Self-orthogonal codes from orbit matrices of strongly regular graphs

Marija Maksimović (mmaksimovic@math.uniri.hr) Dean Crnković (deanc@math.uniri.hr) Sanja Rukavina(sanjar@math.uniri.hr) University of Rijeka, Department of Mathematics, Croatia

Support by: CSF, grant: 1637

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

▲ □ ▶ < < □ ▶ < < □ ▶ < < □ ▶

E

Strongly regular graphs

Definition

A simple regular graph is strongly regular with parameters (v, k, λ, μ) if it has v vertices, valency k, and if any two adjacent vertices are together adjacent to λ vertices, while any two non-adjacent vertices are together adjacent to μ vertices. A strongly regular graph with parameters (v, k, λ, μ) is usually denoted by $\operatorname{srg}(v, k, \lambda, \mu)$.

Definition

The adjacency matrix A of a graph Γ with v vertices is $v \times v$ matrix $M = (m_{ij})$ such that m_{ij} is number of edges incident with vertices x_i and x_j .

Petersen graph srg(10,3,0,1)

Petersen graph srg(10,3,0,1)

An automorphism ρ of strongly regular graph Γ is a permutation on the set of vertices of a graph Γ such that for any two vertices of Γ u and v follows that: u and v are adjacent in Γ if and only if ρu and ρv are adjacent in Γ . Set of all automorphisms of strongly regular graph under the composition of functions forms a group that we call full automorphism group and denote Aut(Γ).

Let an automorphism group G generated with element $\rho=(1)(3,4,6)(2,7,8,9,10,5)$ partitions the set of vertices of Petersen graph into orbits $O_1=\{1\}, O_2=\{3,4,6\}, O_3=\{2,5,7,8,9,10\}$.

《曰》 《圖》 《문》 《문》

E

	1	3	4	6	2	5	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
3	1	0	0	0	0	1	0	1	0	0
4	1	0	0	0	1	0	0	0	1	0
6	1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	0	1	1	0	0	0
5	0	1	0	0	1	0	0	0	0	1
7	0	0	0	1	1	0	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

	1	3	4	6	2	5	7	8	9	10					
1	0	1	1	1	0	0	0	0	0	0					
3	1		0	0	0	1	0	1	0	0					
4	1		0	0		0	0	0	1	0					
6	1		0	0		0	1	0	0	1	(0	1	0	P
2	0	0	1	0	0	1	1	0	0	0	C = [3	0	1	
5	0		0	0	1	0	0	0	0	1	(0	2	2	
7	0		0	1	1	0	0	1	0	0					
8	0		0	0	0	0	1	0	1	0					
9	0		1	0	0	0	0	1	0	1					
10	0	0	0	1	0	1	0	0	1	0					

	1	3	4	6	2	5	7	8	9	10				
1	0	1	1	1	0	0	0	0	0	0				
3	1				0	1	0	1	0	0				
4	1	0	0	0	1	0	0	0	1	0				
6	1	0	0	0	0	0	1	0	0	1		0	3	0
2	0	0	1	0	0	1	1	0	0	0	R =	1	0	2
5	0	1	0	0	1	0	0	0	0	1		0	1	2
7	0	0	0	1	1	0	0	1	0	0				
8	0	1	0	0	0	0	1	0	1	0				
9	0	0	1	0	0	0	0	1	0	1				
10	0	0	0	1	0	1	0	0	1	0				

Row orbit matrices

Definition A $(b \times b)$ -matrix $R = [r_{ii}]$ with entries satisfying conditions:

$$\sum_{j=1}^{b} r_{ij} = \sum_{i=1}^{b} \frac{n_i}{n_j} r_{ij} = k$$
(1)

$$\sum_{s=1}^{b} \frac{n_s}{n_j} r_{si} r_{sj} = \delta_{ij} (k-\mu) + \mu n_i + (\lambda-\mu) r_{ji}$$
⁽²⁾

where $0 \leq r_{ij} \leq n_j$, $0 \leq r_{ii} \leq n_i - 1$ and $\sum_{i=1}^{b} n_i = v$, is called a row orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and the orbit lengths distribution (n_1, \ldots, n_b) .

Column orbit matrices

Definition A $(b \times b)$ -matrix $C = [c_{ij}]$ with entries satisfying conditions:

$$\sum_{i=1}^{b} c_{ij} = \sum_{j=1}^{b} \frac{n_j}{n_i} c_{ij} = k$$
(3)

$$\sum_{s=1}^{b} \frac{n_{s}}{n_{j}} c_{is} c_{js} = \delta_{ij} (k - \mu) + \mu n_{i} + (\lambda - \mu) c_{ij}$$
(4)

where $0 \leq c_{ij} \leq n_i$, $0 \leq c_{ii} \leq n_i - 1$ and $\sum_{i=1}^{b} n_i = v$, is called a column orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and the orbit lengths distribution (n_1, \ldots, n_b) .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Codes

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー のへで

Definition A binary [n, k] linear code C is a k-linear subspace of the vector space \mathbb{F}_2^n .

Definition Let $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{F}_q^n$. Hamming distance: $d(x, y) = |\{i \mid x_i \neq y_i, 1 \le i \le n\}|$. Weight: $w(x) = d(x, 0) = |\{i \in \mathbb{N} \mid i \le n, x_i \neq 0\}|$. Minimum weight: $d = \min\{w(x) \mid x \in C, x \neq 0\}$

If a code C over a field of order q is of length n, dimension k, and minimum weight d, then we write $[n, k, d]_q$ to show this information.

<ロト < 課 ト < 注 ト < 注 ト 三 三 の < ()</p>

Definition The dual code of a linear code $C\subset \mathbb{F}_q^n$ is the code $C^\perp\subset \mathbb{F}_q^n$ where

$$C^{\perp} = \{ x \in F_q^n \mid x \cdot y = 0, \ \forall y \in C \}.$$

Definition A code C is self-orthogonal if $C \subseteq C^{\perp}$.

Construction of self-orthogonal codes from fixed part of orbit matrices

Theorem

Let Γ be a SRG(v, k, λ , μ) having an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, with f fixed vertices, and the other b - f orbits of lengths n_{f+1}, \ldots, n_b divisible by p, where p is a prime dividing k, λ and μ . Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code spanned by the rows of the fixed part of the matrix C is a self-orthogonal code of length f over F_a .

3

SOC

Table: Codes from the fixed parts of orbit matrices for $Z_{\mathbf{2}}$ acting on T(2k), $\mathbf{3} \leq k \leq \mathbf{8}$

T(2k)	С	$ \operatorname{Aut}(\mathcal{C}) $	Weight Distribution
$3 \le k \le 8$	[k+4, 2, 4]	2· 4!(k-2)!	[< 0, 1 >, < 4, 3 >]
$4 \le k \le 8$	[k + 12, 4, 8]	4·7!(k-3)!	[<0,1>,<8,15>]
$5 \le k \le 8$	[k + 24, 6, 12]	8!(k-4)!	[<0,1>,<12,28>,<16,35>]
$6 \le k \le 8$	[k + 40, 8, 16]	10!(k-5)!	[<0,1>,<16,45>,<24,210>]
$7 \leq k \leq 8$	[k + 60, 10, 20]	12!(k-6)!	[<0,1>,<20,66>,<32,495>,<36,462>]
k = 8	[k+84, 12, 24]	14!(k-7)!	[<0,1>,<24,91>,<40,1001>,<48,3003>]

Results

Table: Codes from the fixed part of orbit matrices for $Z_{\mathbf{4}}$ acting on T(2k), $3 \leq k \leq 8$

T(2 k)	С	$ \operatorname{Aut}(\mathcal{C}) $	Weight Distribution
k = 4, 6, 8	[6,2,4]	2 ⁴ 3 ¹	[< 0, 1 >, < 4, 3 >]
k = 5, 7	[7,2,4]	2 ⁴ 3 ¹	[< 0, 1 >, < 4, 3 >]
k = 6, 8	[8,2,4]	2 ⁵ 3 ¹	[< 0, 1 >, < 4, 3 >]
k = 7, 8	[k+2,2,4]	2 ^{2k-9} 3 ²	[< 0, 1 >, < 4, 3 >]
k = 5,7	[15,4,8]	2 ⁶ 3 ² 5 ¹ 7 ¹	[< 0, 1 >, < 8, 15 >]
k = 6, 8	[16,4,8]	2 ⁶ 3 ² 5 ¹ 7 ¹	[< 0, 1 >, < 8, 15 >]
k = 7, 8	[k+10,4,8]	2 ⁷ 3 ^{k-5} 5 ¹ 7 ¹	[< 0, 1 >, < 8, 15 >]
k = 6, 8	[28,6,12]	2 ⁷ 3 ² 5 ¹ 7 ¹	[<0,1>,<12,28>,<16,35>]
k = 7, 8	[k+22,6,12]	2 ^k 3 ² 5 ¹ 7 ¹	[<0,1>,<12,28>,<16,35>]
k = 7, 8	[k+38,8,16]	2 ⁸ 3 ⁴ 5 ² 7 ¹	[<0,1>,<16,45>,<24,210>]
k = 8	[66,10,20]	$2^{10}3^{5}5^{2}7^{1}11^{1}$	$[<{\tt 0,1}>,<{\tt 20,66}>,<{\tt 32,495}>,<{\tt 36,462}>]$

Construction of self-orthogonal codes from nonfixed part of orbit matrices

Theorem

Let Γ be a SRG(v, k, λ, μ) having an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, such that there are f fixed vertices, h orbits of length w, and b - f - h orbits of lengths n_{f+h+1}, \ldots, n_b . Further, let $pw|n_s$ if $w < n_s$, and $pn_s|w$ if $n_s < w$, for $s = f + h + 1, \ldots, b$, where p is a prime number dividing k, λ, μ and w. Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code over F_q spanned by the part of the matrix C (rows and columns) determined by the orbits of length w is a self-orthogonal code of length h.

< ロ > < 何 > < 三 > < 三 > < 三 > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >

-

Sac

Results

Table: Codes from the nonfixed parts of orbit matrices for $Z_{\rm 2}$ acting on T(2k), $3 \leq k \leq 8$

<i>T</i> (<i>n</i>)	С	$ \operatorname{Aut}(\mathcal{C}) $	WeightDistribution
T(6)	[6,2,4]	2 ⁴ 3	[<0,1>,<4,3>]
T(8)	[10,2,6]	2 ⁸ 3 ²	[<0,1>,<6,2>,<8,1>]
T(8)	[12,2,8]	2 ¹⁰ 3 ⁴	[< 0, 1 >, < 8, 3 >]
T(8)	[12,3,6]	2 ⁹ 3	[<0,1>,<6,4>,<8,3>]
T(10)	[14,2,8]	2 ¹⁰ 3 ⁴ 5 ²	[<0,1>,<8,2>,<12,1>]
T(10)	[18,3,8]	2 ¹³ 3 ⁴	[<0,1>,<8,3>,<12,4>]
T(10)	[20,4,8]	2 ¹³ 3 ¹ 5 ¹	[<0,1>,<8,5>,<12,10>]
T(12)	[18,2,10]	2 ¹⁶ 3 ⁴ 5 ² 7 ²	[<0,1>,<10,2>,<16,1>]
T(12)	[24,3,10]	2 ¹⁶ 3 ⁷ 5 ³	[<0,1>,<10,3>,<16,3>,<18,1>]
T(12)	[28,4,10]	2 ²¹ 3 ⁵	[<0,1>,<10,4>,<16,7>,<18,4>]
T(12)	[30,5,10]	2 ¹⁹ 3 ² 5 ¹	[<0,1>,<10,6>,<16,15>,<18,10>]
T(12)	[30,4,16]	$2^{21}3^{2}5^{1}7^{1}$	[<0,1>,<16,15>]
T(14)	[22,2,12]	2 ¹⁸ 3 ⁸ 5 ⁴ 7 ²	[<0,1>,<12,2>,<20,1>]
T(14)	[30,3,12]	2 ²⁵ 3 ⁷ 5 ³ 7 ³	[<0,1>,<12,3>,<20,3>,<24,1>]
T(14)	[36,4,12]	2 ²⁵ 3 ⁹ 5 ⁴	[<0,1>,<12,4>,<20,6>,<24,5>]
T(14)	[40,5,12]	2 ²⁸ 3 ⁶ 5 ¹	[<0,1>,<12,5>,<20,11>,<24,15>]
T(14)	[42,6,12]	2 ²⁵ 3 ² 5 ¹ 7 ¹	[<0,1>,<12,7>,<20,21>,<24,35>]
T(16)	[26,2,14]	2 ²² 3 ¹⁰ 5 ⁴ 7 ² 11 ²	[<0,1>,<14,2>,<24,1>]
T(16)	[36,3,14]	2 ²⁸ 3 ¹³ 5 ⁶ 7 ³	[<0,1>,<14,3>,<24,3>,<30,1>]
T(16)	[44,4,14]	2 ³⁷ 3 ⁹ 5 ⁴ 7 ⁴	[<0,1>,<14,4>,<24,6>,<30,4>,<32,1>]
T(16)	[50,5,14]	2 ³³ 3 ¹¹ 5 ⁶	[<0,1>,<14,5>,<24,10>,<30,11>,<32,5>]
T(16)	[54,6,14]	2 ³⁷ 3 ⁸ 5 ¹	[<0,1>,<14,6>,<24,16>,<30,26>,<32,15>]
T(16)	[56,6,24]	2 ³⁵ 3 ² 5 ¹ 7 ¹	$[<0,1>,<2\overline{4,28>,<32,35>}]$
T(16)	[56,7,14]	2 ³⁵ 3 ² 5 ¹ 7 ¹	$[<0,1>,<14,8>,<24,28>,<30,56>,\leq32,35>]$

Results

l	T(n)	С	Aut(C)	Weight Distribution
ſ	T(10)	[7,2,4]	2 ⁴ 3 ¹	[< 0, 1 >, < 4, 3 >]
Ì	T(12)	[11,2,6]	2 ⁸ 3 ²	[< 0, 1 >, < 6, 2 >, < 8, 1 >]
ſ	T(12)	[13,2,8]	2 ¹⁰ 3 ⁴	[< 0, 1 >, < 8, 3 >]
[T(12)	[13,3,6]	2 ⁹ 3 ¹	[< 0, 1 >, < 6, 4 >, < 8, 3 >]
ſ	T(14)	[8,2,4]	2 ⁵ 3 ¹	[< 0, 1 >, < 4, 3 >]
[T(14)	[15,2,8]	2 ¹⁰ 3 ⁴ 5 ²	[< 0, 1 >, < 8, 2 >, < 12, 1 >]
ſ	T(14)	[19,3,8]	2 ¹³ 3 ⁴	[< 0, 1 >, < 8, 3 >, < 12, 4 >]
	T(14)	[21,4,8]	$2^{13}3^{1}5^{1}$	[< 0, 1 >, < 8, 5 >, < 12, 10 >]
ſ	T(16)	[12,2,6]	2 ⁹ 3 ²	[< 0, 1 >, < 6, 2 >, < 8, 1 >]
ſ	T(16)	[14,2,8]	2 ¹¹ 3 ⁴	[< 0, 1 >, < 8, 3 >]
ſ	T(16)	[14,3,6]	2 ¹⁰ 3 ¹	[< 0, 1 >, < 6, 4 >, < 8, 3 >]
ſ	T(16)	[19,2,10]	2 ¹⁶ 3 ⁴ 5 ² 7 ²	[< 0 , 1 >,< 10 , 2 >,< 16 , 1 >]
ĺ	T(16)	[25,3,10]	2 ¹⁶ 3 ⁷ 5 ³	[<0,1>,<10,3>,<16,3>,<18,1>]
ſ	T(16)	[29,4,10]	2 ²¹ 3 ⁵	[< 0, 1 >, < 10, 4 >, < 16, 7 >, < 18, 4 >]
[T(16)	[31,4,16]	$2^{21}3^{2}5^{1}7^{1}$	[< 0, 1 >, < 16, 15 >]
ſ	T(16)	[31,5,10]	$2^{19}3^{2}5^{1}$	[<0,1>,<10,6>,<16,15>,<18,10>]

Table: Codes from parts of orbit matrices for $Z_{\rm 4}$ corresponding to the orbits of length 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table: Codes from parts of orbit matrices for $Z_{\mathbf{4}}$ corresponding to the orbits of length 4

T(n)	С	$ \operatorname{Aut}(C) $	Weight Distribution
T(10)	[10,2,4]	2 ⁷ 3 ¹	[< 0, 1 >, < 4, 1 >, < 6, 2 >]
T(12)	[14,2,8]	2 ¹¹ 3 ⁴	[< 0, 1 >, < 8, 3 >]
T(12)	[15,2,8]	2 ¹¹ 3 ⁵	[< 0, 1 >, < 8, 3 >]
T(14)	[18,2,10]	2 ¹³ 3 ⁵ 5 ²	[< 0, 1 >, < 10, 2 >, < 12, 1 >]
T(14)	[21,3,6]	2 ¹⁴ 3 ⁵	[< 0 , 1 >,< 6 , 1 >,< 10 , 3 >,< 12 , 3 >]
T(16)	[22,2,12]	2 ¹⁹ 3 ⁵ 5 ² 7 ²	[< 0, 1 >, < 12, 2 >, < 16, 1 >]
T(16)	[27,3,12]	2 ²² 3 ⁸	[< 0, 1 >, < 12, 4 >, < 16, 3 >]
T(16)	[28,2,16]	2 ²⁵ 3 ⁸ 5 ³ 7 ³	[< 0, 1 >, < 16, 3 >]

Theorem

Let Γ be a SRG (v, k, λ, μ) with an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_1, \ldots, n_b , respectively, and $w = \max\{n_1, \ldots, n_b\}$. Further, let p be a prime dividing k, λ , μ and w, and let $pn_s|w$ if $n_s \neq w$. Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q = p^n$, then the code over F_q spanned by the rows of C corresponding to the orbits of length w is a self-orthogonal code of length b.

Э

SOC

Results

Table: Codes from orbit matrices for $Z_{\mathbf{4}}$ spanned by the rows corresponding to the orbits of length 4

T(n)	С	$ \operatorname{Aut}(\mathcal{C}) $	WeightDistribution
T(10)	[13,2,6]	2 ⁹ 3 ² 5 ¹	[< 0, 1 >, < 4, 1 >, < 6, 2 >]
T(12)	[18,2,8]	2 ¹⁴ 3 ⁶ 5 ¹	[< 0, 1 >, < 8, 3 >]
T(12)	[20,2,8]	2 ¹⁷ 3 ⁶ 5 ¹ 7 ¹	[< 0, 1 >, < 8, 3 >]
T(12)	[22,2,8]	2 ¹⁸ 3 ⁸ 5 ² 7 ¹	[< 0, 1 >, < 8, 3 >]
T(14)	[25,3,6]	2 ¹⁷ 3 ⁶ 5 ¹ 7 ¹	$[<{\tt 0,1}>,<{\tt 6,1}>,<{\tt 10,3}>,<{\tt 12,3}>]$
T(14)	[29,2,10]	$2^{22}3^{10}5^{4}7^{1}11^{1}13^{1}$	[<0,1>,<10,2>,<12,1>]
T(14)	[31,2,10]	2 ²³ 3 ¹¹ 5 ⁵ 7 ² 11 ¹ 13 ¹	[<0,1>,<10,2>,<12,1>]
T(14)	[35,2,10]	$2^{28}3^{13}5^{5}7^{2}11^{1}13^{1}17^{1}19^{1}$	[<0,1>,<10,2>,<12,1>]
T(16)	[32,2,16]	2 ²⁹ 3 ⁹ 5 ⁴ 7 ⁴	[< 0, 1 >, < 16, 3 >]
T(16)	[34,3,12]	2 ²⁹ 3 ¹¹ 5 ² 7 ¹	[< 0, 1 >, < 12, 4 >, < 16, 3 >]
T(16)	[36,3,12]	2 ³¹ 3 ¹² 5 ² 7 ¹ 11 ¹	[<0,1>,<12,4>,<16,3>]
T(16)	[40,2,12]	$2^{36}3^{13}5^{6}7^{4}11^{1}13^{1}17^{1}19^{1}$	[<0,1>,<12,2>,<16,1>]
T(16)	[42,2,12]	$2^{37}3^{14}5^{6}7^{5}11^{2}13^{1}17^{1}19^{1}$	[< 0, 1 >, < 12, 2 >, < 16, 1 >]
T(16)	[46,2,12]	$2^{41}3^{15}5^{8}7^{5}11^{2}13^{2}17^{1}19^{1}23^{1}$	[< 0, 1 >, < 12, 2 >, < 16, 1 >]
T(16)	[52,2,12]	$2^{49}3^{19}5^{9}7^{6}11^{2}13^{2}17^{1}19^{1}23^{1}29^{1}31^{1}$	[< 0, 1 >, < 12, 2 >, < 16, 1 >]

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_2 , the case with two intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(28, 12, 6, 4)	8!	$5 \le k \le 8$
(35, 16, 6, 8)	8!	$5 \leq k \leq 8$
(45, 16, 8, 4)	10!	$6 \le k \le 8$
(66, 20, 10, 4)	12!	$7 \leq k \leq 8$
(91, 24, 12, 4)	14!	$\overline{k} = \overline{8}$

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_2 , the case with three intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(495, 238, 109, 119)	$2^{21}3^{6}5^{2}7 \cdot 11 \cdot 17$	$7 \leq k \leq 8$

Table: SRGs from codes spanned by nonfixed parts of orbit matrices for Z_2 , the case with two intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(10, 3, 0, 1)	5!	k = 5, 8
(15, 8, 4, 4)	6!	$7 \le k \le 8$
(21, 10, 5, 4)	7!	$\overline{k} = \overline{7}$
(28, 12, 6, 4)	8!	k = 8
(35, 16, 6, 8)	8!	k = 8

Table: SRGs from codes spanned by nonfixed parts of orbit matrices for $Z_{\rm 2},$ the case with three intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(15, 8, 4, 4)	6!	k = 7
(35, 16, 6, 8)	8!	k = 7

◆□▶ ◆舂▶ ◆差▶ ◆差▶ → 差 − 少へ⊙

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_4 , the case with two intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(28, 12, 6, 4)	8!	$6 \le k \le 8$
(35, 16, 6, 8)	8!	$6 \le k \le 8$
(45, 16, 8, 4)	10!	$7 \le k \le 8$
(66, 20, 10, 4)	12!	k = 8

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_4 , the case with three intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(495, 238, 109, 119)	$2^{21}3^{6}5^{2}7 \cdot 11 \cdot 17$	k = 8

Table: SRGs from codes spanned by parts of orbit matrices for Z_4 corresponding to orbits of length 2, the case with two intersections of codewords

(v, k, λ, μ)	$ \operatorname{Aut}(G) $	From triangular graphs $T(2k)$
(10, 3, 0, 1)	5!	k = 7

BIBDs constructed from codes

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー のへで

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$, with point set \mathcal{P} , block set \mathcal{B} and incidence $I \subseteq \mathcal{P} \times \mathcal{B}$, is a 2- (v, b, r, k, λ) design, if $|\mathcal{P}| = v$, $|\mathcal{B}| = b$, every block $B \in \mathcal{B}$ is incident with precisely k points, every 2 distinct points are together incident with precisely λ blocks and every point is incident with exactly r blocks. If $b < {v \choose k}$, then \mathcal{D} is called a *balanced incomplete block design* (BIBD).

Table: BIBDs from the codes of nonfixed parts of orbit matrices for Z_2 acting on T(12)

$2-(v, b, r, k, \lambda)$	Simple design ${\cal D}$	$ \operatorname{Aut}(\mathcal{D}) $	$\operatorname{Aut}(\mathcal{D})$
2-(7, 28, 16, 4, 8)	2-(7,7,4,4,2)	168	PSL(3, 2)
2-(15, 30, 16, 8, 8)	2-(15,15,8,8,4)	20160	A ₈
2-(10, 30, 18, 6, 10)	2-(10,15,9,6,5)	720	5 6

Table: BIBDs from the codes of fixed parts of orbit matrices for Z_4 acting on T(10) and T(14)

$2-(v, b, r, k, \lambda)$	$ $ Aut $(\mathcal{D}) $	$\operatorname{Aut}(\mathcal{D})$
2-(15, 15, 8, 8, 4)	20160	A 8

▲ロト ▲園ト ▲画ト ▲画ト 三回 - のへで