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Origins %

o first studied by William T. Tutte in 1947
@ Ferenc Kérteszi studied a related problem in 1960 with Hamiltonian graphs

@ around the same time Moore graphs were introduced and studied by Alan
J. Hoffman and Robert R. Singleton in 1960; they were named after
Edward F. Moore

@ closely related to diameter—degree problem

— graph with diameter d has girth at most 2d + 1
— bipartite graph with diameter d has girth at most 2d
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Definition: (k, g)—cage

Let kg €N, k>2, g > 3.

Then a (k, g)-graph is a k-regular graph with girth g (simple and undirected). J

And a (k, g)-cage is a (k, g)-graph with the least possible number of vertices. J

Cn = (2, n)-cage Kn = (n—1,3)-cage

S.S. Zemlji¢



Definition: Moore bound R

@ number of vertices needed in a (k, g)-graph

@ obvious lower bound for a (k, g)-cage
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Example: Petersen graph
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Example: k=3, g =6
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Example: Heawood graph
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Definition: Moore graph ».m;*

A (k, g)-graph with M(k, g) many vertices is called a Moore graph. J

@ a Moore (k, g)-graph is clearly a (k, g)-cage

There exists a Moore graph of degree k and girth g if and only if

(i) k=2 and g > 3; (cycles)

(i) kK > 2 and g = 3; (complete graphs)

(iii) kK > 2 and g = 4; (complete bipartite graphs)

(iv) g =5 and k = 2 (the 5-cycle), k = 3 (Petersen graph), k =7
(Homean—SingIeton graph), and possibly k = 57;

(v) g =6, 8, or 12, if there exists a symmetric generalized polygon of order
k—1.
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Definition: n(k,g) and rec(k,g) $

The number of vertices of a (k, g)-cage is denoted by n(k, g). J

The number of vertices of a (k, g)-graph which is currently the smallest known
(k, g)-graph is denoted by rec(k, g). (the current record holder)

base graph that gives voltage
(3,14)-graph with 384 vertices
rec(3,14) = 384

M(k,g) < n(k,g) < rec(k,g) J
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Existence of cages " a):

— first proof of existence: Sachs, 1963
< first and only recursive constructive proof of (k, g)-graphs.

For every k > 2, g > 3,

i
N

n(k,g) <4 (k—1)t.
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Upper bounds |

For every k > 3, and every odd g > 3,

n(k,g+1) <2n(k,g).

For every k > 2, and every odd g > 5,

_ —3)/4_
2n(k,g) — 2% , & =3(mod 4)
n(klg+ 1) < (k71)<g*1)/471 i
2n(k,g) —4—"———, otherwise.

S. S. Zemljit



Upper bounds Il

For every k > 2 and g > 3,

2(k—2)872, g odd,
4(k—1)873, g even.

For every g > 3,

n(k,g) < Sauer bound

29,g-2 |, 2

2287 4 £ odd,
n(3.g) < 12 3 8
%g%*z + % , g even.
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Upper bounds
— comparison for kK =3

Moore | Erdos,
g | bound | Sachs | Sauer
4 6 24 11
5 10 56 20
6 14 120 40
7 22 248 78
8 30 504 156
9 46 | 1016 310
10 62 | 2040 620
11 94 | 4088 | 1238
12 126 | 8184 | 2476
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Current record holders

k\g 5 6 7 8 9 10 11 12
3 10 | 14 24 30 | 58 70 112 126
4 19 | 26 67 80 | 275 | 384 728
5 30| 42| 152 | 170 1296 | 2688 2730
6 40 | 62 | 294 | 312 7812
7 50 | 90 672 32928
8 80 | 114 800 39216
9 96 | 146 | 1152 | 1170 74752 | 74898
10 124 | 182 1640 132860
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o first 3-valent cage which is not a Moore graph:

n(3,7) =24, M(3,7) = 22
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My construction | ).

n(k.g) <3-M(k.g—1) |
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My construction Il

n(k.g) <2 M(k g —1) ]




Work in progress @

@ various individual constructions for k = 3 and g < 10
— still working on a generalization of some to an arbitrary g > 5

@ various individual constructions for k = 4,5 and g < 8

— still working on a generalization of some to an arbitrary k > 4 (and arbitrary
g =5)

n(k,g) <2-M(k,g —1)

n(k,g) <k-M(k.g—1)
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