Contribution ID: 21

Type: not specified

The Hamilton-Waterloo problem with cycle sizes of different parity

The Hamilton-Waterloo problem asks for a decomposition of the complete graph into r copies of a 2-factor F_1 and s copies of a 2-factor F_2 such that $r + s = \lfloor \frac{v-1}{2} \rfloor$. If F_1 consists of m-cycles and F_2 consists of n cycles, then we call such a decomposition a (m, n)-HWP(v; r, s). The goal is to find a decomposition for every possible pair (r, s). This problem has been studied in great depth in the cases when m and n have the same parity, but there are few general results for the case of different parity. In this work, we use rings of polynomials of the form $\mathbb{Z}_{2^n}[x]/\langle x^2 + x + 1 \rangle$ to show that for odd x and y,

In this work, we use rings of polynomials of the form $\mathbb{Z}_{2^n}[x]/\langle x^2 + x + 1 \rangle$ to show that for odd x and y, there is a $(2^k x, y) - \text{HWP}(vm; r, s)$ if $gcd(x, y) \ge 3$, $m \ge 3$, and both x and y divide v, except possibly when $1 \in \{r, s\}$.

Primary author: Prof. PASTINE, Adrian (Universidad Nacional de San Luis)Co-author: KERANEN, Melissa (Michigan Technological University)

Presenter: Prof. PASTINE, Adrian (Universidad Nacional de San Luis)