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Speleotopology

(Breisch, SW Cavers, 1967)
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Two main models:

Edge-searching (or sweeping) is a pursuit-evasion model where a fast,
invisible robber that can stop on vertices or edges tries to elude slow,
visible cops that move on vertices. Can be thought of as analogous to
trying to find a child lost in a cave.

(Parsons, 1978)

Cops and robber is a pursuit-evasion where a slow, visible robber that can
only move on vertices tries to elude slow, visible cops, also moving on
vertices. Analogous to Pac-Man, or “tag.”

(Quilliot, 1978/Nowakowski & Winkler, 1983)
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Simultaneous Edge-searching basics:

The cops. . .

. . . have complete knowledge of the graph.

. . . move slowly, from vertex to vertex.

. . . cannot see the robber.

. . . can all simultaneously move.

. . . can remain in their position.

The robber. . .

. . . has complete knowledge of the graph.

. . . can move arbitrarily fast, stopping on edges, at any time.

. . . can see the cops.

. . . can remain in its position.

On a graph X , the minimum number of cops needed to guarantee capture
of the robber is the edge-search number, s(X ).
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An edge searching example
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An edge searching example

So, s(X ) ≤ 3. In fact, s(X ) = 3.

Danny Dyer dyer@mun.ca (MUN) Pursuit-evasion games and visibility GGM 5 / 27



The cop and robber model

The cops. . .

. . . have complete knowledge of the graph.

. . . move slowly, from vertex to vertex.

. . . can see the robber.

. . . can all simultaneously move.

. . . can remain in their position.

The robber. . .

. . . has complete knowledge of the graph.

. . . moves slowly, from vertex to vertex.

. . . can see the cops.

. . . can remain in its position.

On a graph X , the minimum number of cops needed to guarantee capture
of the robber in a finite number of turns is the cop number c(X ).
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A cops and robber example
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A cops and robber example

So, c(X ) ≤ 2. In fact, c(X ) = 2.
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Time constraints

Theorem (Alspach, Dyer, Hanson, Yang 2008)

In the cops and robber model, if X is reflexive multigraph on n vertices,
then the minimum number of cops needed to guarantee capture of the
robber in a single move is γ(X ).

Theorem (ADHY 2008)

In the simultaneous edge-searching model, if X is a reflexive multigraph,
then the minimum number of searchers needed to guarantee capture of
the robber in a single move is |E (X )|+ m, where n −m is the largest
order induced bipartite submultigraph of X .
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The zero-visibility cop and robber model

The cops. . .

. . . have complete knowledge of the graph.

. . . move slowly, from vertex to vertex.

. . . CANNOT see the robber.

. . . can all simultaneously move.

. . . can remain in their position.

The robber. . .

. . . has complete knowledge of the graph.

. . . moves slowly, from vertex to vertex.

. . . can see the cops.

. . . can remain in its position.

On a graph X , the minimum number of cops needed to guarantee capture
of the robber in a finite number of turns is the zero visibility cop number
c0(X ).
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Basic differences

c(K2) = 1 c(K3) = 1 c(C4) = 2

c0(K2) = 1 c0(K3) = 2 c0(C4) = 2
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Basic differences

So, c(Kn) = 1.
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Basic differences

So, c(Kn) = 1. But c0(Kn) = dn2e – that is,
c0(X )

c(X )
can be arbitrarily large.

(Tošić 1985, Tang 2004)
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Differences with edge-searching
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Differences with edge-searching

We see c0(Kn) =
⌈n

2

⌉
and s(Kn) = n.
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Time constraints and zero visibility

Recall that a minimum edge cover of a graph X is a set E ′ ⊆ E (X ) with
the fewest edges for which every vertex of X is an end of at least one
edge. We denote size of such a set as β′(X ).

Theorem (ADHY 2008)

In the zero-visibility cops and robber model, if X is a reflexive multigraph
with no isolated vertices, then the minimum number of cops needed to
guarantee capture of the robber in a single move is β′(X ).
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The `-visibility cop and robber model, ` ≥ 0

The cops. . .

. . . have complete knowledge of the graph.

. . . move slowly, from vertex to vertex.

. . . can see the robber when the distance between the robber and any
cop is at most `.

. . . can all simultaneously move.

. . . can remain in their position.

The robber. . .

. . . has complete knowledge of the graph.

. . . moves slowly, from vertex to vertex.

. . . can see the cops.

. . . can remain in its position.

On a graph X , the minimum number of cops needed to guarantee capture
of the robber in a finite number of turns is the `-visibility cop number
c`(X ).
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Trees

A fundamental question:

Is it hard to catch a robber on trees?

Not for classic cops and robber. For edge-searching:

Theorem (Parsons 1978)

Let k ≥ 1, and T be a tree. Then s(t) ≥ k + 1 if and only if T has a
vertex v at which there are three branches T1, T2, T3, satisfying
s(Tj) ≥ k for j = 1, 2, 3.

After creating families of trees Tk , for k ≥ 1 for which all T ∈ Tk have
s(T ) = k, Parsons goes on to prove the following.

Theorem (Parsons 1978)

If k ≥ 2 and T is a tree, then s(T ) = k if and only if T contains a minor
from Tk and none from Tk+1.
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Trees and low visibility

Define Tk,`, ` ≥ 0, k ≥ 1, as follows:
1 T1,` = {K1};
2 Tk,`, k ≥ 2, is the set of trees, T , that can be formed as follows: let

T1, T2, T3 ∈ Tk−1,`. Let r1, r2, r3 be vertices of T1,T2,T3

respectively. Then T is formed from the disjoint union of T1,T2,T3,
together with paths of length 2`+ 2 from each of r1, r2, r3, to a
common endpoint, q.

Lemma (Dereniowski, Dyer, Tifenbach, Yang 2015; Cox, Clarke, Duffy,
Dyer, Fitzpatrick, Messinger 2018+)

If T ∈ Tk,`, then c`(T ) = k.

Theorem (DDTY 2015; CCDDFM 2018+)

If T is a tree, then c`(T ) = k if and only if T contains a minor from Tk,`
and none from Tk+1,`.
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Monotonicity

Another fundamental question:

Does allowing the robber to return to “cleared” territory ever help?

Not very interesting for the classic cops and robber problem.
Solution is well known for edge-searching.

Theorem (LaPaugh 1993/Bienstock&Seymour 1991)

Every graph X that can be searched with k cops can be monotonically
searched with k cops.

Is the `-visibility cop and robber model monotonic?
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Obviously not.
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Let’s get specific

1 Initially, every vertex is marked as dirty.

2 A dirty vertex is cleaned if a cop piece occupies it.

3 In between each of the cop’s turns, every cleaned vertex that is
unoccupied and adjacent to a dirty vertex becomes dirty.

Let X be a graph and let L be a strategy of length T . For each
nonnegative integer t ≤ T ,

1 let Lt be the set of vertices occupied by cops at the end of the t-th
turn by the cops;

2 let Rt be the set of vertices that are dirty immediately before the
cop’s t-th turn; and

3 let St be the set of vertices that are dirty immediately after the cop’s
t-th turn.
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Montonicity, again

A strategy L is monotonic when

R0 ⊇ S0 ⊇ R1 ⊇ S1 ⊇ . . . ⊇ RT ⊇ ST .

This is very restrictive. But can we capture the idea of edge-searching’s
monotonicity for zero-visibility cops and robber?

Weakly monotonic

A strategy of length T is weakly monotonic if for all t ≤ T − 1, we have
St+1 ⊆ St .

On a graph X , the minimum number of cops needed to guarantee capture
of the robber with a weakly monotonic strategy is the monotonic zero
visibility cop number mc0(X ).
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c0(T ) versus mc0(T )
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c0(T ) versus mc0(T )

We see that c0(T ) = 2, but mc0(T ) = 3. (Similarly for ` > 0.)
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Pathwidth

Let X be a graph with vertex set VX . A path decomposition of X is a finite
sequence B = (B1,B2, . . . ,Bn) of sets Bi ⊆ VX , called bags, such that

1

n⋃
i=1
Bi = VX ;

2 if x ∼ y , then there is i ∈ {1, . . . , n} such that {x , y} ⊆ Bi ; and

3 if 1 ≤ i < j < k ≤ n, then Bi ∩ Bk ⊆ Bj .

Let X be a graph and let B = (Bi ) be a path decomposition of X . We
define the pathwidth of X to be

pw(X ) = min max {|Bi | − 1 | i ∈ {1, . . . , n}} ,

over all possible path decompositions B.
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Relations between c0(X ), mc0(X ) and pw(X )

Theorem (Dereniowski, Dyer, Tifenbach, Yang 2014)

Let X be a graph. The following are equivalent:

1 We have c0(X ) = 1, mc0(X ) = 1 or pw(X ) = 1.

2 We have c0(X ) = mc0(X ) = pw(X ) = 1.

3 The graph X is a caterpillar.

Theorem (DDTY 2014)

Let X be a connected graph on two or more vertices. Then,

c0(X ) ≤ pw(X ) ≤ 2mc0(X )− 1 ≤ 4pw(X ) + 1.
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Differences between c0(X ), pw(X ), and mc0(X )

Theorem (DDTY 2014)

For any positive integer k, there is a graph X with c0(X ) = 2 and
pw(X ) ≥ k.

Proof. Given a graph X , we form the graph X ∗ by adding a universal
vertex to X ; a single new vertex is added, together with edges joining this
new vertex and every other vertex already present in X .

Let X be a tree on two or more vertices. We will sketch a proof that for
some subdivision of H of X , c0(H∗) = 2. Such a graph will have a
pathwidth at least that of X .

We proceed by strong induction.
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(Proof cont’d)

Let X be a rooted tree with root r . We show that there is a subdivision H
of X and a successful zero-visibility strategy on H∗ utilising two cops such
that

1 a cop visits the universal vertex u at least every second turn
throughout the game; and

2 once the root r has been visited by a cop for the first time, either the
game is finished or this cop vibrates on the edge ru for the remainder
of the game.

Let s be a child of r and let X2 be the subtree of X consisting of s and its
descendants. Let X1 be the subtree of X consisting of the remaining
vertices.
Let H1 and H2 be subdivisions of X1 and X2 such that H∗1 and H∗2 can be
cleaned using two cops subject to the above conditions.
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(Proof cont’d)

r

s

H∗1

H∗2

P

u

If it takes T moves to clear H∗1 , subdivide P to obtain a path of length
T + 3.
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Open questions

1 For what graphs is c0(X ) = mc0(X )?

2 Are there characterisations of c0 and mc0 for trees, unicyclic graphs,
planar graphs, series parallel graphs, etc.?

3 Can we characterize the graphs with c0(X ) = 2? (Already begun by
Clarke and Jeliazkova.)

4 For `-visibility cops and robber, what is the difference between
‘seeing’ or locating the robber, and capturing the robber? (Seeing
implies capture on chordal graphs.)

Thank you!
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