8th PhD Summer School in Discrete Mathematics Questions on Colva's lectures on July 4th.

- **1.** Let G be a group, let K be a minimal normal subgroup of G, and let $N \leq G$. Show that either $K \leq N$ or $K \cap N = 1$.
- **2.** Let $G = T_1 \times \cdots \times T_m$ is a direct product of *m* nonabelian simple groups T_i . Show that the T_i are the only minimal normal subgroups of *T*.
- **3.** Let T be a nonabelian simple group, and let $k \ge 1$ show that

$$\operatorname{Aut}(T^k) \cong \operatorname{Aut}(T) \wr \operatorname{S}_k$$

- **4.** Let G be a group, and let $N \leq G$. Show that $C_G(N) \leq G$.
- 5. The following theorem was omitted from my lectures: Let K be a transitive subgroup of $\operatorname{Sym}(\Omega)$, and let $C = C_{\operatorname{Sym}(\Omega)}(K)$. Then (i) $C_{\alpha} = 1$ for all $\alpha \in \Omega$; (ii) the group C is transitive if and only if K is regular; and (iii) if C is transitive, then $C = K^{\sigma}$ for some $\sigma \in \operatorname{Sym}(\Omega)$. Use this theorem to prove the following:
 - (a) Let $G \leq \text{Sym}(\Omega)$ be primitive, and let K be a minimal normal subgroup of G. Let $C = C_G(K)$. Then either C = 1 or C is permutation isomorphic to K.
 - (b) Hence show that soc(G) = KC.
 - (c) Hence prove Theorem 39.
- 6. An affine basis for $\operatorname{AG}_d(q)$ is a set $B = \{v_0, \ldots, v_d\}$ of d+1 vectors from \mathbb{F}_q^d such that B is not contained in any (d-1)-dimensional affine subspace. Show that $\operatorname{AGL}_d(q)$ acts regularly on the set of affine bases of $\operatorname{AG}_d(F)$.
- 7. Show that $\operatorname{AGL}_d(p)$ is 2-transitive, and that $\operatorname{AGL}_d(2)$ is 3-transitive: given any two triples of points $(u_1, u_2, u_3), (v_1, v_2, v_3) \in \mathbb{F}_p^3$, with $u_i \neq u_j$ for $i \neq j$ and $v_i \neq v_j$ for $i \neq j$, there exists a $t_{a,v} \in \operatorname{AGL}_d(2)$ s.t. $u_i^{t_{a,v}} = v_i$ for $1 \leq i \leq 3$.
- 8. Let H be a regular subgroup of $Sym(\Omega)$, and let

$$N = N_{\operatorname{Sym}(\Omega)}(H) = \{ \sigma \in \operatorname{Sym}(\Omega) : h^{\sigma} \in H \text{ for all } h \in H \}.$$

- (a) Show that $N = H : N_{\alpha}$.
- (b) It follows that N_{α} acts on H by conjugation, so there is a homomorphism $\phi: N_{\alpha} \to \operatorname{Aut}(H)$. Show that $\operatorname{Im} \phi = \operatorname{Aut}(H)$.
- (c) Show that the map ϕ is injective.