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Strongly regular graphs

Definition
A simple regular graph is strongly regular with parameters (v , k, λ, µ) if
it has v vertices, valency k, and if any two adjacent vertices are
together adjacent to λ vertices, while any two non-adjacent vertices are
together adjacent to µ vertices. A strongly regular graph with
parameters (v , k, λ, µ) is usually denoted by srg(v , k, λ, µ).

Definition
The adjacency matrix A of a graph Γ with v vertices is v × v matrix
M = (mij ) such that mij is number of edges incident with vertices xi and
xj.



Petersen graph srg(10,3,0,1)

A =



0 0 1 1 0 1 0 0 0 0
0 0 0 1 1 0 1 0 0 0
1 0 0 0 1 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0





Petersen graph srg(10,3,0,1)

A =



0 0 1 1 0 1 0 0 0 0
0 0 0 1 1 0 1 0 0 0
1 0 0 0 1 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0





Graph automorphism

An automorphism ρ of strongly regular graph Γ is a permutation on the
set of vertices of a graph Γ such that for any two vertices of Γ u and
v follows that: u and v are adjacent in Γ if and only if ρu and ρv are
adjacent in Γ. Set of all automorphisms of strongly regular graph under
the composition of functions forms a group that we call full
automorphism group and denote Aut(Γ).



Example
Let an automorphism group G generated with element
ρ = (1)(3, 4, 6)(2, 7, 8, 9, 10, 5) partitions the set of vertices of Petersen
graph into orbits O1 = {1},O2 = {3, 4, 6},O3 = {2, 5, 7, 8, 9, 10}.



Example

1 3 4 6 2 5 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 0 0
4 1 0 0 0 1 0 0 0 1 0
6 1 0 0 0 0 0 1 0 0 1
2 0 0 1 0 0 1 1 0 0 0
5 0 1 0 0 1 0 0 0 0 1
7 0 0 0 1 1 0 0 1 0 0
8 0 1 0 0 0 0 1 0 1 0
9 0 0 1 0 0 0 0 1 0 1
10 0 0 0 1 0 1 0 0 1 0



Example

1 3 4 6 2 5 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 0 0
4 1 0 0 0 1 0 0 0 1 0
6 1 0 0 0 0 0 1 0 0 1
2 0 0 1 0 0 1 1 0 0 0
5 0 1 0 0 1 0 0 0 0 1
7 0 0 0 1 1 0 0 1 0 0
8 0 1 0 0 0 0 1 0 1 0
9 0 0 1 0 0 0 0 1 0 1
10 0 0 0 1 0 1 0 0 1 0

C =

(
0 1 0
3 0 1
0 2 2

)



Example

1 3 4 6 2 5 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 0 0
4 1 0 0 0 1 0 0 0 1 0
6 1 0 0 0 0 0 1 0 0 1
2 0 0 1 0 0 1 1 0 0 0
5 0 1 0 0 1 0 0 0 0 1
7 0 0 0 1 1 0 0 1 0 0
8 0 1 0 0 0 0 1 0 1 0
9 0 0 1 0 0 0 0 1 0 1
10 0 0 0 1 0 1 0 0 1 0

R =

(
0 3 0
1 0 2
0 1 2

)



Row orbit matrices

Definition
A (b × b)-matrix R = [rij ] with entries satisfying conditions:

b∑
j=1

rij =
b∑

i=1

ni

nj
rij = k (1)

b∑
s=1

ns

nj
rsi rsj = δij (k − µ) + µni + (λ− µ)rji (2)

where 0 ≤ rij ≤ nj, 0 ≤ rii ≤ ni − 1 and
∑b

i=1 ni = v, is called a row orbit
matrix for a strongly regular graph with parameters (v , k, λ, µ) and the
orbit lengths distribution (n1, . . . , nb).



Column orbit matrices

Definition
A (b × b)-matrix C = [cij ] with entries satisfying conditions:

b∑
i=1

cij =
b∑

j=1

nj

ni
cij = k (3)

b∑
s=1

ns

nj
ciscjs = δij (k − µ) + µni + (λ− µ)cij (4)

where 0 ≤ cij ≤ ni, 0 ≤ cii ≤ ni − 1 and
∑b

i=1 ni = v, is called a column
orbit matrix for a strongly regular graph with parameters (v , k, λ, µ) and
the orbit lengths distribution (n1, . . . , nb).



Codes

Definition
A binary [n, k] linear code C is a k-linear subspace of the vector space
Fn

2.

Definition
Let x = (x1, . . . xn), y = (y1, . . . yn) ∈ Fn

q.
Hamming distance: d(x , y) = |{i | xi 6= yi , 1 ≤ i ≤ n}|.
Weight: w(x) = d(x , 0) = |{i ∈ N | i ≤ n, xi 6= 0}|.
Minimum weight: d = min{w(x) | x ∈ C , x 6= 0}

If a code C over a field of order q is of length n, dimension k, and
minimum weight d, then we write [n, k, d ]q to show this information.



Self-orthogonal codes

Definition
The dual code of a linear code C ⊂ Fn

q is the code C⊥ ⊂ Fn
q where

C⊥ = {x ∈ F n
q | x · y = 0, ∀y ∈ C}.

Definition
A code C is self-orthogonal if C ⊆ C⊥.



Construction of self-orthogonal codes from fixed part of
orbit matrices

Theorem
Let Γ be a SRG(v , k, λ, µ) having an automorphism group G which acts on
the set of vertices of Γ with b orbits of lengths n1, . . . , nb,
respectively, with f fixed vertices, and the other b − f orbits of
lengths nf +1, . . . , nb divisible by p, where p is a prime dividing k, λ and
µ. Let C be the column orbit matrix of the graph Γ with respect to G.
If q is a prime power such that q = pn, then the code spanned by the
rows of the fixed part of the matrix C is a self-orthogonal code of
length f over Fq.

1 · · · 1 nf +1 . . . nb
1
...
1

nf +1
...
nb



Results

Table: Codes from the fixed parts of orbit matrices for Z2 acting on T (2k),
3 ≤ k ≤ 8

T (2k) C |Aut(C)| Weight Distribution

3 ≤ k ≤ 8 [k + 4, 2, 4] 2· 4!(k-2)! [< 0, 1 >,< 4, 3 >]
4 ≤ k ≤ 8 [k + 12, 4, 8] 4·7!(k-3)! [< 0, 1 >,< 8, 15 >]
5 ≤ k ≤ 8 [k + 24, 6, 12] 8!(k-4)! [< 0, 1 >,< 12, 28 >,< 16, 35 >]
6 ≤ k ≤ 8 [k + 40, 8, 16] 10!(k-5)! [< 0, 1 >,< 16, 45 >,< 24, 210 >]
7 ≤ k ≤ 8 [k + 60, 10, 20] 12!(k-6)! [< 0, 1 >,< 20, 66 >,< 32, 495 >,< 36, 462 >]

k = 8 [k + 84, 12, 24] 14!(k-7)! [< 0, 1 >,< 24, 91 >,< 40, 1001 >,< 48, 3003 >]



Results

Table: Codes from the fixed part of orbit matrices for Z4 acting on T (2k),
3 ≤ k ≤ 8

T (2k) C |Aut(C)| Weight Distribution

k = 4, 6, 8 [6,2,4] 2431 [< 0, 1 >,< 4, 3 >]

k = 5, 7 [7,2,4] 2431 [< 0, 1 >,< 4, 3 >]

k = 6, 8 [8,2,4] 2531 [< 0, 1 >,< 4, 3 >]

k = 7, 8 [k+2,2,4] 22k−932 [< 0, 1 >,< 4, 3 >]

k = 5, 7 [15,4,8] 26325171 [< 0, 1 >,< 8, 15 >]

k = 6, 8 [16,4,8] 26325171 [< 0, 1 >,< 8, 15 >]

k = 7, 8 [k+10,4,8] 273k−55171 [< 0, 1 >,< 8, 15 >]

k = 6, 8 [28,6,12] 27325171 [< 0, 1 >,< 12, 28 >,< 16, 35 >]

k = 7, 8 [k+22,6,12] 2k325171 [< 0, 1 >,< 12, 28 >,< 16, 35 >]

k = 7, 8 [k+38,8,16] 28345271 [< 0, 1 >,< 16, 45 >,< 24, 210 >]

k = 8 [66,10,20] 210355271111 [< 0, 1 >,< 20, 66 >,< 32, 495 >,< 36, 462 >]



Construction of self-orthogonal codes from nonfixed part of
orbit matrices

Theorem
Let Γ be a SRG(v , k, λ, µ) having an automorphism group G which acts on
the set of vertices of Γ with b orbits of lengths n1, . . . , nb,
respectively, such that there are f fixed vertices, h orbits of length
w, and b − f − h orbits of lengths nf +h+1, . . . , nb. Further, let pw |ns if
w < ns, and pns |w if ns < w, for s = f + h + 1, . . . , b, where p is a prime
number dividing k, λ, µ and w. Let C be the column orbit matrix of
the graph Γ with respect to G. If q is a prime power such that q = pn,
then the code over Fq spanned by the part of the matrix C (rows and
columns) determined by the orbits of length w is a self-orthogonal code
of length h.

1 · · · 1 w · · · w nf +h+1 . . . nb
1

.

.

.
1
w

.

.

.
w

nf +h+1
.
.
.
nb



Results

Table: Codes from the nonfixed parts of orbit matrices for Z2 acting on T (2k),
3 ≤ k ≤ 8

T (n) C |Aut(C)| WeightDistribution

T (6) [6,2,4] 243 [< 0, 1 >,< 4, 3 >]

T (8) [10,2,6] 2832 [< 0, 1 >,< 6, 2 >,< 8, 1 >]

T (8) [12,2,8] 21034 [< 0, 1 >,< 8, 3 >]

T (8) [12,3,6] 293 [< 0, 1 >,< 6, 4 >,< 8, 3 >]

T (10) [14,2,8] 2103452 [< 0, 1 >,< 8, 2 >,< 12, 1 >]

T (10) [18,3,8] 21334 [< 0, 1 >,< 8, 3 >,< 12, 4 >]

T (10) [20,4,8] 2133151 [< 0, 1 >,< 8, 5 >,< 12, 10 >]

T (12) [18,2,10] 216345272 [< 0, 1 >,< 10, 2 >,< 16, 1 >]

T (12) [24,3,10] 2163753 [< 0, 1 >,< 10, 3 >,< 16, 3 >,< 18, 1 >]

T (12) [28,4,10] 22135 [< 0, 1 >,< 10, 4 >,< 16, 7 >,< 18, 4 >]

T (12) [30,5,10] 2193251 [< 0, 1 >,< 10, 6 >,< 16, 15 >,< 18, 10 >]

T (12) [30,4,16] 221325171 [< 0, 1 >,< 16, 15 >]

T (14) [22,2,12] 218385472 [< 0, 1 >,< 12, 2 >,< 20, 1 >]

T (14) [30,3,12] 225375373 [< 0, 1 >,< 12, 3 >,< 20, 3 >,< 24, 1 >]

T (14) [36,4,12] 2253954 [< 0, 1 >,< 12, 4 >,< 20, 6 >,< 24, 5 >]

T (14) [40,5,12] 2283651 [< 0, 1 >,< 12, 5 >,< 20, 11 >,< 24, 15 >]

T (14) [42,6,12] 225325171 [< 0, 1 >,< 12, 7 >,< 20, 21 >,< 24, 35 >]

T (16) [26,2,14] 2223105472112 [< 0, 1 >,< 14, 2 >,< 24, 1 >]

T (16) [36,3,14] 2283135673 [< 0, 1 >,< 14, 3 >,< 24, 3 >,< 30, 1 >]

T (16) [44,4,14] 237395474 [< 0, 1 >,< 14, 4 >,< 24, 6 >,< 30, 4 >,< 32, 1 >]

T (16) [50,5,14] 23331156 [< 0, 1 >,< 14, 5 >,< 24, 10 >,< 30, 11 >,< 32, 5 >]

T (16) [54,6,14] 2373851 [< 0, 1 >,< 14, 6 >,< 24, 16 >,< 30, 26 >,< 32, 15 >]

T (16) [56,6,24] 235325171 [< 0, 1 >,< 24, 28 >,< 32, 35 >]

T (16) [56,7,14] 235325171 [< 0, 1 >,< 14, 8 >,< 24, 28 >,< 30, 56 >,< 32, 35 >]



Results

Table: Codes from parts of orbit matrices for Z4 corresponding to the orbits of
length 2

T (n) C |Aut(C)| Weight Distribution

T (10) [7,2,4] 2431 [< 0, 1 >,< 4, 3 >]

T (12) [11,2,6] 2832 [< 0, 1 >,< 6, 2 >,< 8, 1 >]

T (12) [13,2,8] 21034 [< 0, 1 >,< 8, 3 >]

T (12) [13,3,6] 2931 [< 0, 1 >,< 6, 4 >,< 8, 3 >]

T (14) [8,2,4] 2531 [< 0, 1 >,< 4, 3 >]

T (14) [15,2,8] 2103452 [< 0, 1 >,< 8, 2 >,< 12, 1 >]

T (14) [19,3,8] 21334 [< 0, 1 >,< 8, 3 >,< 12, 4 >]

T (14) [21,4,8] 2133151 [< 0, 1 >,< 8, 5 >,< 12, 10 >]

T (16) [12,2,6] 2932 [< 0, 1 >,< 6, 2 >,< 8, 1 >]

T (16) [14,2,8] 21134 [< 0, 1 >,< 8, 3 >]

T (16) [14,3,6] 21031 [< 0, 1 >,< 6, 4 >,< 8, 3 >]

T (16) [19,2,10] 216345272 [< 0, 1 >,< 10, 2 >,< 16, 1 >]

T (16) [25,3,10] 2163753 [< 0, 1 >,< 10, 3 >,< 16, 3 >,< 18, 1 >]

T (16) [29,4,10] 22135 [< 0, 1 >,< 10, 4 >,< 16, 7 >,< 18, 4 >]

T (16) [31,4,16] 221325171 [< 0, 1 >,< 16, 15 >]

T (16) [31,5,10] 2193251 [< 0, 1 >,< 10, 6 >,< 16, 15 >,< 18, 10 >]



Results

Table: Codes from parts of orbit matrices for Z4 corresponding to the orbits of
length 4

T (n) C |Aut(C)| Weight Distribution

T (10) [10,2,4] 2731 [< 0, 1 >,< 4, 1 >,< 6, 2 >]

T (12) [14,2,8] 21134 [< 0, 1 >,< 8, 3 >]

T (12) [15,2,8] 21135 [< 0, 1 >,< 8, 3 >]

T (14) [18,2,10] 2133552 [< 0, 1 >,< 10, 2 >,< 12, 1 >]

T (14) [21,3,6] 21435 [< 0, 1 >,< 6, 1 >,< 10, 3 >,< 12, 3 >]

T (16) [22,2,12] 219355272 [< 0, 1 >,< 12, 2 >,< 16, 1 >]

T (16) [27,3,12] 22238 [< 0, 1 >,< 12, 4 >,< 16, 3 >]

T (16) [28,2,16] 225385373 [< 0, 1 >,< 16, 3 >]



Theorem
Let Γ be a SRG(v , k, λ, µ) with an automorphism group G which acts on the
set of vertices of Γ with b orbits of lengths n1, . . . , nb, respectively,
and w = max{n1, . . . , nb}. Further, let p be a prime dividing k, λ, µ and
w, and let pns |w if ns 6= w. Let C be the column orbit matrix of the
graph Γ with respect to G. If q is a prime power such that q = pn,
then the code over Fq spanned by the rows of C corresponding to the
orbits of length w is a self-orthogonal code of length b.

n1 · · · nb w · · · w
n1
...
nb
w
...
w



Results

Table: Codes from orbit matrices for Z4 spanned by the rows corresponding to the
orbits of length 4

T (n) C |Aut(C)| WeightDistribution

T (10) [13,2,6] 293251 [< 0, 1 >,< 4, 1 >,< 6, 2 >]

T (12) [18,2,8] 2143651 [< 0, 1 >,< 8, 3 >]

T (12) [20,2,8] 217365171 [< 0, 1 >,< 8, 3 >]

T (12) [22,2,8] 218385271 [< 0, 1 >,< 8, 3 >]

T (14) [25,3,6] 217365171 [< 0, 1 >,< 6, 1 >,< 10, 3 >,< 12, 3 >]

T (14) [29,2,10] 2223105471111131 [< 0, 1 >,< 10, 2 >,< 12, 1 >]

T (14) [31,2,10] 2233115572111131 [< 0, 1 >,< 10, 2 >,< 12, 1 >]

T (14) [35,2,10] 2283135572111131171191 [< 0, 1 >,< 10, 2 >,< 12, 1 >]

T (16) [32,2,16] 229395474 [< 0, 1 >,< 16, 3 >]

T (16) [34,3,12] 2293115271 [< 0, 1 >,< 12, 4 >,< 16, 3 >]

T (16) [36,3,12] 2313125271111 [< 0, 1 >,< 12, 4 >,< 16, 3 >]

T (16) [40,2,12] 2363135674111131171191 [< 0, 1 >,< 12, 2 >,< 16, 1 >]

T (16) [42,2,12] 2373145675112131171191 [< 0, 1 >,< 12, 2 >,< 16, 1 >]

T (16) [46,2,12] 2413155875112132171191231 [< 0, 1 >,< 12, 2 >,< 16, 1 >]

T (16) [52,2,12] 2493195976112132171191231291311 [< 0, 1 >,< 12, 2 >,< 16, 1 >]



SRGs constructed from codes

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z2, the case
with two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)

(28, 12, 6, 4) 8! 5 ≤ k ≤ 8
(35, 16, 6, 8) 8! 5 ≤ k ≤ 8
(45, 16, 8, 4) 10! 6 ≤ k ≤ 8

(66, 20, 10, 4) 12! 7 ≤ k ≤ 8
(91, 24, 12, 4) 14! k = 8

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z2, the case
with three intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)

(495, 238, 109, 119) 22136527 · 11 · 17 7 ≤ k ≤ 8



SRGs constructed from codes

Table: SRGs from codes spanned by nonfixed parts of orbit matrices for Z2, the
case with two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)

(10, 3, 0, 1) 5! k = 5, 8
(15, 8, 4, 4) 6! 7 ≤ k ≤ 8

(21, 10, 5, 4) 7! k = 7
(28, 12, 6, 4) 8! k = 8
(35, 16, 6, 8) 8! k = 8

Table: SRGs from codes spanned by nonfixed parts of orbit matrices for Z2, the
case with three intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)

(15, 8, 4, 4) 6! k = 7
(35, 16, 6, 8) 8! k = 7



SRGs constructed from codes

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z4, the case
with two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)
(28, 12, 6, 4) 8! 6 ≤ k ≤ 8
(35, 16, 6, 8) 8! 6 ≤ k ≤ 8
(45, 16, 8, 4) 10! 7 ≤ k ≤ 8

(66, 20, 10, 4) 12! k = 8

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z4, the case
with three intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)

(495, 238, 109, 119) 22136527 · 11 · 17 k = 8

Table: SRGs from codes spanned by parts of orbit matrices for Z4 corresponding to
orbits of length 2, the case with two intersections of codewords

(v, k, λ, µ) |Aut(G)| From triangular graphs T (2k)

(10, 3, 0, 1) 5! k = 7



BIBDs constructed from codes

An incidence structure D = (P,B, I ), with point set P, block set B and
incidence I ⊆ P × B, is a 2-(v , b, r , k, λ) design, if |P| = v, |B| = b, every
block B ∈ B is incident with precisely k points, every 2 distinct
points are together incident with precisely λ blocks and every point is
incident with exactly r blocks. If b <

(v
k

)
, then D is called a balanced

incomplete block design (BIBD).

Table: BIBDs from the codes of nonfixed parts of orbit matrices for Z2 acting on
T (12)

2-(v, b, r, k, λ) Simple design D |Aut(D)| Aut(D)

2-(7, 28, 16, 4, 8) 2-(7,7,4,4,2) 168 PSL(3, 2)
2-(15, 30, 16, 8, 8) 2-(15,15,8,8,4) 20160 A8
2-(10, 30, 18, 6, 10) 2-(10,15,9,6,5) 720 S6

Table: BIBDs from the codes of fixed parts of orbit matrices for Z4 acting on
T (10) and T (14)

2-(v, b, r, k, λ) |Aut(D)| Aut(D)

2-(15, 15, 8, 8, 4) 20160 A8



T H A N K S F O R
Y O U R

A T T E N T I O N !
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