

# On upper bounds for the order of cages 

Sara Sabrina Zemljič<br>joint work with Robert Jajcay

## Origins

- first studied by William T. Tutte in 1947
- Ferenc Kárteszi studied a related problem in 1960 with Hamiltonian graphs
- around the same time Moore graphs were introduced and studied by Alan J. Hoffman and Robert R. Singleton in 1960; they were named after Edward F. Moore
- closely related to diameter-degree problem
- graph with diameter $d$ has girth at most $2 d+1$
- bipartite graph with diameter $d$ has girth at most $2 d$

Definition: $(k, g)$-cage

Let $k, g \in \mathbb{N}, k \geq 2, g \geq 3$.

Then a $(k, g)$-graph is a $k$-regular graph with girth $g$ (simple and undirected).

And a $(k, g)$-cage is a $(k, g)$-graph with the least possible number of vertices.

$C_{n} \equiv(2, n)$-cage

$$
C_{n} \equiv(2, n) \text {-cage }
$$

$$
K_{n} \equiv(n-1,3) \text {-cage }
$$

## Definition: Moore bound

## Moore bound

$$
M(k, g)= \begin{cases}\frac{k(k-1)^{(g-1) / 2}-2}{k-2}, & g \text { odd } \\ \frac{2(k-1)^{g / 2}-2}{k-2}, & g \text { even }\end{cases}
$$

- number of vertices needed in a $(k, g)$-graph
- obvious lower bound for a $(k, g)$-cage

Example: $k=3, g=5$


Example: Petersen graph


Example: $k=3, g=6$


Example: Heawood graph


## Definition: Moore graph

A ( $k, g$ )-graph with $M(k, g)$ many vertices is called a Moore graph.

- a Moore $(k, g)$-graph is clearly a $(k, g)$-cage


## Theorem [Bannai, Ito (1981) \& Damerell (2010)]

There exists a Moore graph of degree $k$ and girth $g$ if and only if
(i) $k=2$ and $g \geq 3$; (cycles)
(ii) $k \geq 2$ and $g=3$; (complete graphs)
(iii) $k \geq 2$ and $g=4$; (complete bipartite graphs)
(iv) $g=5$ and $k=2$ (the 5-cycle), $k=3$ (Petersen graph), $k=7$
(Hoffman-Singleton graph), and possibly $k=57$;
(v) $g=6,8$, or 12 , if there exists a symmetric generalized polygon of order $k-1$.

Definition: Moore graph


Definition: $n(k, g)$ and $r e c(k, g)$

The number of vertices of a $(k, g)$-cage is denoted by $n(k, g)$.

The number of vertices of a $(k, g)$-graph which is currently the smallest known $(k, g)$-graph is denoted by $\operatorname{rec}(k, g)$. (the current record holder)

base graph that gives voltage (3,14)-graph with 384 vertices $\operatorname{rec}(3,14)=384$

$$
M(k, g) \leq n(k, g) \leq r e c(k, g)
$$

## Existence of cages

- first proof of existence: Sachs, 1963
$\hookrightarrow$ first and only recursive constructive proof of $(k, g)$-graphs.


## Theorem [Erdös, Sachs, 1963]

For every $k \geq 2, g \geq 3$,

$$
n(k, g) \leq 4 \sum_{t=1}^{g-2}(k-1)^{t}
$$

## Upper bounds I

## Theorem [Erdös, Sachs, 1963]

For every $k \geq 3$, and every odd $g \geq 3$,

$$
n(k, g+1) \leq 2 n(k, g) .
$$

Theorem [Balbuena, González-Moreno, Montellano-Ballesteros, 2013]
For every $k \geq 2$, and every odd $g \geq 5$,

$$
n(k, g+1) \leq \begin{cases}2 n(k, g)-2 \frac{k(k-1)^{(g-3) / 4}-2}{k-2}, & g \equiv 3(\bmod 4) \\ 2 n(k, g)-4 \frac{(k-1)^{(g-1) / 4}-1}{k-2}, & \text { otherwise. }\end{cases}
$$

## Upper bounds II

## Theorem [Sauer, 1967]

For every $k \geq 2$ and $g \geq 3$,

$$
n(k, g) \leq\left\{\begin{array}{ll}
2(k-2)^{g-2}, & g \text { odd, } \\
4(k-1)^{g-3}, & g \text { even. }
\end{array} \quad\right. \text { Sauer bound }
$$

## Theorem [Sauer, 1967]

For every $g \geq 3$,

$$
n(3, g) \leq \begin{cases}\frac{29}{12} 2^{g-2}+\frac{2}{3}, & g \text { odd } \\ \frac{29}{12} 2^{g-2}+\frac{4}{3}, & g \text { even } .\end{cases}
$$

## Upper bounds

- comparison for $k=3$

|  | Moore <br> bound | Erdös, <br> Sachs | Sauer |
| ---: | ---: | ---: | ---: |
| 4 | 6 | 24 | 11 |
| 5 | 10 | 56 | 20 |
| 6 | 14 | 120 | 40 |
| 7 | 22 | 248 | 78 |
| 8 | 30 | 504 | 156 |
| 9 | 46 | 1016 | 310 |
| 10 | 62 | 2040 | 620 |
| 11 | 94 | 4088 | 1238 |
| 12 | 126 | 8184 | 2476 |

Current record holders

| $k \backslash g$ | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | $\mathbf{1 0}$ | $\mathbf{1 4}$ | $\mathbf{2 4}$ | $\mathbf{3 0}$ | $\mathbf{5 8}$ | $\mathbf{7 0}$ | $\mathbf{1 1 2}$ | $\mathbf{1 2 6}$ |
| 4 | $\mathbf{1 9}$ | $\mathbf{2 6}$ | $\mathbf{6 7}$ | 80 | 275 | 384 |  | 728 |
| 5 | $\mathbf{3 0}$ | $\mathbf{4 2}$ | 152 | 170 |  | 1296 | 2688 | 2730 |
| 6 | $\mathbf{4 0}$ | $\mathbf{6 2}$ | 294 | 312 |  |  |  | 7812 |
| 7 | $\mathbf{5 0}$ | $\mathbf{9 0}$ |  | 672 |  |  |  | 32928 |
| 8 | 80 | $\mathbf{1 1 4}$ |  | 800 |  |  |  | 39216 |
| 9 | 96 | $\mathbf{1 4 6}$ | 1152 | 1170 |  |  | 74752 | 74898 |
| 10 | 124 | $\mathbf{1 8 2}$ |  | 1640 |  |  |  | 132860 |

## Knowns cages: McGee graph



- first 3-valent cage which is not a Moore graph:

$$
n(3,7)=24, M(3,7)=22
$$

## Knowns cages: Tutte's cage



- a Moore graph:

$$
n(3,8)=M(3,8)=30
$$

## My construction I



$$
n(k, g) \leq 3 \cdot M(k, g-1)
$$

## My construction II



## Work in progress

- various individual constructions for $k=3$ and $g \leq 10$
$\hookrightarrow$ still working on a generalization of some to an arbitrary $g \geq 5$
- various individual constructions for $k=4,5$ and $g \leq 8$
$\hookrightarrow$ still working on a generalization of some to an arbitrary $k \geq 4$ (and arbitrary $g \geq 5$ )


## Conjecture I.

$$
n(k, g) \leq 2 \cdot M(k, g-1)
$$

## Conjecture II.

$$
n(k, g) \leq k \cdot M(k, g-1)
$$

## THANK <br> Y 思 U <br> :)

