Self-orthogonal codes from orbit matrices of strongly regular graphs

Marija Maksimović (mmaksimovic@math.uniri.hr)
Dean Crnković (deanc@math.uniri.hr)
Sanja Rukavina(sanjar@math.uniri.hr)
University of Rijeka, Department of Mathematics, Croatia

Support by: CSF, grant: 1637

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

Strongly regular graphs

Definition
A simple regular graph is strongly regular with parameters (v, k, λ, μ) if it has v vertices, valency k, and if any two adjacent vertices are together adjacent to λ vertices, while any two non-adjacent vertices are together adjacent to μ vertices. A strongly regular graph with parameters (v, k, λ, μ) is usually denoted by $\operatorname{srg}(v, k, \lambda, \mu)$.

Definition
The adjacency matrix A of a graph Γ with v vertices is $v \times v$ matrix $M=\left(m_{i j}\right)$ such that $m_{i j}$ is number of edges incident with vertices x_{i} and x_{j}.

Petersen graph $\operatorname{srg}(10,3,0,1)$

Petersen graph $\operatorname{srg}(10,3,0,1)$

$$
A=\left(\begin{array}{llllllllll}
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Graph automorphism

An automorphism ρ of strongly regular graph Γ is a permutation on the set of vertices of a graph 「 such that for any two vertices of 「 u and v follows that：u and v are adjacent in 「 if and only if ρu and ρv are adjacent in Γ ．Set of all automorphisms of strongly regular graph under the composition of functions forms a group that we call full automorphism group and denote $\operatorname{Aut}(\Gamma)$ ．

Example

Let an automorphism group G generated with element
$\rho=(1)(3,4,6)(2,7,8,9,10,5)$ partitions the set of vertices of Petersen graph into orbits $O_{1}=\{1\}, O_{2}=\{3,4,6\}, O_{3}=\{2,5,7,8,9,10\}$.

Example

	1	3	4	6	2	5	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
3	1	0	0	0	0	1	0	1	0	0
4	1	0	0	0	1	0	0	0	1	0
6	1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	0	1	1	0	0	0
5	0	1	0	0	1	0	0	0	0	1
7	0	0	0	1	1	0	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

Example

	1	3	4	6	2	5	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
3	1	0	0	0	0	1	0	1	0	0
4	1	0	0	0	1	0	0	0	1	0
6	1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	0	1	1	0	0	0
5	0	1	0	0	1	0	0	0	0	1
7	0	0	0	1	1	0	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

Example

	1	3	4	6	2	5	7	8	9	10
1	0	1	1	1	0	0	0	0	0	0
3	1	0	0	0	0	1	0	1	0	0
4	1	0	0	0	1	0	0	0	1	0
6	1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	0	1	1	0	0	0
5	0	1	0	0	1	0	0	0	0	1
7	0	0	0	1	1	0	0	1	0	0
8	0	1	0	0	0	0	1	0	1	0
9	0	0	1	0	0	0	0	1	0	1
10	0	0	0	1	0	1	0	0	1	0

Row orbit matrices

Definition
A $(b \times b)$-matrix $R=\left[r_{i j}\right]$ with entries satisfying conditions:

$$
\begin{align*}
\sum_{j=1}^{b} r_{i j} & =\sum_{i=1}^{b} \frac{n_{i}}{n_{j}} r_{i j}=k \tag{1}\\
\sum_{s=1}^{b} \frac{n_{s}}{n_{j}} r_{s i} r_{s j} & =\delta_{i j}(k-\mu)+\mu n_{i}+(\lambda-\mu) r_{j i} \tag{2}
\end{align*}
$$

where $0 \leq r_{i j} \leq n_{j}, 0 \leq r_{i j} \leq n_{i}-1$ and $\sum_{i=1}^{b} n_{i}=v$, is called a row orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and the orbit lengths distribution (n_{1}, \ldots, n_{b}).

Definition
A $(b \times b)$-matrix $C=\left[c_{i j}\right]$ with entries satisfying conditions:

$$
\begin{align*}
\sum_{i=1}^{b} c_{i j} & =\sum_{j=1}^{b} \frac{n_{j}}{n_{i}} c_{i j}=k \tag{3}\\
\sum_{s=1}^{b} \frac{n_{s}}{n_{j}} c_{i s} c_{j s} & =\delta_{i j}(k-\mu)+\mu n_{i}+(\lambda-\mu) c_{i j} \tag{4}
\end{align*}
$$

where $0 \leq c_{i j} \leq n_{i}, 0 \leq c_{i i} \leq n_{i}-1$ and $\sum_{i=1}^{b} n_{i}=v$, is called a column orbit matrix for a strongly regular graph with parameters (v, k, λ, μ) and the orbit lengths distribution (n_{1}, \ldots, n_{b}).

Codes

Definition
A binary $[n, k$] linear code C is a k-linear subspace of the vector space \mathbb{F}_{2}^{n}.

Definition
Let $x=\left(x_{1}, \ldots x_{n}\right), \quad y=\left(y_{1}, \ldots y_{n}\right) \in \mathbb{F}_{q}^{n}$.
Hamming distance: $\quad d(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}, 1 \leq i \leq n\right\}\right|$.
Weight: $\quad w(x)=d(x, 0)=\left|\left\{i \in \mathbb{N} \mid i \leq n, x_{i} \neq 0\right\}\right|$.
Minimum weight: $\quad d=\min \{w(x) \mid x \in C, x \neq 0\}$

If a code C over a field of order q is of length n, dimension k, and minimum weight d, then we write $[n, k, d]_{q}$ to show this information.

Self-orthogonal codes

Definition
The dual code of a linear code $C \subset \mathbb{F}_{q}^{n}$ is the code $C^{\perp} \subset \mathbb{F}_{q}^{n}$ where

$$
C^{\perp}=\left\{x \in F_{q}^{n} \mid x \cdot y=0, \quad \forall y \in C\right\} .
$$

Definition
A code C is self-orthogonal if $C \subseteq C^{\perp}$.

Construction of self-orthogonal codes from fixed part of orbit matrices

Theorem

Let 「 be a $\operatorname{SRG}(v, k, \lambda, \mu)$ having an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_{1}, \ldots, n_{b}, respectively, with f fixed vertices, and the other $b-f$ orbits of lengths n_{f+1}, \ldots, n_{b} divisible by p, where p is a prime dividing k, λ and μ. Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q=p^{n}$, then the code spanned by the rows of the fixed part of the matrix C is a self-orthogonal code of length f over F_{q}.

	1	\cdots	1	n_{f+1}	\cdots	n_{b}
1						
\vdots						
1						
n_{f+1}						
\vdots						
n_{b}						

Results

Table: Codes from the fixed parts of orbit matrices for Z_{2} acting on $T(2 k)$, $3 \leq k \leq 8$

$T(2 k)$	C	$\|\operatorname{Aut}(C)\|$	Weight Distribution
$3 \leq k \leq 8$	$[k+4,2,4]$	$2 \cdot 4!(k-2)!$	$[<0,1>,<4,3>]$
$4 \leq k \leq 8$	$[k+12,4,8]$	$4 \cdot 7!(k-3)!$	$[<0,1>,<8,15>]$
$5 \leq k \leq 8$	$[k+24,6,12]$	$8!(k-4)!$	$[<0,1>,<12,28>,<16,35>]$
$6 \leq k \leq 8$	$[k+40,8,16]$	$10!(k-5)!$	$[<0,1>,<16,45>,<24,210>]$
$7 \leq k \leq 8$	$[k+60,10,20]$	$12!(k-6)!$	$[<0,1>,<20,66>,<32,495>,<36,462>]$
$k=8$	$[k+84,12,24]$	$14!(k-7)!$	$[<0,1>,<24,91>,<40,1001>,<48,3003>]$

Results

Table: Codes from the fixed part of orbit matrices for Z_{4} acting on $T(2 k)$, $3 \leq k \leq 8$

T(2k)	C	Aut(C)\|	Weight Distribution
$k=4,6,8$	[6, 2, 4]	$2^{4} 3^{1}$	[$\langle\mathbf{0}, \mathbf{1}\rangle$, $\langle\mathbf{4}, \mathbf{3}\rangle$]
$k=5,7$	[7,2,4]	$2^{4} 3^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{4 , 3}\rangle$]
$k=6,8$	[8,2,4]	$2^{5} 3^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{4}, \mathbf{3}\rangle$]
$k=7,8$	[$\mathrm{k}+2,2,4$]	$2^{2 k-9} 3^{2}$	$[\langle\mathbf{0 , 1}\rangle,\langle\mathbf{4 , 3}\rangle$]
$k=5,7$	[15,4,8]	$2^{6} 3^{2} 5^{1} 7^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8 , 1 5}\rangle$]
$k=6,8$	[16,4,8]	$2^{6} 3^{2} 5^{1} 7^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{8 , 1 5}\rangle$]
$k=7,8$	[k+10,4,8]	$2^{7} 3^{k-5} 5^{1} 7^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8 , 1 5}\rangle$]
$k=6,8$	[28,6,12]	$2^{7} 3^{2} 5^{1} 7^{1}$	$[<\mathbf{0 , 1}\rangle,\langle\mathbf{1 2}, \mathbf{2 8}\rangle,\langle\mathbf{1 6 , 3 5}\rangle$]
$k=7,8$	[$\mathrm{k}+22,6,12$]	$2^{k} 3^{2} 5^{1} 7^{1}$	$[<\mathbf{0}, 1\rangle,\langle\mathbf{1 2}, 28\rangle,\langle\mathbf{1 6}, \mathbf{3 5}\rangle$]
$k=7,8$	[$\mathrm{k}+38,8,16$]	$2^{8} 3^{4} 5^{2} 7^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{1 6}, 45\rangle,<\mathbf{2 4}, \mathbf{2 1 0}\rangle$]
$k=8$	[66,10,20]	$2^{10} 3^{5} 5^{2} 7^{1} 11^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{2 0}, \mathbf{6 6}\rangle,<\mathbf{3 2 , 4 9 5}\rangle,<\mathbf{3 6 , 4 6 2}\rangle$]

Construction of self-orthogonal codes from nonfixed part orbit matrices

Theorem

Let 「 be a $\operatorname{SRG}(v, k, \lambda, \mu)$ having an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_{1}, \ldots, n_{b}, respectively, such that there are f fixed vertices, h orbits of length w, and $b-f-h$ orbits of lengths n_{f+h+1}, \ldots, n_{b}. Further, let $p w \mid n_{s}$ if $w<n_{s}$, and $p n_{s} \mid w$ if $n_{s}<w$, for $s=f+h+1, \ldots, b$, where p is a prime number dividing k, λ, μ and w. Let C be the column orbit matrix of the graph Γ with respect to G. If q is a prime power such that $q=p^{n}$, then the code over F_{q} spanned by the part of the matrix C (rows and columns) determined by the orbits of length w is a self-orthogonal code of length h.

	1	\cdots	1	w	\cdots	w	n_{f+h+1}	\cdots	n_{b}
1									
\vdots									
\vdots									
\vdots									
n_{f+h+1}									
\vdots									
n_{b}									

Results

Table: Codes from the nonfixed parts of orbit matrices for Z_{2} acting on $T(2 k)$, $3 \leq k \leq 8$

$T(n)$	C	\mid Aut $(C) \mid$	WeightDistribution
$T(6)$	$[6,2,4]$	$2^{4} 3$	$[<0,1>,<4,3>]$
$T(8)$	$[10,2,6]$	$2^{8} 3^{2}$	$[<0,1>,<6,2>,<8,1>]$
$T(8)$	$[12,2,8]$	$2^{10} 3^{4}$	$[<0,1>,<8,3>]$
$T(8)$	$[12,3,6]$	$2^{9} 3$	$[<0,1>,<6,4>,<8,3>]$
$T(10)$	$[14,2,8]$	$2^{10} 3^{4} 5^{2}$	$[<0,1>,<8,2>,<12,1>]$
$T(10)$	$[18,3,8]$	$2^{13} 3^{4}$	$[<0,1>,<8,3>,<12,4>]$
$T(10)$	$[20,4,8]$	$2^{13} 3^{1} 5^{1}$	$[<0,1>,<8,5>,<12,10>]$
$T(12)$	$[18,2,10]$	$2^{16} 3^{4} 5^{2} 7^{2}$	$[<0,1>,<10,2>,<16,1>]$
$T(12)$	$[24,3,10]$	$2^{16} 3^{7} 5^{3}$	$[<0,1>,<10,3>,<16,3>,<18,1>]$
$T(12)$	$[28,4,10]$	$2^{21} 3^{5}$	$[<0,1>,<10,4>,<16,7>,<18,4>]$
$T(12)$	$[30,5,10]$	$2^{19} 3^{2} 5^{1}$	$[<0,1>,<10,6>,<16,15>,<18,10>]$
$T(12)$	$[30,4,16]$	$2^{21} 3^{2} 5^{1} 7^{1}$	$[<0,1>,<16,15>]$
$T(14)$	$[22,2,12]$	$2^{18} 3^{8} 5^{4} 7^{2}$	$[<0,1>,<12,2>,<20,1>]$
$T(14)$	$[30,3,12]$	$2^{25} 3^{7} 5^{3} 7^{3}$	$[<0,1>,<12,3>,<20,3>,<24,1>]$
$T(14)$	$[36,4,12]$	$2^{25} 3^{9} 5^{4}$	$[<0,1>,<12,4>,<20,6>,<24,5>]$
$T(14)$	$[40,5,12]$	$2^{28} 3^{6} 5^{1}$	$[<0,1>,<12,5>,<20,11>,<24,15>]$
$T(14)$	$[42,6,12]$	$2^{25} 3^{2} 5^{1} 7^{1}$	$[<0,1>,<12,7>,<20,21>,<24,35>]$
$T(16)$	$[26,2,14]$	$2^{22} 3^{10} 5^{4} 7^{2} 11^{\mathbf{2}}$	$[<0,1>,<14,2>,<24,1>]$
$T(16)$	$[36,3,14]$	$2^{\mathbf{2 8} 3^{13} 5^{6} 7^{3}}$	$[<0,1>,<14,3>,<24,3>,<30,1>]$
$T(16)$	$[44,4,14]$	$2^{37} 3^{9} 5^{4} 7^{4}$	$[<0,1>,<14,4>,<24,6>,<30,4>,<32,1>]$
$T(16)$	$[50,5,14]$	$2^{33} 3^{11} 5^{6}$	$[<0,1>,<14,5>,<24,10>,<30,11>,<32,5>]$
$T(16)$	$[54,6,14]$	$2^{37} 3^{8} 5^{1}$	$[<0,1>,<14,6>,<24,16>,<30,26>,<32,15>]$
$T(16)$	$[56,6,24]$	$2^{35} 3^{2} 5^{1} 7^{1}$	$[<0,1>,<24,28>,<32,35>]$
$T(16)$	$[56,7,14]$	$2^{35} 3^{2} 5^{1} 7^{1}$	$[<0,1>,<14,8>,<24,28>,<30,56>, \leq 32,35>]$

Results

Table: Codes from parts of orbit matrices for Z_{4} corresponding to the orbits of length 2

$T(n)$	C	Aut(C)\|	Weight Distribution
T (10)	[7,2,4]	$2^{4} 3^{1}$	[$\langle\mathbf{0}, \mathbf{1}\rangle,<\mathbf{4}, \mathbf{3}\rangle$]
$T(12)$	[11,2,6]	$2^{8} 3^{2}$	$[\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{6 , 2}\rangle,\langle\mathbf{8}, \mathbf{1}\rangle$]
$T(12)$	[13,2,8]	$2^{10} 3^{4}$	$[\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8 , 3}\rangle$]
$T(12)$	[13,3,6]	$2^{9} 3^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{6}, \mathbf{4}\rangle,\langle\mathbf{8}, \mathbf{3}\rangle$]
$T(14)$	[8,2,4]	$2^{5} 3^{1}$	[$\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{4}, \mathbf{3}\rangle$]
T (14)	[15,2,8]	$2^{10} 3^{4} 5^{2}$	[$\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8 , 2}\rangle,\langle\mathbf{1 2}, \mathbf{1}\rangle$]
T (14)	[19,3,8]	$2^{13} 3^{4}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8 , 3}\rangle,\langle\mathbf{1 2 , 4}\rangle$]
T (14)	[21,4,8]	$2^{13} 3^{1} 5^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8 , 5}\rangle,\langle\mathbf{1 2}, \mathbf{1 0}\rangle$]
T (16)	[12,2,6]	$2^{9} 3^{2}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{6}, \mathbf{2}\rangle,\langle\mathbf{8}, \mathbf{1}\rangle$]
$T(16)$	[14,2,8]	$2^{11} 3^{4}$	[$\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{8}, \mathbf{3}\rangle$]
T (16)	[14,3,6]	$2^{10} 3^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{6}, \mathbf{4}\rangle,\langle\mathbf{8}, \mathbf{3}\rangle$]
T (16)	[19,2,10]	$2^{16} 3^{4} 5^{2} 7^{2}$	$[\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{1 0 , 2}\rangle,\langle\mathbf{1 6 , 1}\rangle$]
$T(16)$	[25,3,10]	$2^{16} 3^{7} 5^{3}$	$[\langle\mathbf{0 , 1}\rangle,\langle\mathbf{1 0}, \mathbf{3}\rangle,\langle\mathbf{1 6 , 3}\rangle,\langle\mathbf{1 8}, \mathbf{1}\rangle$]
$T(16)$	[29,4,10]	$2^{21} 3^{5}$	$[\langle\mathbf{0 , 1}\rangle,\langle\mathbf{1 0}, 4\rangle,\langle\mathbf{1 6 , 7}\rangle,\langle\mathbf{1 8}, \mathbf{4}\rangle$]
T (16)	[31,4,16]	$2^{21} 3^{2} 5^{1} 7^{1}$	[\langle 0, 1 $\rangle,\langle\mathbf{1 6 , 1 5}\rangle$]
$T(\mathbf{1 6)}$	[31,5,10]	$2^{19} 3^{2} 5^{1}$	$[\langle\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{1 0}, \mathbf{6}\rangle,\langle\mathbf{1 6}, \mathbf{1 5}\rangle,\langle\mathbf{1 8}, \mathbf{1 0}\rangle$]

Results

Table: Codes from parts of orbit matrices for $Z_{\mathbf{4}}$ corresponding to the orbits of length 4

$T(n)$	C	Aut(C)\|	Weight Distribution
$T(10)$	[10, 2, 4]	$2^{7} 3^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{4}, \mathbf{1}\rangle,\langle\mathbf{6}, \mathbf{2}\rangle]$
$T(12)$	[14, 2, 8]	$2^{11} 3^{4}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{8 , 3}\rangle$]
$T(12)$	[15, 2, 8]	$2^{11} 3^{5}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{8 , 3}\rangle$]
$T(14)$	[18,2, 10]	$2^{13} 3^{5} 5^{2}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 0 , 2}\rangle,<\mathbf{1 2 , 1}\rangle$]
$T(14)$	[21,3,6]	$2^{14} 3^{5}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{6}, \mathbf{1}\rangle,\langle\mathbf{1 0}, \mathbf{3}\rangle,\langle\mathbf{1 2}, \mathbf{3}\rangle$]
$T(16)$	[22,2, 12]	$2^{19} 3^{5} 5^{2} 7^{2}$	$[<\mathbf{0 , 1}\rangle,\langle\mathbf{1 2 , 2}\rangle,\langle\mathbf{1 6 , 1}\rangle$]
$T(16)$	[27, 3, 12]	$2^{22} 3^{8}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{1 2 , 4}\rangle,<\mathbf{1 6 , 3}\rangle$]
$T(16)$	[28,2,16]	$2^{25} 3^{8} 5^{3} 7^{3}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 6}, \mathbf{3}\rangle$]

Theorem

Let 「 be a $\operatorname{SRG}(v, k, \lambda, \mu)$ with an automorphism group G which acts on the set of vertices of Γ with b orbits of lengths n_{1}, \ldots, n_{b}, respectively, and $w=\max \left\{n_{1}, \ldots, n_{b}\right\}$. Further, let p be a prime dividing k, λ, μ and w, and let $p n_{s} \mid w$ if $n_{s} \neq w$. Let C be the column orbit matrix of the graph 「 with respect to G. If q is a prime power such that $q=p^{n}$, then the code over F_{q} spanned by the rows of C corresponding to the orbits of length w is a self-orthogonal code of length b.

	n_{1}	\cdots	n_{b}	w	\cdots	w
n_{1}						
\vdots						
n_{b}						
w						
\vdots						
w						

Results

Table：Codes from orbit matrices for $Z_{\mathbf{4}}$ spanned by the rows corresponding to the orbits of length 4

$T(n)$	C	｜Aut（C）｜	WeightDistribution
$T(10)$	［13， 2,6$]$	$2^{9} 3^{2} 5^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{4}, \mathbf{1}\rangle,<\mathbf{6}, \mathbf{2}\rangle$ ］
$T(12)$	［18，2，8］	$2^{14} 3^{6} 5^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{8}, \mathbf{3}\rangle$ ］
$T(12)$	［20，2，8］	$2^{17} 3^{6} 5^{1} 7^{1}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{8}, \mathbf{3}\rangle$ ］
$T(12)$	［22，2，8］	$2^{18} 3^{8} 5^{2} 7^{1}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{8}, \mathbf{3}\rangle$ ］
$T(14)$	［25，3，6］	$2^{17} 3^{6} 5^{1} 7^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{6}, \mathbf{1}\rangle,\langle\mathbf{1 0}, \mathbf{3}\rangle,<\mathbf{1 2}, \mathbf{3}\rangle$ ］
$T(14)$	［29，2，10］	$2^{22} 3^{10} 5^{4} 7^{1} 11^{1} 13^{1}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 0 , 2}\rangle,<\mathbf{1 2}, \mathbf{1}\rangle$ ］
$T(14)$	［31，2，10］	$2^{23} 3^{11} 5^{5} 7^{2} 11^{1} 13^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,\langle\mathbf{1 0 , 2}\rangle,<\mathbf{1 2}, \mathbf{1}\rangle$ ］
$T(14)$	［35，2，10］	$2^{28} 3^{13} 5^{5} 7^{2} 11^{1} 13^{1} 17^{1} 19^{1}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 0}, \mathbf{2}\rangle,\langle\mathbf{1 2 , 1}\rangle$ ］
$T(16)$	［32，2，16］	$2^{29} 3^{9} 5^{4} 7^{4}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 6 , 3}\rangle$ ］
$T(16)$	［34，3，12］	$2^{29} 3^{11} 5^{2} 7^{1}$	$[\langle\mathbf{0 , 1}\rangle,\langle\mathbf{1 2 , 4}\rangle,\langle\mathbf{1 6 , 3}\rangle$ ］
$T(16)$	［36，3，12］	$2^{31} 3^{12} 5^{2} 7^{1} 11^{1}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 2 , 4}\rangle,<\mathbf{1 6 , 3}\rangle$ ］
$T(16)$	［40，2，12］	$2^{36} 3^{13} 5^{6} 7^{4} 11^{1} 13^{1} 17^{1} 19^{1}$	$[<\mathbf{0}, \mathbf{1}\rangle,<\mathbf{1 2}, \mathbf{2}\rangle,<\mathbf{1 6 , 1}\rangle$ ］
$T(16)$	［42，2，12］	$2^{37} 3^{14} 5^{6} 7^{5} 11^{2} 13^{1} 17^{1} 19^{1}$	$[\langle\mathbf{0 , 1}\rangle,\langle\mathbf{1 2 , 2}\rangle,\langle\mathbf{1 6 , 1}\rangle$ ］
$T(16)$	［46，2，12］	$2^{41} 3^{15} 5^{8} 7^{5} 11^{2} 13^{2} 17^{1} 19^{1} 23^{1}$	$[<\mathbf{0 , 1}\rangle,<\mathbf{1 2}, \mathbf{2}\rangle,<\mathbf{1 6 , 1}\rangle$ ］
$T(16)$	［ $52,2,12]$	$2^{49} 3^{19} 5^{9} 7^{6} 11^{2} 13^{2} 17^{1} 19^{1} 23^{1} 29^{1} 31^{1}$	$[\langle\mathbf{0 , 1}\rangle,\langle\mathbf{1 2}, \mathbf{2}\rangle,\langle\mathbf{1 6 , 1}\rangle$ ］

SRGs constructed from codes

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_{2}, the case with two intersections of codewords

(v, k, λ, μ)	\mid Aut $(G) \mid$	From triangular graphs $T(2 k)$
$(28,12,6,4)$	$8!$	$5 \leq k \leq 8$
$(35,16,6,8)$	$8!$	$5 \leq k \leq 8$
$(45,16,8,4)$	$10!$	$6 \leq k \leq 8$
$(66,20,10,4)$	$12!$	$7 \leq k \leq 8$
$(91,24,12,4)$	$14!$	$k=8$

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_{2}, the case with three intersections of codewords

(v, k, λ, μ)	$\|\operatorname{Aut}(G)\|$	From triangular graphs $T(2 k)$
$(495, \mathbf{2 3 8}, \mathbf{1 0 9}, 119)$	$2^{\mathbf{2 1}} 3^{6} 5^{\mathbf{2}} \mathbf{7} \cdot \mathbf{1 1} \cdot \mathbf{1 7}$	$7 \leq k \leq 8$

SRGs constructed from codes

Table: SRGs from codes spanned by nonfixed parts of orbit matrices for Z_{2}, the case with two intersections of codewords

(v, k, λ, μ)	\mid Aut $(G) \mid$	From triangular graphs $T(2 k)$
$(10,3,0,1)$	$5!$	$k=5,8$
$(15,8,4,4)$	$6!$	$7 \leq k \leq 8$
$(21,10,5,4)$	$7!$	$k=7$
$(28,12,6,4)$	$8!$	$k=8$
$(35,16,6,8)$	$8!$	$k=8$

Table: SRGs from codes spanned by nonfixed parts of orbit matrices for Z_{2}, the case with three intersections of codewords

(v, k, λ, μ)	$\|\operatorname{Aut}(G)\|$	From triangular graphs $T(2 k)$
$(15,8,4,4)$	$6!$	$k=7$
$(35,16,6,8)$	$8!$	$k=7$

SRGs constructed from codes

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_{4}, the case with two intersections of codewords

(v, k, λ, μ)	$\|\operatorname{Aut}(G)\|$	From triangular graphs $T(2 k)$
$(28,12,6,4)$	$8!$	$6 \leq k \leq 8$
$(35,16,6,8)$	$8!$	$6 \leq k \leq 8$
$(45,16,8,4)$	$10!$	$7 \leq k \leq 8$
$(66,20,10,4)$	$12!$	$k=8$

Table: SRGs from codes spanned by fixed parts of orbit matrices for Z_{4}, the case with three intersections of codewords

(v, k, λ, μ)	\mid Aut $(G) \mid$	From triangular graphs $T(2 k)$
$(495, \mathbf{2 3 8}, \mathbf{1 0 9}, 119)$	$2^{\mathbf{2 1}} 3^{6} 5^{\mathbf{2}} \mathbf{7} \cdot \mathbf{1 1} \cdot \mathbf{1 7}$	$k=8$

Table: SRGs from codes spanned by parts of orbit matrices for Z_{4} corresponding to orbits of length 2, the case with two intersections of codewords

(v, k, λ, μ)	$\|\operatorname{Aut}(G)\|$	From triangular graphs $T(2 k)$
$(10,3,0,1)$	$5!$	$k=7$

BIBDs constructed from codes

An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$, with point set \mathcal{P}, block set \mathcal{B} and incidence $I \subseteq \mathcal{P} \times \mathcal{B}$, is a $2-(v, b, r, k, \lambda)$ design, if $|\mathcal{P}|=v,|\mathcal{B}|=b$, every block $B \in \mathcal{B}$ is incident with precisely k points, every 2 distinct points are together incident with precisely λ blocks and every point is incident with exactly r blocks. If $b<\binom{v}{k}$, then \mathcal{D} is called a balanced incomplete block design (BIBD).

Table: BIBDs from the codes of nonfixed parts of orbit matrices for Z_{2} acting on T (12)

$2-(v, b, r, k, \lambda)$	Simple design \mathcal{D}	\mid Aut (D) \mid	Aut (D)
$2-(7,28,16,4,8)$	$2-(7,7,4,4,2)$	168	$\operatorname{PSL}(3,2)$
$2-(15,30,16,8,8)$	$2-(15,15,8,8,4)$	20160	$A_{\mathbf{8}}$
$2-(10,30,18,6,10)$	$2-(10,15,9,6,5)$	720	S_{6}

Table: BIBDs from the codes of fixed parts of orbit matrices for Z_{4} acting on $T(10)$ and $T(14)$

$2-(v, b, r, k, \lambda)$	$\|\operatorname{Aut}(\mathcal{D})\|$	$\operatorname{Aut}(\mathcal{D})$
$2-(15,15,8,8,4)$	20160	$A_{\mathbf{8}}$

T	H	A	N	K	S		F	O	R
			Y	O	U	R			
A	T	T	E	N	T	1	O	N	$!$

