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Origins

first studied by William T. Tutte in 1947

Ferenc Kárteszi studied a related problem in 1960 with Hamiltonian graphs

around the same time Moore graphs were introduced and studied by Alan

J. Ho↵man and Robert R. Singleton in 1960; they were named after

Edward F. Moore

closely related to diameter–degree problem

– graph with diameter d has girth at most 2d + 1
– bipartite graph with diameter d has girth at most 2d
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Definition: (k , g)–cage

Let k , g 2 N, k � 2, g � 3.

Then a (k , g)-graph is a k-regular graph with girth g (simple and undirected).

And a (k , g)-cage is a (k , g)-graph with the least possible number of vertices.

· · ·

Cn ⌘ (2, n)-cage Kn ⌘ (n� 1, 3)-cage
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Definition: Moore bound

Moore bound

M(k , g) =

8
<

:

k(k�1)(g�1)/2�2
k�2 , g odd ,

2(k�1)g/2�2
k�2 , g even .

number of vertices needed in a (k , g)-graph

obvious lower bound for a (k , g)-cage
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Example: k = 3, g = 5
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Example: Petersen graph
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Example: k = 3, g = 6
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Example: Heawood graph
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Definition: Moore graph

A (k , g)-graph with M(k , g) many vertices is called a Moore graph.

a Moore (k , g)-graph is clearly a (k , g)-cage

Theorem [Bannai, Ito (1981) & Damerell (2010)]

There exists a Moore graph of degree k and girth g if and only if

(i) k = 2 and g � 3; (cycles)

(ii) k � 2 and g = 3; (complete graphs)

(iii) k � 2 and g = 4; (complete bipartite graphs)

(iv) g = 5 and k = 2 (the 5-cycle), k = 3 (Petersen graph), k = 7

(Ho↵man-Singleton graph), and possibly k = 57;

(v) g = 6, 8, or 12, if there exists a symmetric generalized polygon of order

k � 1.
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Definition: Moore graph
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Definition: n(k , g) and rec(k , g)

The number of vertices of a (k , g)-cage is denoted by n(k , g).

The number of vertices of a (k , g)-graph which is currently the smallest known

(k , g)-graph is denoted by rec(k , g). (the current record holder)

base graph that gives voltage

(3, 14)-graph with 384 vertices

rec(3, 14) = 384

M(k , g)  n(k , g)  rec(k , g)
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Existence of cages

– first proof of existence: Sachs, 1963

,! first and only recursive constructive proof of (k , g)-graphs.

Theorem [Erdös, Sachs, 1963]

For every k � 2, g � 3,

n(k , g)  4

g�2

Â
t=1

(k � 1)t .
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Upper bounds I

Theorem [Erdös, Sachs, 1963]

For every k � 3, and every odd g � 3,

n(k , g + 1)  2n(k , g) .

Theorem [Balbuena, González-Moreno, Montellano-Ballesteros, 2013]

For every k � 2, and every odd g � 5,

n(k , g + 1) 

8
<

:
2n(k , g)� 2

k(k�1)(g�3)/4�2
k�2 , g ⌘ 3 (mod 4)

2n(k , g)� 4
(k�1)(g�1)/4�1

k�2 , otherwise.

S. S. Zemljič



Upper bounds II

Theorem [Sauer, 1967]

For every k � 2 and g � 3,

n(k , g) 

8
<

:
2(k � 2)g�2

, g odd,

4(k � 1)g�3
, g even.

Sauer bound

Theorem [Sauer, 1967]

For every g � 3,

n(3, g) 

8
<

:

29
122

g�2 + 2
3 , g odd,

29
122

g�2 + 4
3 , g even.
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Upper bounds
– comparison for k = 3

Moore Erdös,

g bound Sachs Sauer

4 6 24 11

5 10 56 20

6 14 120 40

7 22 248 78

8 30 504 156

9 46 1016 310

10 62 2040 620

11 94 4088 1238

12 126 8184 2476
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Current record holders

k\g 5 6 7 8 9 10 11 12

3 10 14 24 30 58 70 112 126

4 19 26 67 80 275 384 728

5 30 42 152 170 1296 2688 2730

6 40 62 294 312 7812

7 50 90 672 32928

8 80 114 800 39216

9 96 146 1152 1170 74752 74898

10 124 182 1640 132860
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Knowns cages: McGee graph

first 3-valent cage which is not a Moore graph:

n(3, 7) = 24,M(3, 7) = 22
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Knowns cages: Tutte’s cage

a Moore graph:

n(3, 8) = M(3, 8) = 30
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My construction I

n(k , g)  3 ·M(k , g � 1)
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My construction II

n(k , g)  2 ·M(k , g � 1)
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Work in progress

various individual constructions for k = 3 and g  10

,! still working on a generalization of some to an arbitrary g � 5

various individual constructions for k = 4, 5 and g  8

,! still working on a generalization of some to an arbitrary k � 4 (and arbitrary
g � 5)

Conjecture I.

n(k , g)  2 ·M(k , g � 1)

Conjecture II.

n(k , g)  k ·M(k , g � 1)
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