x_{0}+a^{-1} x_{1}, \quad B \mapsto b x_{2}+b^{-1} x_{3} .
$$

The homomorphism \ddagger is injective.

Motivated by the previous theorem, we wish to better understand the algebra \square_{q}.

So we consider the \square_{q}-modules.
The finite-dimensional irreducible \square_{q}-modules were classified up to isomorphism by Yang Yang 2017.

Our topic here is a certain infinite-dimensional \square_{q}-module, said to be NIL.

Definition

Let V denote a \square_{q}-module. A vector $\xi \in V$ is called NIL whenever $x_{1} \xi=0$ and $x_{3} \xi=0$ and $\xi \neq 0$.

Definition

A \square_{q}-module V is called NIL whenever V is generated by a NIL vector.

Theorem

Up to isomorphism, there exists a unique NIL \square_{q}-module, which we denote by \mathbf{U}.

The \square_{q}-module \mathbf{U} is irreducible and infinite-dimensional.

The NIL \square_{q}-module \mathbf{U}

Recall the natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$.

Theorem

The \square_{q}-module \mathbf{U} has a unique sequence of subspaces $\left\{\mathbf{U}_{n}\right\}_{n \in \mathbb{N}}$ such that
(i) $\mathbf{U}_{0} \neq 0$;
(ii) the sum $\mathbf{U}=\sum_{n \in \mathbb{N}} \mathbf{U}_{n}$ is direct;
(iii) for $n \in \mathbb{N}$,

$$
\begin{array}{ll}
x_{0} \mathbf{U}_{n} \subseteq \mathbf{U}_{n+1}, & x_{1} \mathbf{U}_{n} \subseteq \mathbf{U}_{n-1}, \\
x_{2} \mathbf{U}_{n} \subseteq \mathbf{U}_{n+1}, & x_{3} \mathbf{U}_{n} \subseteq \mathbf{U}_{n-1},
\end{array}
$$

where $\mathbf{U}_{-1}=0$.

Theorem

The sequence $\left\{\mathbf{U}_{n}\right\}_{n \in \mathbb{N}}$ is described as follows.
The subspace \mathbf{U}_{0} has dimension 1 .
The nonzero vectors in \mathbf{U}_{0} are precisely the NIL vectors in \mathbf{U}, and each of these vectors generates \mathbf{U}.

Let ξ denote a NIL vector in \mathbf{U}. Then for $n \in \mathbb{N}$, the subspace \mathbf{U}_{n} is spanned by the vectors

$$
u_{1} u_{2} \cdots u_{n} \xi
$$

$u_{i} \in\left\{x_{0}, x_{2}\right\}$,

$$
1 \leq i \leq n
$$

The NIL \square_{q}-module \mathbf{U}, cont.

Shortly we will describe the \square_{q}-module \mathbf{U} in more detail.
To prepare, we comment on free algebras and q-shuffle algebras.

From now on, \mathbb{V} denotes the free associative \mathbb{F}-algebra on two generators A, B.

For $n \in \mathbb{N}$, a word of length n in \mathbb{V} is a product $v_{1} v_{2} \cdots v_{n}$ such that $v_{i} \in\{A, B\}$ for $1 \leq i \leq n$.

The standard basis for \mathbb{V} consists of the words.

A bilinear form on \mathbb{V}

There exists a symmetric bilinear form (,) : $\mathbb{V} \times \mathbb{V} \rightarrow \mathbb{F}$ with respect to which the standard basis is orthonormal.

Recall that the algebra $\operatorname{End}(\mathbb{V})$ consists of the \mathbb{F}-linear maps from \mathbb{V} to \mathbb{V}.

For $X \in \operatorname{End}(\mathbb{V})$ there exists a unique $X^{*} \in \operatorname{End}(\mathbb{V})$ such that $(X u, v)=\left(u, X^{*} v\right)$ for all $u, v \in \mathbb{V}$.

The element X^{*} is called the adjoint of X with respect to $($,$) .$

We define an invertible $K \in \operatorname{End}(\mathbb{V})$ as follows.

Definition

The map K is the automorphism of the free algebra \mathbb{V} that sends $A \mapsto q^{2} A$ and $B \mapsto q^{-2} B$.

We have $K^{*}=K$.

The map K acts on the standard basis for \mathbb{V} in the following way.
For a word $v=v_{1} v_{2} \cdots v_{n}$ in \mathbb{V},

$$
\begin{aligned}
& K(v)=v q^{\left\langle v_{1}, A\right\rangle+\left\langle v_{2}, A\right\rangle+\cdots+\left\langle v_{n}, A\right\rangle} \\
& K^{-1}(v)=v q^{\left\langle v_{1}, B\right\rangle+\left\langle v_{2}, B\right\rangle+\cdots+\left\langle v_{n}, B\right\rangle}
\end{aligned}
$$

where

$\langle\rangle$,	A	B
A	2	-2
B	-2	2

Left and right multiplication in \mathbb{V}

Definition

We define four maps in $\operatorname{End}(\mathbb{V})$, denoted

$$
A_{L}, \quad B_{L}, \quad A_{R}, \quad B_{R} .
$$

For $v \in \mathbb{V}$,

$$
A_{L}(v)=A v, \quad B_{L}(v)=B v, \quad A_{R}(v)=v A, \quad B_{R}(v)=v B
$$

Some adjoints

We now consider

$$
A_{L}^{*}, \quad B_{L}^{*}, \quad A_{R}^{*}, \quad B_{R}^{*}
$$

Lemma

For a word $v=v_{1} v_{2} \cdots v_{n}$ in \mathbb{V},

$$
\begin{array}{ll}
A_{L}^{*}(v)=v_{2} \cdots v_{n} \delta_{v_{1}, A}, & B_{L}^{*}(v)=v_{2} \cdots v_{n} \delta_{v_{1}, B} \\
A_{R}^{*}(v)=v_{1} \cdots v_{n-1} \delta_{v_{n}, A}, & B_{R}^{*}(v)=v_{1} \cdots v_{n-1} \delta_{v_{n}, B}
\end{array}
$$

We have been discussing the free algebra \mathbb{V}.
There is another algebra structure on \mathbb{V}, called the q-shuffle algebra. This is due to M. Rosso 1995.

The q-shuffle product will be denoted by \star.
For $X \in\{A, B\}$ and a word $v=v_{1} v_{2} \cdots v_{n}$ in \mathbb{V},

$$
\begin{aligned}
& X \star v=\sum_{i=0}^{n} v_{1} \cdots v_{i} X v_{i+1} \cdots v_{n} q^{\left\langle v_{1}, X\right\rangle+\left\langle v_{2}, X\right\rangle+\cdots+\left\langle v_{i}, X\right\rangle}, \\
& v \star X=\sum_{i=0}^{n} v_{1} \cdots v_{i} X v_{i+1} \cdots v_{n} q^{\left\langle v_{n}, X\right\rangle+\left\langle v_{n-1}, X\right\rangle+\cdots+\left\langle v_{i+1}, X\right\rangle} .
\end{aligned}
$$

The map K is an automorphism of the q-shuffle algebra \mathbb{V}.

The q-shuffle algebra \mathbb{V}, cont.

Definition

We define four maps in $\operatorname{End}(\mathbb{V})$, denoted

$$
A_{\ell}, \quad B_{\ell}, \quad A_{r}, \quad B_{r} .
$$

For $v \in \mathbb{V}$,
$A_{\ell}(v)=A \star v, \quad B_{\ell}(v)=B \star v, \quad A_{r}(v)=v \star A, \quad B_{r}(v)=v \star B$.

Some more adjoints

We now consider

$$
A_{\ell}^{*}, \quad B_{\ell}^{*}, \quad A_{r}^{*}, \quad B_{r}^{*}
$$

Lemma

For a word $v=v_{1} v_{2} \cdots v_{n}$ in \mathbb{V},

$$
\begin{aligned}
& A_{\ell}^{*}(v)=\sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i}, A} q^{\left\langle v_{1}, A\right\rangle+\left\langle v_{2}, A\right\rangle+\cdots+\left\langle v_{i-1}, A\right\rangle}, \\
& B_{\ell}^{*}(v)=\sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i}, B} q^{\left\langle v_{1}, B\right\rangle+\left\langle v_{2}, B\right\rangle+\cdots+\left\langle v_{i-1}, B\right\rangle}, \\
& A_{r}^{*}(v)=\sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i}, A} q^{\left\langle v_{n}, A\right\rangle+\left\langle v_{n-1}, A\right\rangle+\cdots+\left\langle v_{i+1}, A\right\rangle}, \\
& B_{r}^{*}(v)=\sum_{i=0}^{n} v_{1} \cdots v_{i-1} v_{i+1} \cdots v_{n} \delta_{v_{i}, B} q^{\left\langle v_{n}, B\right\rangle+\left\langle v_{n-1}, B\right\rangle+\cdots+\left\langle v_{i+1}, B\right\rangle} .
\end{aligned}
$$

Comparing the free algebra and the q-shuffle algebra

We now compare the free algebra \mathbb{V} with the q-shuffle algebra \mathbb{V}.
To do this, we recall the concept of a derivation.
Let \mathcal{A} denote an associative \mathbb{F}-algebra, and let φ, ϕ denote automorphisms of \mathcal{A}.

By a (φ, ϕ)-derivation of \mathcal{A} we mean an \mathbb{F}-linear map $\delta: \mathcal{A} \rightarrow \mathcal{A}$ such that for all $u, v \in \mathcal{A}$,

$$
\delta(u v)=\varphi(u) \delta(v)+\delta(u) \phi(v)
$$

Comparing the free algebra and the q-shuffle algebra

The following two lemmas are due to M. Rosso and J. Green 1995.

Lemma

For the free algebra \mathbb{V},
(i) A_{ℓ}^{*} is a (K, I)-derivation;
(ii) B_{ℓ}^{*} is a $\left(K^{-1}, I\right)$-derivation;
(iii) A_{r}^{*} is a (I, K)-derivation;
(iv) B_{r}^{*} is a $\left(I, K^{-1}\right)$-derivation.

Comparing the free algebra and the q-shuffle algebra

Lemma

For the q-shuffle algebra \mathbb{V},
(i) A_{L}^{*} is a (K, I)-derivation;
(ii) B_{L}^{*} is a $\left(K^{-1}, I\right)$-derivation;
(iii) A_{R}^{*} is a (I, K)-derivation;
(iv) B_{R}^{*} is a $\left(I, K^{-1}\right)$-derivation.

Some relations

We will need some relations satisfied by K, K^{-1} and

$$
A_{L}^{*}, \quad B_{L}^{*}, \quad A_{R}^{*}, \quad B_{R}^{*}, \quad A_{\ell}, \quad B_{\ell}, \quad A_{r}, \quad B_{r} .
$$

We acknowledge that these relations are already known to the experts, such as Kashiwara 1991, Rosso 1995, Green 1995.

Some relations

Theorem

We have

$$
\begin{aligned}
K A_{L}^{*}=q^{-2} A_{L}^{*} K, & K B_{L}^{*}=q^{2} B_{L}^{*} K, \\
K A_{R}^{*}=q^{-2} A_{R}^{*} K, & K B_{R}^{*}=q^{2} B_{R}^{*} K, \\
K A_{\ell}=q^{2} A_{\ell} K, & K B_{\ell}=q^{-2} B_{\ell} K, \\
K A_{r}=q^{2} A_{r} K, & K B_{r}=q^{-2} B_{r} K, \\
A_{L}^{*} A_{R}^{*}=A_{R}^{*} A_{L}^{*}, & B_{L}^{*} B_{R}^{*}=B_{R}^{*} B_{L}^{*}, \\
A_{L}^{*} B_{R}^{*}=B_{R}^{*} A_{L}^{*}, & B_{L}^{*} A_{R}^{*}=A_{R}^{*} B_{L}^{*}, \\
A_{\ell} A_{r}=A_{r} A_{\ell}, & B_{\ell} B_{r}=B_{r} B_{\ell}, \\
A_{\ell} B_{r}=B_{r} A_{\ell}, & B_{\ell} A_{r}=A_{r} B_{\ell},
\end{aligned}
$$

Some relations, cont.

Theorem

We have

$$
\begin{array}{cl}
A_{L}^{*} B_{r}=B_{r} A_{L}^{*}, & B_{L}^{*} A_{r}=A_{r} B_{L}^{*}, \\
A_{R}^{*} B_{\ell}=B_{\ell} A_{R}^{*}, & B_{R}^{*} A_{\ell}=A_{\ell} B_{R}^{*}, \\
A_{L}^{*} B_{\ell}=q^{-2} B_{\ell} A_{L}^{*}, & B_{L}^{*} A_{\ell}=q^{-2} A_{\ell} B_{L}^{*}, \\
A_{R}^{*} B_{r}=q^{-2} B_{r} A_{R}^{*}, & B_{R}^{*} A_{r}=q^{-2} A_{r} B_{R}^{*}, \\
& \\
A_{L}^{*} A_{\ell}-q^{2} A_{\ell} A_{L}^{*}=I, & A_{R}^{*} A_{r}-q^{2} A_{r} A_{R}^{*}=I, \\
B_{L}^{*} B_{\ell}-q^{2} B_{\ell} B_{L}^{*}=I, & B_{R}^{*} B_{r}-q^{2} B_{r} B_{R}^{*}=I, \\
& \\
A_{L}^{*} A_{r}-A_{r} A_{L}^{*}=K, & B_{L}^{*} B_{r}-B_{r} B_{L}^{*}=K^{-1}, \\
A_{D}^{*} A_{\ell}-A_{\bullet} A_{D}^{*}=K, & B_{R}^{*} B_{\ell}-B_{r} B_{R}^{*}=K^{-1},
\end{array}
$$

Some relations, cont.

Theorem

We have

$$
\begin{aligned}
& A_{\ell}^{3} B_{\ell}-[3]_{q} A_{\ell}^{2} B_{\ell} A_{\ell}+[3]_{q} A_{\ell} B_{\ell} A_{\ell}^{2}-B_{\ell} A_{\ell}^{3}=0, \\
& B_{\ell}^{3} A_{\ell}-[3]_{q} B_{\ell}^{2} A_{\ell} B_{\ell}+[3]_{q} B_{\ell} A_{\ell} B_{\ell}^{2}-A_{\ell} B_{\ell}^{3}=0, \\
& A_{r}^{3} B_{r}-[3]_{q} A_{r}^{2} B_{r} A_{r}+[3]_{q} A_{r} B_{r} A_{r}^{2}-B_{r} A_{r}^{3}=0, \\
& B_{r}^{3} A_{r}-[3]_{q} B_{r}^{2} A_{r} B_{r}+[3]_{q} B_{r} A_{r} B_{r}^{2}-A_{r} B_{r}^{3}=0
\end{aligned}
$$

Some more relations

Applying the adjoint map to the above relations, we obtain the following relations satisfied by K, K^{-1} and

$$
A_{L}, \quad B_{L}, \quad A_{R}, \quad B_{R}, \quad A_{\ell}^{*}, \quad B_{\ell}^{*}, \quad A_{r}^{*}, \quad B_{r}^{*}
$$

Some more relations

Theorem

We have

$$
\begin{array}{ll}
K A_{L}=q^{2} A_{L} K, & K B_{L}=q^{-2} B_{L} K, \\
K A_{R}=q^{2} A_{R} K, & K B_{R}=q^{-2} B_{R} K, \\
K A_{\ell}^{*}=q^{-2} A_{\ell}^{*} K, & K B_{\ell}^{*}=q^{2} B_{\ell}^{*} K, \\
K A_{r}^{*}=q^{-2} A_{r}^{*} K, & K B_{r}^{*}=q^{2} B_{r}^{*} K, \\
A_{L} A_{R}=A_{R} A_{L}, & B_{L} B_{R}=B_{R} B_{L}, \\
A_{L} B_{R}=B_{R} A_{L}, & B_{L} A_{R}=A_{R} B_{L}, \\
A_{\ell}^{*} A_{r}^{*}=A_{r}^{*} A_{\ell}^{*}, & B_{\ell}^{*} B_{r}^{*}=B_{r}^{*} B_{\ell}^{*}, \\
A_{\ell}^{*} B_{r}^{*}=B_{r}^{*} A_{\ell}^{*}, & B_{\ell}^{*} A_{r}^{*}=A_{r}^{*} B_{\ell}^{*},
\end{array}
$$

Some more relations, cont.

Theorem

We have

$$
\begin{array}{cl}
A_{L} B_{r}^{*}=B_{r}^{*} A_{L}, & B_{L} A_{r}^{*}=A_{r}^{*} B_{L}, \\
A_{R} B_{\ell}^{*}=B_{\ell}^{*} A_{R}, & B_{R} A_{\ell}^{*}=A_{\ell}^{*} B_{R}, \\
A_{L} B_{\ell}^{*}=q^{2} B_{\ell}^{*} A_{L}, & B_{L} A_{\ell}^{*}=q^{2} A_{\ell}^{*} B_{L}, \\
A_{R} B_{r}^{*}=q^{2} B_{r}^{*} A_{R}, & B_{R} A_{r}^{*}=q^{2} A_{r}^{*} B_{R}, \\
A_{\ell}^{*} A_{L}-q^{2} A_{L} A_{\ell}^{*}=I, & A_{r}^{*} A_{R}-q^{2} A_{R} A_{r}^{*}=I, \\
B_{\ell}^{*} B_{L}-q^{2} B_{L} B_{\ell}^{*}=I, & B_{r}^{*} B_{R}-q^{2} B_{R} B_{r}^{*}=I, \\
A_{r}^{*} A_{L}-A_{L} A_{r}^{*}=K, & B_{r}^{*} B_{L}-B_{L} B_{r}^{*}=K^{-1}, \\
A_{\imath}^{*} A_{R}-A_{R} A_{\bullet}^{*}=K, & B_{\bullet}^{*} B_{R}-B_{R} B_{\bullet}^{*}=K^{-1},
\end{array}
$$

Some more relations, cont.

Theorem

We have

$$
\begin{aligned}
& \left(A_{\ell}^{*}\right)^{3} B_{\ell}^{*}-[3]_{q}\left(A_{\ell}^{*}\right)^{2} B_{\ell}^{*} A_{\ell}^{*}+[3]_{q} A_{\ell}^{*} B_{\ell}^{*}\left(A_{\ell}^{*}\right)^{2}-B_{\ell}^{*}\left(A_{\ell}^{*}\right)^{3}=0, \\
& \left(B_{\ell}^{*}\right)^{3} A_{\ell}^{*}-[3]_{q}\left(B_{\ell}^{*}\right)^{2} A_{\ell}^{*} B_{\ell}^{*}+[3]_{q} B_{\ell}^{*} A_{\ell}^{*}\left(B_{\ell}^{*}\right)^{2}-A_{\ell}^{*}\left(B_{\ell}^{*}\right)^{3}=0, \\
& \left(A_{r}^{*}\right)^{3} B_{r}^{*}-[3]_{q}\left(A_{r}^{*}\right)^{2} B_{r}^{*} A_{r}^{*}+[3]_{q} A_{r}^{*} B_{r}^{*}\left(A_{r}^{*}\right)^{2}-B_{r}^{*}\left(A_{r}^{*}\right)^{3}=0, \\
& \left(B_{r}^{*}\right)^{3} A_{r}^{*}-[3]_{q}\left(B_{r}^{*}\right)^{2} A_{r}^{*} B_{r}^{*}+[3]_{q} B_{r}^{*} A_{r}^{*}\left(B_{r}^{*}\right)^{2}-A_{r}^{*}\left(B_{r}^{*}\right)^{3}=0 .
\end{aligned}
$$

Let J denote the 2 -sided ideal of the free algebra \mathbb{V} generated by

$$
\begin{aligned}
& J^{+}=A^{3} B-[3]_{q} A^{2} B A+[3]_{q} A B A^{2}-B A^{3}, \\
& J^{-}=B^{3} A-[3]_{q} B^{2} A B+[3]_{q} B A B^{2}-A B^{3} .
\end{aligned}
$$

The quotient algebra \mathbb{V} / J is isomorphic to U_{q}^{+}.

The 2-sided ideal J of the free algebra \mathbb{V}, cont.

Lemma

The subspace J is invariant under $K^{ \pm 1}$ and
$A_{L}, \quad B_{L}, \quad A_{R}, \quad B_{R}, \quad A_{\ell}^{*}, \quad B_{\ell}^{*}, \quad A_{r}^{*}, \quad B_{r}^{*}$.
On the quotient \mathbb{V} / J,

$$
\begin{aligned}
& A_{L}^{3} B_{L}-[3]_{q} A_{L}^{2} B_{L} A_{L}+[3]_{q} A_{L} B_{L} A_{L}^{2}-B_{L} A_{L}^{3}=0 \\
& B_{L}^{3} A_{L}-[3]_{q} B_{L}^{2} A_{L} B_{L}+[3]_{q} B_{L} A_{L} B_{L}^{2}-A_{L} B_{L}^{3}=0 \\
& A_{R}^{3} B_{R}-[3]_{q} A_{R}^{2} B_{R} A_{R}+[3]_{q} A_{R} B_{R} A_{R}^{2}-B_{R} A_{R}^{3}=0, \\
& B_{R}^{3} A_{R}-[3]_{q} B_{R}^{2} A_{R} B_{R}+[3]_{q} B_{R} A_{R} B_{R}^{2}-A_{R} B_{R}^{3}=0
\end{aligned}
$$

The subalgebra U of the q-shuffle algebra \mathbb{V}

Let U denote the subalgebra of the q-shuffle algebra \mathbb{V} generated by A, B.

The algebra U is isomorphic to U_{q}^{+}(Rosso 1995).

The subalgebra U of the q-shuffle algebra V, cont.

Lemma

The subspace U is invariant under $K^{ \pm 1}$ and

$$
A_{L}^{*}, \quad B_{L}^{*}, \quad A_{R}^{*}, \quad B_{R}^{*}, \quad A_{\ell}, \quad B_{\ell}, \quad A_{r}, \quad B_{r} .
$$

On U,
$\left(A_{L}^{*}\right)^{3} B_{L}^{*}-[3]_{q}\left(A_{L}^{*}\right)^{2} B_{L}^{*} A_{L}^{*}+[3]_{q} A_{L}^{*} B_{L}^{*}\left(A_{L}^{*}\right)^{2}-B_{L}^{*}\left(A_{L}^{*}\right)^{3}=0$,
$\left(B_{L}^{*}\right)^{3} A_{L}^{*}-[3]_{q}\left(B_{L}^{*}\right)^{2} A_{L}^{*} B_{L}^{*}+[3]_{q} B_{L}^{*} A_{L}^{*}\left(B_{L}^{*}\right)^{2}-A_{L}^{*}\left(B_{L}^{*}\right)^{3}=0$,
$\left(A_{R}^{*}\right)^{3} B_{R}^{*}-[3]_{q}\left(A_{R}^{*}\right)^{2} B_{R}^{*} A_{R}^{*}+[3]_{q} A_{R}^{*} B_{R}^{*}\left(A_{R}^{*}\right)^{2}-B_{R}^{*}\left(A_{R}^{*}\right)^{3}=0$,
$\left(B_{R}^{*}\right)^{3} A_{R}^{*}-[3]_{q}\left(B_{R}^{*}\right)^{2} A_{R}^{*} B_{R}^{*}+[3]_{q} B_{R}^{*} A_{R}^{*}\left(B_{R}^{*}\right)^{2}-A_{R}^{*}\left(B_{R}^{*}\right)^{3}=0$.

We are now ready to state our main results, which are about the \square_{q}-module U.

For notational convenience define $Q=1-q^{2}$.

The main results

Theorem

For each row in the tables below, the vector space \mathbb{V} / J becomes a \square_{q}-module on which the generators $\left\{x_{i}\right\}_{i \in \mathbb{Z}_{4}}$ act as indicated.

module label	x_{0}	x_{1}		$x_{2} \quad x_{3}$		
I	A_{L}	$Q\left(A_{\ell}^{*}-B_{r}\right.$		B_{L}	$Q\left(B_{\ell}^{*}-A_{r}^{*}\right.$	${ }^{-1}$)
IS		$Q\left(A_{r}^{*}-B_{\ell}^{*}\right.$	K)	B_{R}	$Q\left(B_{r}^{*}-A_{l}^{*}\right.$	
IT		$Q\left(B_{\ell}^{*}-A_{r}^{*}\right.$	-1)	A_{L}	$Q\left(A_{\ell}^{*}-B^{\prime}\right.$	
IST	B_{R}	$Q\left(B_{r}^{*}-A_{\ell}^{*}\right.$		A_{R}	$Q\left(A_{r}^{*}-B_{r}\right.$	
module label		x_{0}	x_{1}		x_{2}	\times_{3}
II		$\left.A_{L}-K B_{R}\right)$	A_{ℓ}^{*}		$\left.{ }_{L}-K^{-1} A_{R}\right)$	B_{ℓ}^{*}
IIS		$\left(A_{R}-K B_{L}\right)$	A_{r}^{*}	$Q\left(B_{R}\right.$	$\left.{ }_{R}-K^{-1} A_{L}\right)$	B_{r}^{*}
IIT	$Q\left(B^{\prime}\right.$	($\left.A_{L}-K^{-1} A_{R}\right)$	B_{ℓ}^{*}		$\left(A_{L}-K B_{R}\right)$	A_{ℓ}^{*}
IIST	$Q\left(B^{\prime}\right.$	R $\left.-K^{-1} A_{L}\right)$	B_{r}^{*}		$\left(A_{R}-K B_{L}\right)$	A_{r}^{*}

Each \square_{q}-module in the tables is isomorphic to \mathbf{U}.

The main results, cont.

Theorem

For each row in the tables below, the vector space U becomes a \square_{q}-module on which the generators $\left\{x_{i}\right\}_{i \in \mathbb{Z}_{4}}$ act as indicated.

module label	x_{0}	x_{1}	x_{2}	x_{3}
III	A_{ℓ}	$Q\left(A_{L}^{*}-B_{R}^{*} K\right)$	B_{ℓ}	$Q\left(B_{L}^{*}-A_{R}^{*} K^{-1}\right)$
IIIS	A_{r}	$Q\left(A_{R}^{*}-B_{L}^{*} K\right)$	B_{r}	$Q\left(B_{R}^{*}-A_{L}^{*} K^{-1}\right)$
IIIT	B_{ℓ}	$Q\left(B_{L}^{*}-A_{R}^{*} K^{-1}\right)$	A_{ℓ}	$Q\left(A_{L}^{*}-B_{R}^{*} K\right)$
IIIST	B_{r}	$Q\left(B_{R}^{*}-A_{L}^{*} K^{-1}\right)$	A_{r}	$Q\left(A_{R}^{*}-B_{L}^{*} K\right)$

module label	x_{0}	x_{1}	x_{2}	x_{3}
IV	$Q\left(A_{\ell}-K B_{r}\right)$	A_{L}^{*}	$Q\left(B_{\ell}-K^{-1} A_{r}\right)$	B_{L}^{*}
IVS	$Q\left(A_{r}-K B_{\ell}\right)$	A_{R}^{*}	$Q\left(B_{r}-K^{-1} A_{\ell}\right)$	B_{R}^{*}
IVT	$Q\left(B_{\ell}-K^{-1} A_{r}\right)$	B_{L}^{*}	$Q\left(A_{\ell}-K B_{r}\right)$	A_{L}^{*}
IVST	$Q\left(B_{r}-K^{-1} A_{\ell}\right)$	B_{R}^{*}	$Q\left(A_{r}-K B_{\ell}\right)$	A_{R}^{*}

Each \square_{q}-module in the tables is isomorphic to \mathbf{U}.

The main results, cont.

Theorem

For the above \square_{q}-modules on \mathbb{V} / J, the elements x_{1} and x_{3} act on the algebra \mathbb{V} / J as a derivation of the following sort:

module label	x_{1}	x_{3}
I, II	(K, I)-derivation	$\left(K^{-1}, I\right)$-derivation
IS, IIS	(I, K)-derivation	$\left(I, K^{-1}\right)$-derivation
IT, IIT	$\left(K^{-1}, I\right)$-derivation	(K, I)-derivation
IST, IIST	$\left(I, K^{-1}\right)$-derivation	(I, K)-derivation

The main results, cont.

Theorem

For the above \square_{q}-modules on U, the elements x_{1} and x_{3} act on the algebra U as a derivation of the following sort:

module label	x_{1}	x_{3}
III, IV	(K, I)-derivation	$\left(K^{-1}, I\right)$-derivation
IIIS, IVS	(I, K)-derivation	$\left(I, K^{-1}\right)$-derivation
IIIT, IVT	$\left(K^{-1}, I\right)$-derivation	(K, I)-derivation
IIIST, IVST	$\left(I, K^{-1}\right)$-derivation	(I, K)-derivation

In this talk, we recalled the notion of a tridiagonal pair, and used it to motivate the algebra \square_{q}.

We introduced an infinite-dimensional \square_{q}-module, said to be NIL.
We described the NIL \square_{q}-module from sixteen points of view.
In this description we made use of the free algebra \mathbb{V} on two generators A, B as well as a q-shuffle algebra structure on \mathbb{V}.

THANK YOU FOR YOUR ATTENTION!

