

On upper bounds for the order of cages

Sara Sabrina Zemljič

joint work with Robert Jajcay

Koper, May 29th 2018

- first studied by William T. Tutte in 1947
- Ferenc Kárteszi studied a related problem in 1960 with Hamiltonian graphs
- around the same time Moore graphs were introduced and studied by Alan J. Hoffman and Robert R. Singleton in 1960; they were named after Edward F. Moore
- closely related to diameter-degree problem
 - graph with diameter d has girth at most 2d + 1
 - bipartite graph with diameter d has girth at most 2d

Definition: (k, g)-cage

Let $k, g \in \mathbb{N}$, $k \geq 2, g \geq 3$.

Then a (k, g)-graph is a k-regular graph with girth g (simple and undirected).

And a (k, g)-cage is a (k, g)-graph with the least possible number of vertices.

Definition: Moore bound

Moore bound

$$M(k,g) = \begin{cases} \frac{k(k-1)^{(g-1)/2}-2}{k-2}, & g \text{ odd}, \\ \frac{2(k-1)^{g/2}-2}{k-2}, & g \text{ even}. \end{cases}$$

- number of vertices needed in a (k, g)-graph
- obvious lower bound for a (k, g)-cage

Example: k = 3, g = 5

Example: Petersen graph

Example: k = 3, g = 6

Example: Heawood graph

A (k,g)-graph with M(k,g) many vertices is called a **Moore graph**.

• a Moore (k, g)-graph is clearly a (k, g)-cage

Theorem [Bannai, Ito (1981) & Damerell (2010)]

There exists a Moore graph of degree k and girth g if and only if

(i)
$$k = 2$$
 and $g \ge 3$; (cycles)

(ii)
$$k \ge 2$$
 and $g = 3$; (complete graphs)

- (iii) $k \ge 2$ and g = 4; (complete bipartite graphs)
- (iv) g = 5 and k = 2 (the 5-cycle), k = 3 (Petersen graph), k = 7 (Hoffman-Singleton graph), and possibly k = 57;
- (v) g = 6, 8, or 12, if there exists a symmetric generalized polygon of order k 1.

S. S. Zemljič

Definition: n(k,g) and rec(k,g)

The number of vertices of a (k, g)-cage is denoted by n(k, g).

The number of vertices of a (k,g)-graph which is currently the smallest known (k,g)-graph is denoted by rec(k,g). (the current record holder)

base graph that gives voltage (3, 14)-graph with 384 vertices rec(3, 14) = 384

 $M(k,g) \le n(k,g) \le rec(k,g)$

Existence of cages

- first proof of existence: Sachs, 1963
- \hookrightarrow first and **only** recursive constructive proof of (k, g)-graphs.

Upper bounds I

Theorem [Erdös, Sachs, 1963]

For every $k \geq 3$, and every **odd** $g \geq 3$,

$$n(k,g+1) \leq 2n(k,g).$$

Theorem [Balbuena, González-Moreno, Montellano-Ballesteros, 2013]

For every $k \ge 2$, and every **odd** $g \ge 5$,

$$n(k,g+1) \leq \begin{cases} 2n(k,g) - 2\frac{k(k-1)^{(g-3)/4}-2}{k-2}, & g \equiv 3 \pmod{4} \\ 2n(k,g) - 4\frac{(k-1)^{(g-1)/4}-1}{k-2}, & \text{otherwise.} \end{cases}$$

Upper bounds II

Theorem [Sauer, 1967]

For every $k \geq 2$ and $g \geq 3$,

$$n(k,g) \leq \begin{cases} 2(k-2)^{g-2}, g \text{ odd,} \\ 4(k-1)^{g-3}, g \text{ even.} \end{cases}$$
 Sauer bound

Theorem [Sauer, 1967]

For every $g \ge 3$,

$$n(3,g) \leq \begin{cases} \frac{29}{12}2^{g-2} + \frac{2}{3}, & g \text{ odd,} \\ \frac{29}{12}2^{g-2} + \frac{4}{3}, & g \text{ even.} \end{cases}$$

Upper bounds

– comparison for k = 3

	Moore	Erdös,	
g	bound	Sachs	Sauer
4	6	24	11
5	10	56	20
6	14	120	40
7	22	248	78
8	30	504	156
9	46	1016	310
10	62	2040	620
11	94	4088	1238
12	126	8184	2476

Current record holders

$k \setminus g$	5	6	7	8	9	10	11	12
3	10	14	24	30	58	70	112	126
4	19	26	67	80	275	384		728
5	30	42	152	170		1296	2688	2730
6	40	62	294	312				7812
7	50	90		672				32928
8	80	114		800				39216
9	96	146	1152	1170			74752	74898
10	124	182		1640				132860

Knowns cages: McGee graph

• first 3-valent cage which is not a Moore graph:

$$m(3,7) = 24, M(3,7) = 22$$

Knowns cages: Tutte's cage

• a Moore graph:

$$n(3,8) = M(3,8) = 30$$

My construction I

 $n(k,g) \leq 3 \cdot M(k,g-1)$

My construction II

 $n(k,g) \le 2 \cdot M(k,g-1)$

S. S. Zemljič

Work in progress

- various individual constructions for k = 3 and $g \le 10$
 - $\,\hookrightarrow\,$ still working on a generalization of some to an arbitrary $g\geq 5$
- various individual constructions for k = 4, 5 and g ≤ 8
 → still working on a generalization of some to an arbitrary k ≥ 4 (and arbitrary
 - $g \ge 5)$

Conjecture I.

$$n(k,g) \leq 2 \cdot M(k,g-1)$$

Conjecture II.

$$n(k,g) \leq k \cdot M(k,g-1)$$

THANK Y 🕸 U! :)

