Contribution ID: 43 Type: not specified

The Distinguishing Index of 2-connected Graphs

The distinguishing index D'(G) of a graph G is the least number of colours of an edge colouring that is not preserved by any non-trivial automorphism.

The following result was proved by Pil\'sniak in [1].

Theorem. If G is a connected graph, then

- (1) $D'(G) = \Delta(G) + 1$ iff G is a cycle of length less than 6,
- (2) $D'(G) = \Delta(G)$ iff G is a symmetric or a bisymmetric tree, a cycle of length at least 6, or K_4 or $K_{3,3}$,
- (3) $D'(G) \leq \Delta(G) 1$ otherwise.

In the same paper, Pil\'sniak formulated the following conjecture.

Conjecture. If a graph G is 2-connected, then $D'(G) \le \left\lceil \sqrt{\Delta(G)} \right\rceil + 1$.

In this talk, we prove this conjecture in a bit stronger form, and show some of its consequences.

Reference:

[1] M. Pil\'sniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017) 259–274.

Primary author: KALINOWSKI, Rafal (AGH University)

 $\textbf{Co-authors:} \quad \text{WOZNIAK, Mariusz (AGH University); PILSNIAK, Monika (AGH University, Krakow, Poland); IM-number 1997 (AGH University) (AG$

RICH, Wilfried (Montanuniversitaet Leoben)

Presenter: KALINOWSKI, Rafal (AGH University)