Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

Contribution ID: 38

Type: not specified

Patterns of Mirrors on Quasi-Platonic Surfaces

It is known that every Riemann surface of genus g can be expressed in the form \mathbb{U}/Ω , where \mathbb{U} is the Riemann sphere Σ , the Euclidean plane \mathbb{C} , or the hyperbolic plane \mathbb{H} , depending on whether g is 0, 1 or > 1, respectively, and Ω is a discrete group of isometries of \mathbb{U} .

A Riemann surface $S = \mathbb{U}/\Omega$ is <code>\emph{quasi-Platonic}</code> if Ω is normal in the ordinary triangle group $\Gamma[l,m,n]$. So S underlies a regular hypermap \mathcal{H} of type (l,m,n). If Ω is also normal in the extended triangle group $\Gamma(l,m,n)$, then \mathcal{H} is reflexible. Each reflection of \mathcal{H} fixes a number of simple closed geodesics on S, which are called <code>\emph{mirrors}</code>. Then every mirror passes through some geometric points of \mathcal{H} and these geometric points form a periodic sequence, which is called the <code>\emph{pattern}</code> of the mirror. By geometric points we mean the centers of the hypervertices, hyperedges and hyperfaces of \mathcal{H} .

In previous work David Singerman and I classified the patterns of mirrors on Platonic surfaces, which underlie regular maps, and in this work it is generalized to quasi-Platonic surfaces.

Primary author: Dr MELEKOGLU, Adnan (Adnan Menderes University)

Presenter: Dr MELEKOGLU, Adnan (Adnan Menderes University)