

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Construction of self-orthogonal linear codes from orbit matrices of combinatorial structures

Sanja Rukavina sanjar@math.uniri.hr

Department of Mathematics University of Rijeka, Croatia

8th PhD Summer School in Discrete Mathematics Rogla, Slovenia, 1-7 July 2018

Supported by CSF under the project 1637.

Codes

Designs

- Orbit matrices
- Self-orthogonal codes from orbit matrices of block designs
- Strongly regular graphs
- Orbit matrices
- Self-orthogonal codes from orbit matrices of strongly regular graphs
- Self-dual codes from extended orbit matrices of symmetric designs
- Self-dual codes from quotient matrices of SGDDs with the dual property

1 Codes

2 Designs Orbit matrices

- **3** Self-orthogonal codes from orbit matrices of block designs
- 4 Strongly regular graphs Orbit matrices
- **5** Self-orthogonal codes from orbit matrices of strongly regular graphs
- 6 Self-dual codes from extended orbit matrices of symmetric designs
- Self-dual codes from quotient matrices of SGDDs with the dual property

Codes

Designs

Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Let \mathbf{F}_q be the finite field of order q. A **linear code** of **length** n is a subspace of the vector space \mathbf{F}_q^n . A *k*-dimensional subspace of \mathbf{F}_q^n is called a linear [n, k] code over \mathbf{F}_q .

For $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbf{F}_q^n$ the number $d(x, y) = |\{i \mid 1 \le i \le n, x_i \ne y_i\}|$ is called a Hamming distance. A **minimum distance** of a code *C* is

 $d = \min\{d(x, y) | x, y \in C, x \neq y\}.$

A linear [n, k, d] code is a linear [n, k] code with minimum distance d.

The **dual** code C^{\perp} is the orthogonal complement under the standard inner product (,). A code *C* is **self-orthogonal** if $C \subseteq C^{\perp}$ and **self-dual** if $C = C^{\perp}$.

Designs

Codes from orbit matrices of strongly regular graphs

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property A $t - (v, k, \lambda)$ design is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

1 $|\mathcal{P}| = v$,

2 every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ,

3 every *t* elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

Every element of \mathcal{P} is incident with exactly r elements of \mathcal{B} . The number of blocks is denoted by b.

If $|\mathcal{P}| = |\mathcal{B}|$ (or equivalently k = r) then the design is called **symmetric**.

The **incidence matrix** of a design is a $v \times b$ matrix $[m_{ij}]$ where b and v are the numbers of blocks and points respectively, such that $m_{ij} = 1$ if the point P_i and the block x_j are incident, and $m_{ij} = 0$ otherwise.

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Tactical decomposition

Let A be the incidence matrix of a design $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$. A **decomposition** of A is any partition B_1, \ldots, B_s of the columns of A (blocks of \mathcal{D}) and a partition P_1, \ldots, P_t of the rows of A (points of \mathcal{D}).

For $i \leq s$, $j \leq t$ define

$$\begin{aligned} \alpha_{ij} &= |\{P \in P_i | \ P\mathcal{I}x\}|, \text{ for } x \in B_j \text{ arbitrarily chosen}, \\ \beta_{ij} &= |\{x \in B_j | \ P\mathcal{I}x\}|, \text{ for } P \in P_i \text{ arbitrarily chosen}. \end{aligned}$$

We say that a decomposition is **tactical** if the α_{ij} and β_{ij} are well defined (independent from the choice of $x \in B_j$ and $P \in P_i$, respectively).

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ be a 2- (v, k, λ) design and $G \leq \operatorname{Aut}(\mathcal{D})$. We denote the *G*-orbits of points by $\mathcal{P}_1, \ldots, \mathcal{P}_m$, *G*-orbits of blocks by $\mathcal{B}_1, \ldots, \mathcal{B}_n$, and put $|\mathcal{P}_i| = \nu_i$, $|\mathcal{B}_j| = \beta_j$, $i = 1, \ldots, m$, $j = 1, \ldots, n$.

The group action of *G* induces a tactical decomposition of \mathcal{D} . Denote by a_{ij} the number of blocks of \mathcal{B}_j which are incident with a representative of the point orbit \mathcal{P}_i . The number a_{ij} does not depend on the choice of a point $P \in \mathcal{P}_i$, and the following equalities hold:

$$\sum_{j=1}^{n} a_{ij} = r, \qquad (1)$$

$$\sum_{j=1}^{n} \frac{\nu_t}{\beta_j} a_{sj} a_{tj} = \lambda \nu_t + \delta_{st} (r - \lambda). \qquad (2)$$

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Definition

A $(m \times n)$ -matrix $M = (a_{ij})$ with entries satisfying conditions (1) and (2) is called a point orbit matrix for the parameters $2 - (v, k, \lambda)$ and orbit lengths distributions (ν_1, \ldots, ν_m) and $(\beta_1, \ldots, \beta_n)$.

Orbit matrices are often used in construction of designs with a presumed automorphism group. Construction of designs admitting an action of the presumed automorphism group consists of two steps:

- 1 Construction of orbit matrices for the given automorphism group,
- Onstruction of block designs for the obtained orbit matrices.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Incidence matrix for the symmetric (7,3,1) design

(0	1		1	0	0	0 \
[1	1	0	0	1	0	0
	1	0	1	0	0	1	0
	1	0	0	1	0	0	1
ľ	0	1	0	0	0		1
	0	0	1 0	0	1	0	1
ĺ	0	0	0	1	1	1	0 /

Corresponding orbit matrix for Z_3

	1	3	3
1	0	3	0
3	1	1	1
3	0	1	2

(7,3,1)

Codes

Designs

Orbit matrices

- Self-orthogonal codes from orbit matrices of block designs
- Strongly regular graphs
 - Orbit matrices
- Self-orthogonal codes from orbit matrices of strongly regular graphs
- Self-dual codes from extended orbit matrices of symmetric designs
- Self-dual codes from quotient matrices of SGDDs with the dual property

Codes constructed from block designs have been extensively studied.

- E. F. Assmus Jnr, J. D. Key, Designs and their codes, Cambridge University Press, Cambridge, 1992.
- A. Baartmans, I. Landjev, V. D. Tonchev, On the binary codes of Steiner triple systems, Des. Codes Cryptogr. 8 (1996), 29–43.
- I. Bouyukliev, V. Fack, J. Winne, 2-(31, 15, 7), 2-(35, 17, 8) and 2-(36, 15, 6) designs with automorphisms of odd prime order, and their related Hadamard matrices and codes, Des. Codes Cryptogr., **51** (2009), no. 2, 105–122.
- V. D. Tonchev, Quantum Codes from Finite Geometry and Combinatorial Designs, Finite Groups, Vertex Operator Algebras, and Combinatorics, Research Institute for Mathematical Sciences, **1656**, (2009) 44-54.

Codes

D<mark>esigns</mark> Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Codes from orbit matrices of block designs

Theorem [M. Harada, V. D. Tonchev, 2003]

Let \mathcal{D} be a 2- (v, k, λ) design with a **fixed-point-free** and **fixed-block-free automorphism** ϕ of order q, where q is prime. Further, let M be the orbit matrix induced by the action of the group $G = \langle \phi \rangle$ on the design \mathcal{D} . If p is a prime dividing r and λ then the **orbit matrix** M generates a **self-orthogonal code** of length b|q over \mathbf{F}_p .

Harada and Tonchev classified all codes over \mathbf{F}_3 and \mathbf{F}_7 derived from symmetric 2- (v, k, λ) designs with fixed-point-free automorphisms of order *p* for the parameters (v, k, λ, p) =(27, 14, 7, 3), (40, 27, 18, 5) and (45, 12, 3, 5).

Codes

Designs Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, D. Dumičić Danilović, SR]

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a 2- (v, k, λ) design admitting an automorphism group *G* acting on \mathcal{P} with *f* fixed points and $\frac{v-f}{w}$ orbits of length *w*, and acting on \mathcal{B} with *h* fixed blocks and $\frac{b-h}{w}$ orbits of length *w*. Let *p* be a prime number such that p|w and $p|(r - \lambda)$. The code spanned by the rows corresponding to the nonfixed part of the point orbit matrix *A* of \mathcal{D} with respect to *G* is a self-orthogonal code of length $\frac{b-h}{w}$ over F_q with respect to the ordinary inner product, where $q = p^{\overline{n}}$ and \overline{n} is a positive integer.

Codes

Designs Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, D. Dumičić Danilović, SR]

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a 2- (v, k, λ) design admitting an automorphism group *G* acting on \mathcal{P} with *f* fixed points and $\frac{v-f}{w}$ orbits of length *w*, and on \mathcal{B} with *h* fixed blocks and $\frac{b-h}{w}$ orbits of length *w*. Let *p* be a prime number such that p|w, p|r and $p|\lambda$. The code spanned by the rows corresponding to the fixed part of the point orbit matrix *A* of \mathcal{D} with respect to *G* is a self-orthogonal code of length *h* over F_q with respect to the ordinary inner product, where $q = p^{\overline{n}}$ and \overline{n} is a positive integer.

Codes from orbit matrices of

Strongly regular graphs

strongly regular graphs

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property A graph is **regular** if all the vertices have the same valency; a regular graph is **strongly regular** of type (v, k, λ, μ) if it has v vertices, valency k, and if any two adjacent vertices are together adjacent to λ vertices, while any two non-adjacent vertices are together adjacent to μ vertices.

A strongly regular graph of type (v, k, λ, μ) is denoted by $srg(v, k, \lambda, \mu)$.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

M. Behbahani and C. Lam have studied orbit matrices of strongly regular graphs that admit an automorphism group of prime order.

M. BEHBAHANI, C. LAM, Strongly regular graphs with non-trivial automorphisms, *Discrete Math.*, 311 (2011), 132-144

OM of strongly regular graphs

Codes

Designs

Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

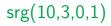
Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Let Γ be a srg (v, k, λ, μ) and A be its adjacency matrix. Suppose an automorphism group G of Γ partitions the set of vertices V into t orbits O_1, \ldots, O_t , with sizes n_1, \ldots, n_t , respectively. The orbits divide A into submatrices $[A_{ij}]$, where A_{ij} is the adjacency matrix of vertices in O_i versus those in O_j . We define matrices $C = [c_{ij}]$ and $R = [r_{ij}], 1 \le i, j \le t$, such that

 $c_{ij} = \text{column sum of } A_{ij},$ $r_{ij} = \text{row sum of } A_{ij}.$

R is related to *C* by $r_{ij}n_i = c_{ij}n_j$. Since the adjacency matrix is symmetric, $R = C^T$. The matrix *R* is the row orbit matrix of the graph Γ with respect to *G*, and the matrix *C* is the column orbit matrix of the graph Γ with respect to *G*.



Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

- 0	0	0	0	1	1	1	0	0	0 -
0	0	0	0	1	0	0	1	1	0
0	0	0	0	0	1	0	0	1	1
0	0	0	0	0	0	1	1	0	1
1	1	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1	0	0
1	0	0	1	0	0	0	0	1	0
0	1	0	1	0	1	0	0	0	0
0	1	1	0	0	0	1	0	0	0
- 0	0	1	1	1	0	0	0	0	0 -
	0 1 1 1 1 0 0	$ \begin{array}{c ccccc} 0 & 0 \\ \hline 1 & 1 \\ 1 & 0 \\ \hline 1 & 0 \\ \hline 0 & 1 \\ 0 & 1 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

R =	0 0 1 0	0 0 1 2	3 1 0 1	0 2 1 0	
C = [0 0 3 0	0 0 1 2	1 1 0 1	0 2 1 0	

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of bloc designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Definition

A ($t \times t$)-matrix $R = [r_{ij}]$ with entries satisfying conditions

$$\sum_{j=1}^{t} r_{ij} = \sum_{i=1}^{t} \frac{n_i}{n_j} r_{ij} = k$$
(3)

$$\sum_{s=1}^{t} \frac{n_s}{n_j} r_{sj} r_{sj} = \delta_{ij} (k - \mu) + \mu n_i + (\lambda - \mu) r_{ji}$$
(4)

is called a row orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and orbit lengths distribution (n_1, \ldots, n_t) . A $(t \times t)$ -matrix $C = [c_{ij}]$ with entries satisfying conditions

$$\sum_{i=1}^{t} c_{ij} = \sum_{j=1}^{t} \frac{n_j}{n_i} c_{ij} = k$$
(5)

$$\sum_{s=1}^{t} \frac{n_{s}}{n_{j}} c_{js} c_{js} = \delta_{ij}(k-\mu) + \mu n_{i} + (\lambda - \mu)c_{ij}$$
(6)

is called a column orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and orbit lengths distribution (n_1, \ldots, n_t) .

If all orbits have the same length w, *i.e.* $n_i = w$ for i = 1, ..., t, then C = R, and the following holds

$$\sum_{s=1}^t r_{is}r_{js} = \delta_{ij}(k-\mu) + \mu w + (\lambda-\mu)r_{ij}.$$

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

- Let us suppose that the group Z_4 acts on the vertices of an srg(40,12,2,4) with ten orbits of length 4.
- 39 matrices $C_1 C_{39}$ for the parameters (40, 12, 2, 4) and orbit lengths distribution (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) are given.
- Only five of them are induced by an action of Z₄ on some of the strongly regular (40,12,2,4) graphs constructed by Spence (E. SPENCE, The strongly regular (40,12,2,4) graphs, Electron. J. Combin., 7 (2000), #22, pp. 4.)

Theorem [D. Crnković, M. Maksimović, B. G. Rodrigues, SR, 2016]

Let Γ be a srg (v, k, λ, μ) with an automorphism group G which acts on the set of vertices of Γ with $\frac{v}{w}$ orbits of length w. Let R be the row orbit matrix of the graph Γ with respect to G. If q is a prime dividing k, λ and μ , then the matrix R generates a self-orthogonal code of length $\frac{v}{w}$ over F_q .

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

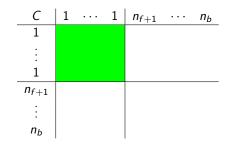
Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, M. Maksimović, SR, 2018]

Let Γ be a SRG (v, k, λ, μ) having an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, with f fixed vertices, and the other b - f orbits of lengths n_{f+1}, \ldots, n_b divisible by p, where p is a prime dividing k, λ and μ . Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code spanned by the rows of the fixed part of the matrix C is a self-orthogonal code of length f over F_q .



Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

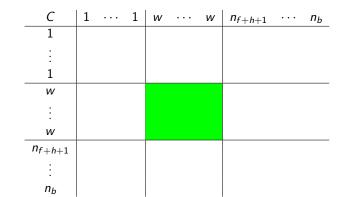
Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, M. Maksimović, SR, 2018]

Let Γ be a SRG(v, k, λ, μ) having an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, such that there are f fixed vertices, h orbits of length w, and b - f - h orbits of lengths n_{f+h+1}, \ldots, n_b . Further, let $pw|n_s$ if $w < n_s$, and $pn_s|w$ if $n_s < w$, for $s = f + h + 1, \ldots, b$, where p is a prime number dividing k, λ, μ and w. Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code over F_q spanned by the part of the matrix C (rows and columns) determined by the orbits of length w is a self-orthogonal code of length h.



Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of bloc designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices o symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	 1	2	 2	4	 4							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2							с	1	 1	2	 2	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4							1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4							i						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	с	1	 1	2	 2	4	 4							
1 4 2 4 4								:						
	1							4						
2 4														
4	÷													
4	2													
	4													
	÷													
	: 4													
	,	I		I		I								

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, M. Maksimović, SR, 2018]

Let Γ be a SRG (v, k, λ, μ) with an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, and $w = max\{n_1, \ldots, n_b\}$. Further, let p be a prime dividing k, λ, μ and w, and let $pn_s|w$ if $n_s \neq w$. Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code over F_q spanned by the rows of C corresponding to the orbits of length w is a self-orthogonal code of length b.

С	<i>n</i> ₁	 <i>n</i> _{<i>i</i>1}	<i>n</i> _{<i>i</i>1+1}	 <i>n</i> _{<i>i</i>₂}	 w	 W
n_1						
÷						
<i>n</i> _{<i>i</i>1}						
n_{i_1+1}						
÷						
<i>n</i> _{<i>i</i>₂}						
÷						
W						
÷						
W						

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices or symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, M. Maksimović, SR, 2018]

Let Γ be a SRG (v, k, λ, μ) with an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, and $w = min\{n_1, \ldots, n_b\}$. Further, let p be a prime dividing k, λ, μ and w, and let $pw|n_s$ if $n_s \neq w$. Let R be the row orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code over F_q spanned by the rows of R corresponding to the orbits of length w is a self-orthogonal code of length b.

R	w	 W	<i>n</i> _{<i>i</i>1+1}	 <i>n</i> _{<i>i</i>₂}	 <i>n</i> _{<i>i</i>_{<i>l</i>}+1}	• • •	n _b
W							
÷							
W							
n_{i_1+1}							
÷							
<i>n</i> _{<i>i</i>₂}							
:							
n_{i_l+1}							
÷							
n _b							

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Self-dual codes from extended orbit matrices of symmetric designs

In the sequel we will study codes spanned by orbit matrices for a symmetric (v, k, λ) design and orbit lengths distribution $(\Omega, ..., \Omega)$, where $\Omega = \frac{v}{t}$. We follow the ideas presented in:

- E. Lander, Symmetric designs: an algebraic approach, Cambridge University Press, Cambridge (1983).
- R. M. Wilson, Codes and modules associated with designs and t-uniform hypergraphs, in: D. Crnković, V. Tonchev, (eds.) Information security, coding theory and related combinatorics, pp. 404–436. NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. 29 IOS, Amsterdam (2011).

(Lander and Wilson have considered codes from incidence matrices of symmetric designs.)

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem

Let p be a prime. Suppose that C is the code over \mathbf{F}_p spanned by the incidence matrix of a symmetric (v, k, λ) design.

1) If
$$p \mid (k - \lambda)$$
, then $dim(C) \leq \frac{1}{2}(v + 1)$.

2 If
$$p \nmid (k - \lambda)$$
 and $p \mid k$, then $dim(C) = v - 1$.

3 If
$$p \nmid (k - \lambda)$$
 and $p \nmid k$, then $dim(C) = v$.

Theorem [D. Crnković, SR, 2016]

Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t = \frac{v}{\Omega}$ orbits of length Ω , on the set of points and the set of blocks, and let M be an orbit matrix of \mathcal{D} induced by the action of G. Let p be a prime. Suppose that C is the code over \mathbf{F}_p spanned by the rows of M.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Let a group G acts on a symmetric (v, k, λ) design with $t = \frac{v}{\Omega}$ orbits of length Ω on the set of points and set of blocks.

Theorem (HT)

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the sets of points and blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D} . If p is a prime dividing k and λ , then the rows of the matrix M span a self-orthogonal code of length t over \mathbf{F}_p .

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Let V be a vector space of finite dimension n over a field \mathbf{F} , let $b: V \times V \rightarrow \mathbf{F}$ be a symmetric bilinear form, i.e. a scalar product, and (e_1, \ldots, e_n) be a basis of V. The bilinear form b gives rise to a matrix $B = [b_{ij}]$, with

$$b_{ij} = b(e_i, e_j).$$

The matrix *B* determines *b* completely. If we represent vectors *x* and *y* by the row vectors $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$, then

$$b(x,y)=xBy^{T}.$$

Since the bilinear form b is symmetric, B is a symmetric matrix. A bilinear form b is nondegenerate if and only if its matrix B is nonsingular.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property We may use a symmetric nonsingular matrix U over a field \mathbf{F}_p to introduce a scalar product $\langle \cdot, \cdot \rangle_U$ for row vectors in \mathbf{F}_p^n , namely

$$\langle a, c \rangle_U = a U c^\top.$$

For a linear *p*-ary code $C \subset F_p^n$, the *U*-dual code of *C* is

$$C^U = \{ a \in \mathbf{F}_p^n : \langle a, c \rangle_U = 0 \text{ for all } c \in C \}.$$

We call C self-U-dual, or self-dual with respect to U, when $C = C^{U}$.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Let a group G acts on a symmetric (v, k, λ) design \mathcal{D} with $t = \frac{v}{\Omega}$ orbits of length Ω , on the set of points and the set of blocks, and let M be the corresponding orbit matrix.

If p divides $k - \lambda$, but does not divide k, we use a different code. Define the extended orbit matrix

$$M^{ext} = \begin{bmatrix} & & & 1 \\ & M & \vdots \\ & & 1 \\ \hline \lambda \Omega & \cdots & \lambda \Omega & k \end{bmatrix},$$

and denote by C^{ext} the extended code spanned by M^{ext} .

Codes

Designs

Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property Define the symmetric bilinear form ψ by

$$\psi(\bar{x},\bar{y})=x_1y_1+\ldots+x_ty_t-\lambda\Omega x_{t+1}y_{t+1},$$

for $\bar{x} = (x_1, \ldots, x_{t+1})$ and $\bar{y} = (y_1, \ldots, y_{t+1})$. Since $p \mid n$ and $p \nmid k$, it follows that $p \nmid \Omega$ and $p \nmid \lambda$. Hence ψ is a nondegenerate form on \mathbf{F}_p . The extended code C^{ext} over \mathbf{F}_p is self-orthogonal (or totally isotropic) with respect to ψ .

The matrix of the bilinear form ψ is the $(t + 1) \times (t + 1)$ matrix

$$\Psi = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & -\lambda\Omega \end{bmatrix}$$

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, SR, 2016]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Further, let M be the orbit matrix induced by the action of the group G on the design \mathcal{D} , and C^{ext} be the corresponding extended code over F_p . If a prime p divides $(k - \lambda)$, but $p^2 \nmid (k - \lambda)$ and $p \nmid k$, then C^{ext} is **self-dual with respect to** ψ .

Codes

Designs

Orbit matri

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property If $p^2 | (k - \lambda)$ we use a chain of codes to obtain a self-dual code from an orbit matrix.

Given an $m \times n$ integer matrix A, denote by $row_{\mathbf{F}}(A)$ the linear code over the field \mathbf{F} spanned by the rows of A. By $row_p(A)$ we denote the p-ary linear code spanned by the rows of A. For a given matrix A, we define, for any prime p and nonnegative integer i,

$$\mathcal{M}_i(A) = \{x \in \mathbb{Z}^n : p^i x \in row_{\mathbb{Z}}(A)\}.$$

We have $\mathcal{M}_0(A) = row_{\mathbb{Z}}(A)$ and

 $\mathcal{M}_0(A) \subseteq \mathcal{M}_1(A) \subseteq \mathcal{M}_2(A) \subseteq \ldots$

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

$$C_i(A) = \pi_p(\mathcal{M}_i(A))$$

where π_p is the homomorphism (projection) from \mathbb{Z}^n onto \mathbf{F}_p^n given by reading all coordinates modulo p. Then each $C_i(A)$ is a p-ary linear code of length n, $C_0(A) = row_p(A)$, and

$$C_0(A) \subseteq C_1(A) \subseteq C_2(A) \subseteq \ldots$$

Theorem

Let

Suppose A is an $n \times n$ integer matrix such that $AUA^T = p^e V$ for some integer e, where U and V are square matrices with determinants relatively prime to p. Then $C_e(A) = \mathbf{F}_n^n$ and

$$C_j(A)^U = C_{e-j-1}(A), \text{ for } j = 0, 1, \dots, e-1.$$

In particular, if e = 2f + 1, then $C_f(A)$ is a self-U-dual p-ary code of length n.

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property In the next theorem the previous result is used to associate a self-dual code to an orbit matrix of a symmetric design.

Theorem [D. Crnković, SR, 2016]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Suppose that $n = k - \lambda$ is exactly divisible by an odd power of a prime p and λ is exactly divisible by an even power of p, e.g. $n = p^e n_0$, $\lambda = p^{2a}\lambda_0$ where e is odd, $a \ge 0$, and $(n_0, p) = (\lambda_0, p) = 1$. If $p \nmid \Omega$, then there exists a self-dual p-ary code of length t + 1 with respect to the scalar product corresponding to $U = diag(1, \ldots, 1, -\lambda_0\Omega)$.

If λ is exactly divisible by an odd power of p, we apply the above case to the complement of the given symmetric design, which is a symmetric (v, k', λ') design, where k' = v - k and $\lambda' = v - 2k + \lambda$.

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, SR, 2016]

Let \mathcal{D} be a symmetric (v, k, λ) design admitting an automorphism group G that acts on the set of points and the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Suppose that $n = k - \lambda$ is exactly divisible by an odd power of a prime p and λ is also exactly divisible by an odd power of p, e.g. $n = p^e n_0$, $\lambda = p^{2a+1}\lambda_0$ where e is odd, $a \ge 0$, and $(n_0, p) = (\lambda_0, p) = 1$. If $p \nmid \Omega$, then there exists a self-dual p-ary code of length t + 1 with respect to the scalar product corresponding to $U = diag(1, \ldots, 1, \lambda_0 n_0 \Omega)$.

Divisible designs

Codes from orbit matrices of strongly regular graphs

Codes

Designs

Orbit matric

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property An incidence structure with v points, b blocks and constant block size k in which every point appears in exactly r blocks is a **(group) divisible design** (GDD) with parameters $(v, b, r, k, \lambda_1, \lambda_2, m, n)$ whenever the point set can be partitioned into m classes of size n, such that two points from the same class appear together in exactly λ_1 blocks, and two points from different classes appear together in exactly λ_2 blocks.

The following holds:

$$v = mn, \ bk = vr, \ (n-1)\lambda_1 + n(m-1)\lambda_2 = r(k-1), \ rk \ge v\lambda_2.$$

If $n \neq 1$ and $\lambda_1 \neq \lambda_2$, then a divisible design is called **proper**.

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices or symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Symmetric divisible designs

A GDD is called a **symmetric** GDD (SGDD) if v = b (or, equivalently, r = k). It is then denoted by $D(v, k, \lambda_1, \lambda_2, m, n)$ and it follows that:

$$v = mn, \quad (n-1)\lambda_1 + n(m-1)\lambda_2 = k(k-1), \ k^2 \ge v\lambda_2.$$

A SGDD *D* is said to have the **dual property** if the dual of *D* (that is, the design with the transposed incidence matrix) is again a divisible design with the same parameters as *D*. This means that blocks of *D* can be divided into sets $S_1, ..., S_m$, each set containing *n* blocks, such that any two blocks belonging to the same set intersect in λ_1 points, and any two blocks belonging to different sets intersect in λ_2 points.

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property The point and the block partition from the definition of a SGDD with the dual property give us a partition (which will be called the **canonical partition**) of the incidence matrix

$$\mathsf{V} = \left[egin{array}{ccc} \mathsf{A}_{11} & \cdots & \mathsf{A}_{1m} \ dots & \ddots & dots \ \mathsf{A}_{m1} & \cdots & \mathsf{A}_{mm} \end{array}
ight],$$

where A_{ij} 's are square submatrices of order n.

1

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

1	- 0	1	0	0	1	1	0	0	1	0	1	0	1	0	0	1 7	
	0	0	1	0	0	1	1	0	0	1	0	1	1	1	0	0	
	0	0	0	1	0	0	1	1	1	0	1	0	0	1	1	0	
	1	0	0	0	1	0	0	1	0	1	0	1	0	0	1	1	
	0	1	1	0	0	0	0	1	0	0	1	1	1	0	1	0	
	0	0	1	1	1	0	0	0	1	0	0	1	0	1	0	1	
	1	0	0	1	0	1	0	0	1	1	0	0	1	0	1	0	
	1	1	0	0	0	0	1	0	0	1	1	0	0	1	0	1	
	0	1	0	1	1	0	0	1	0	1	0	0	1	1	0	0	
	1	0	1	0	1	1	0	0	0	0	1	0	0	1	1	0	
	0	1	0	1	0	1	1	0	0	0	0	1	0	0	1	1	
	1	0	1	0	0	0	1	1	1	0	0	0	1	0	0	1	
	0	0	1	1	0	1	0	1	0	1	1	0	0	0	0	1	
	1	0	0	1	1	0	1	0	0	0	1	1	1	0	0	0	
	1	1	0	0	0	1	0	1	1	0	0	1	0	1	0	0	
l	Lo	1	1	0	1	0	1	0	1	1	0	0	0	0	1	0]	

(16,7,2,3,4,4) SGDD

(D. Crnković, H. Kharaghani, Divisible design digraphs, in: Algebraic Design Theory and Hadamard Matrices, (C. J. Colbourn, Ed.), Springer Proc. Math. Stat., Vol. 133, Springer, New York, 2015, 43-60.)

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property We say that an $m \times m$ matrix $R = [r_{ij}]$ is a **quotient matrix** of a SGDD with the dual property if every element r_{ij} is equal to the row sum of the block A_{ij} of the canonical partition. If we denote the classes of points from the definition of a divisible design by $T_1, ..., T_m$, and classes of blocks by $S_1, ..., S_m$, then this means that each point of T_i appears in exactly r_{ij} blocks of S_j and each block of S_i contains exactly r_{ij} points of T_i .

1	2	2	2
2			2
2	2	1	2
2	2	2	1

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property, and let N be the incidence matrix of D. If p is a prime such that $p \mid \lambda_1, p \mid k$ and $p \mid \lambda_2$, then the rows of N span a self-orthogonal code of length v over \mathbb{F}_p .

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property, and let R be the quotient matrix of D. If p is a prime such that $p \nmid (k^2 - v\lambda_2)$ and $p \nmid k$, then the linear code over \mathbb{F}_p spanned by the rows of R has dimension m.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property and *R* be the quotient matrix of *D*. If *p* is a prime such that $p \nmid (k^2 - v\lambda_2)$ and $p \mid k$, then the linear code over \mathbb{F}_p spanned by the rows of *R* has dimension m - 1.

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property and let *R* be the quotient matrix of *D*. If *p* is a prime such that $p \mid (k^2 - v\lambda_2)$ and $p \mid n\lambda_2$, then the rows of *R* span a self-orthogonal code of length *m* over \mathbb{F}_p .

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Codes from extended quotient matrices

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property, and let R be the quotient matrix of D. If a prime p does not divide $n\lambda_2$, we can use a slightly different code then the one spanned by the quotient matrix R.

We define the extended quotient matrix

$$R^{ext} = \begin{bmatrix} & & 1 \\ R & \vdots \\ & & 1 \\ \hline n\lambda_2 & \cdots & n\lambda_2 & k \end{bmatrix}$$

and the extended code C^{ext} over \mathbb{F}_p spanned by the rows of R^{ext} .

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property For $x = (x_1, ..., x_{m+1})$ and $y = (y_1, ..., y_{m+1})$ we define the scalar product ψ by

$$\psi(x, y) = x_1y_1 + \ldots + x_my_m - n\lambda_2x_{m+1}y_{m+1}.$$

We know that $p \nmid n\lambda_2$, hence ψ is a nondegenerate form on \mathbb{F}_p (its matrix is non-singular).

If x and y are rows of the matrix R^{ext} , then

$$\psi(x,y) \in \{0, k^2 - v\lambda_2, -n\lambda_2(k^2 - v\lambda_2)\}.$$

Thus the extended code C^{ext} over \mathbb{F}_p is self-orthogonal with respect to ψ if $p \mid (k^2 - v\lambda_2)$.

The matrix of the bilinear form ψ will be denoted by Ψ .

Codes

- Designs
- Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

- Strongly regular graphs
 - Orbit matrices
- Self-orthogonal codes from orbit matrices of strongly regular graphs
- Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property, *R* be the quotient matrix of *D*, and *C* be the code over \mathbb{F}_p spanned by the rows of *R*. If *p* is a prime such that $p \mid (k^2 - v\lambda_2)$, then $dim(C) \leq \frac{m+1}{2}$.

- If $p \mid n\lambda_2$ then C is self-orthogonal, hence $dim(C) \leq \frac{m}{2}$.
- If p ∤ nλ₂ then C^{ext} is self-orthogonal with respect to ψ, dim(C^{ext}) ≤ m+1/2, dim(C) = dim(C^{ext}) and R and R^{ext} have the same rank over F_p.

Codes

Designs

Orbit matrices

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property, *R* be the quotient matrix of *D*, and let C^{ext} be the corresponding extended code over $\mathbb{F}p$. If *p* is a prime such that $p \nmid n\lambda_2$, $p \mid (k^2 - v\lambda_2)$, but $p^2 \nmid (k^2 - v\lambda_2)$, then C^{ext} is self-dual with respect to ψ .

- The inequality $dim(C^{ext}) \leq \frac{1}{2}(m+1)$ follows from the fact that C^{ext} is self-orthogonal.
- In order to prove that $\frac{1}{2}(m+1) \leq \dim(C^{ext})$, we have to show that R^{ext} has \mathbb{F}_p -rank at least $\frac{1}{2}(m+1)$. (use of the Smith normal form)

Codes

Designs

Orbit matrice

Self-orthogonal codes from orbit matrices of block designs

Strongly regular graphs

Orbit matrices

Self-orthogonal codes from orbit matrices of strongly regular graphs

Self-dual codes from extended orbit matrices of symmetric designs

Self-dual codes from quotient matrices of SGDDs with the dual property If $p^2 | (k^2 - v\lambda_2)$ we can use a chain of codes to obtain a self-dual code from a quotient matrix.

Theorem [D. Crnković, N. Mostarac, SR, 2016]

Let $D(v, k, \lambda_1, \lambda_2, m, n)$ be a *SGDD* with the dual property. Suppose that $k^2 - v\lambda_2$ is exactly divisible by an odd power of a prime p and λ_2 is exactly divisible by an even power of p, e.g. $k^2 - v\lambda_2 = p^e n_0$, $\lambda_2 = p^{2a}\lambda_0$, where e is odd, $a \ge 0$ and $(n_o, p) = (\lambda_0, p) = 1$. If $p \nmid n$ then there exists a self-dual p-ary code of length m + 1 with respect to the scalar product corresponding to $U = diag(1, ..., 1, -n\lambda_0)$.

$$R_1^{ext} = \begin{bmatrix} & & & p^a \\ & R_1 & & \vdots \\ \hline & & & p^a \\ \hline p^a n \lambda_0 & \cdots & p^a n \lambda_0 & k \end{bmatrix}$$