Hamiltonicity of cubic Cayley graphs of small girth dedicated to Brian's 80 -th and Dragan's 65

Roman Nedela
(joint work with E. Aboomahigir)
University of West Bohemia, Pilsen
Slovak Academy of Sciences, B. Bystrica

Koper, May 2018

Cubic graphs of large cyclic connectivity

- Conjecture T (C. Thomassen): If the cyclic connectivity of a cubic graph X is large, then X is hamiltonian.
- Conjecture T* (the strongest version of A): Every 7-cyclically connected cubic graph except the Coxeter graph is hamiltonian.
- Remark: 7 in Conj. T^{*} cannot be replaced by 6 , because there are infine families of cyclically 6 -connected snarks, in fact they form an NP-class of cubic graphs.
- Conjectures T and T* are very strong, in particular, a positive solution of T^{*} would imply that there no cyclically 7-connected snarks, thus confirming in the affirmative the Jaeger's conjecture open since 1979.

Cubic graphs of large cyclic connectivity

- Conjecture T (C. Thomassen): If the cyclic connectivity of a cubic graph X is large, then X is hamiltonian.
- Conjecture T* (the strongest version of A): Every 7-cyclically connected cubic graph except the Coxeter graph is hamiltonian.

Cubic graphs of large cyclic connectivity

- Conjecture T (C. Thomassen): If the cyclic connectivity of a cubic graph X is large, then X is hamiltonian.
- Conjecture T* (the strongest version of A): Every 7-cyclically connected cubic graph except the Coxeter graph is hamiltonian.
- Remark: 7 in Conj. T^{*} cannot be replaced by 6, because there are infine families of cyclically 6 -connected snarks, in fact they form an NP-class of cubic graphs.
- Conjectures T and T* are very strong, in particular, a positive solution of T^{*} would imply that there no cyclically 7-connected snarks, thus confirming in the affirmative the Jaeger's conjecture open since 1979.

Cubic graphs of large cyclic connectivity

- Conjecture T (C. Thomassen): If the cyclic connectivity of a cubic graph X is large, then X is hamiltonian.
- Conjecture T* (the strongest version of A): Every 7-cyclically connected cubic graph except the Coxeter graph is hamiltonian.
- Remark: 7 in Conj. T^{*} cannot be replaced by 6, because there are infine families of cyclically 6 -connected snarks, in fact they form an NP-class of cubic graphs.
- Conjectures T and T^{*} are very strong, in particular, a positive solution of T^{*} would imply that there no cyclically 7 -connected snarks, thus confirming in the affirmative the Jaeger's conjecture open since 1979.

Hamiltonicity in cubic Cayley graphs

A folklore conjecture inspired by the Lovasz conjecture:
Conjecture F: Every Cayley graph is hamiltonian.
Assume T* holds, then to prove Conj. F for cubic Cayley graphs we have to deal with the following problem:

Problem: Prove that cuhic Cayley granhs of girth at most six are hamiltonian.

Note that N. and Škoviera proved in 1995 that for a cubic vertex-transitive graph the cyclic connectivity is equal to the girth! Hence, the cyclic connectivity c, implies there exists a cycle of length c, and this implies that there exists a relation of length c in terms of the generators.

Hamiltonicity in cubic Cayley graphs

A folklore conjecture inspired by the Lovasz conjecture:
Conjecture F: Every Cayley graph is hamiltonian.
Assume T* holds, then to prove Conj. F for cubic Cayley graphs we have to deal with the following problem:

Problem: Prove that cubic Cayley graphs of girth at most six are hamiltonian.

Note that N. and Skoviera proved in 1995 that for a cubic vertex-transitive graph the cyclic connectivity is equal to the girth! Hence, the cyclic connectivity c, implies there exists a cycle of length c, and this implies that there exists a relation of length c in terms of the generators.

Hamiltonicity in cubic Cayley graphs

A folklore conjecture inspired by the Lovasz conjecture:
Conjecture F: Every Cayley graph is hamiltonian.
Assume T^{*} holds, then to prove Conj. F for cubic Cayley graphs we have to deal with the following problem:

Problem: Prove that cubic Cayley graphs of girth at most six are hamiltonian.

Note that N. and Škoviera proved in 1995 that for a cubic vertex-transitive graph the cyclic connectivity is equal to the girth! Hence, the cyclic connectivity c, implies there exists a cycle of length c, and this implies that there exists a relation of length c in terms of the generators.

Type I. $X=\operatorname{Cay}(G ; a, b, c)$, where $a^{2}=b^{2}=c^{2}=1$

We may assume that $|a b| \leq|a c| \leq|b c|, G$ is a finite quotient of the extended triangle group of type $(k, m, n), k \leq m \leq n$.

Theorem
If the girth $g(X) \leq 6$, then one of the following happens:

- $g(X)=3, G=C_{2} \times C_{2}$ and $X \cong K_{4}$,
- $g(X)=4$, and $(a b)^{2}=1$,
- $g(X)=6$, and $(a b c)^{2}=1$, and X is a honeycomb graph,
- $g(X)=6$, and $(a b)^{3}=1$. (the difficult case)

Hamiltonicity of graphs of Type I, case $(a b)^{2}=1$

Proposition: Graphs of type I satisfying $(a b)^{2}=1$ are hamiltonian.

- Proved by Rappaport-Strasser, see Pak, Radoičič DM 2009 for the proof,
- It follows from a result by Powers (1985), who proved that Cayley cubic graphs of girth 4 are hamiltonian,
- There is a proof based on the method by Glower and Marušič

Essence of G-M method

Let X be a cubic strongly embedded graph into a surface (the faces are bounded by true cycles). Let the of faces can be 3 -coloured $F=F_{1} \cup F_{2} \cup F_{3}$ such that

- F_{1} is independent, and the collection of cycles bounding faces in F_{1} forms a 2-factor,
- F_{2} is independent,
- F_{3} induces a tree in the dual.

Then X admits a contractible hamilton cycle.

Case I $(a b)^{2}=1$: proof by G-M. method

- form an embedding of X into a surface by attaching a 2-cell to all the $(a b)$-cycles, $(b c)$-cycles and ($a c$)-cycles.
- consider the partial dual $Y=X^{*}$, induced by the vertices that correspond to the $(a b)$-cycles and ($b c$)-cycles.
- observation Y is a bipartite graph, where all the $(a b)$-vertices are of degree two,
- take a spanning tree T of Y and form a vertex decomposition into an induced tree T^{\prime} and an independent set I by setting I to be the set of $(a b)$-vertices that are of degree 1 in T.
- by G-M. T^{\prime} determines in the embedding of X a tree of faces bounded by a (contractible) hamilton cycle.

Case I $(a b)^{2}=1$: proof by G-M. method

- form an embedding of X into a surface by attaching a 2-cell to all the $(a b)$-cycles, $(b c)$-cycles and ($a c$)-cycles.
- consider the partial dual $Y=X^{*}$, induced by the vertices that correspond to the $(a b)$-cycles and ($b c$)-cycles.
- observation Y is a bipartite graph, where all the (ab)-vertices are of degree two,
- take a snanning tree T of Y and form a vertex decomposition into an induced tree T^{\prime} and an independent set I by setting I to be the set of $(a b)$-vertices that are of degree 1 in T
- by G-M T^{\prime} determines in the embedding of X a tree of faces bounded by a (contractible) hamilton cycle.

Case I $(a b)^{2}=1$: proof by G-M. method

- form an embedding of X into a surface by attaching a 2-cell to all the $(a b)$-cycles, $(b c)$-cycles and ($a c$)-cycles.
- consider the partial dual $Y=X^{*}$, induced by the vertices that correspond to the $(a b)$-cycles and ($b c$)-cycles.
- observation Y is a bipartite graph, where all the $(a b)$-vertices are of degree two,
- take a spanning tree T of Y and form a vertex decomposition into an induced tree T^{\prime} and an independent set I by setting I to be the set of $(a b)$-vertices that are of degree 1 in T bounded by a (contractible) hamilton cycle.

Case I $(a b)^{2}=1$: proof by G-M. method

- form an embedding of X into a surface by attaching a 2-cell to all the $(a b)$-cycles, $(b c)$-cycles and ($a c$)-cycles.
- consider the partial dual $Y=X^{*}$, induced by the vertices that correspond to the $(a b)$-cycles and ($b c$)-cycles.
- observation Y is a bipartite graph, where all the $(a b)$-vertices are of degree two,
- take a spanning tree T of Y and form a vertex decomposition into an induced tree T^{\prime} and an independent set I by setting I to be the set of $(a b)$-vertices that are of degree 1 in T.
bounded by a (contractible) hamilton cycle.

Case I $(a b)^{2}=1$: proof by G-M. method

- form an embedding of X into a surface by attaching a 2-cell to all the ($a b$)-cycles, ($b c$)-cycles and ($a c$)-cycles.
- consider the partial dual $Y=X^{*}$, induced by the vertices that correspond to the $(a b)$-cycles and ($b c$)-cycles.
- observation Y is a bipartite graph, where all the $(a b)$-vertices are of degree two,
- take a spanning tree T of Y and form a vertex decomposition into an induced tree T^{\prime} and an independent set I by setting I to be the set of $(a b)$-vertices that are of degree 1 in T.
- by G-M. T^{\prime} determines in the embedding of X a tree of faces bounded by a (contractible) hamilton cycle.

Case II. $(a b c)^{2}=1$

Proposition: Graphs of type I $(a b c)^{2}=1$ are hamiltonian.
Outline of the proof:

- Observe that each edge of X lies in exactly two 6 -cycles induced by the relation $(a b c)^{2}=1$,
- Thus X is a honeycomb graph on the torus,
- Honeycomb graphs are hamiltonian, see B. Alspach and D. Matthew (2009), or Yang et.all (2004)

Case I $(a b)^{3}=1$, the difficult case

Wanted: Cayley graphs coming from finite (torsion free) quotients of the extedned triangle group:

$$
\Delta(3, m, n)=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{3}=(a c)^{m}=(b c)^{n}=1\right\rangle
$$

are hamiltonian.
G-M. method gives almost the result for $(k, m, n)=(3,3, n)$!

Graphs of type II.

Theorem
Let X be a Cayley cubic graph $X=\operatorname{Cay}(G ; a, b), a^{2}=1$, of girth $g(X) \leq 6$. Then X one of the following cases happens:

- $g(X)=3$, and $b^{3}=1$, or $G \cong C_{4}$ and $X \cong K_{4}$, prism or a Mobius ladder,
- $g(X)=4$, and $b^{4}=1$,
- $g(X)=5$, and $b^{5}=1$, generalised Petersen graph $\operatorname{GP}(8,3)$,
- $g(X)=6, a b^{2} a=b^{ \pm 2}$ and X is a honeycomb graph,
- $g(X)=6$, and either $(a b)^{3}=1$, or $b^{6}=1$

Graphs of type II.

Theorem
Let X be a Cayley cubic graph $X=\operatorname{Cay}(G ; a, b), a^{2}=1$, of girth $g(X) \leq 6$. Then X one of the following cases happens:

- $g(X)=3$, and $b^{3}=1$, or $G \cong C_{4}$ and $X \cong K_{4}$,
- $g(X)=4, a=b^{3}, G \cong C_{6}$ and X is $K_{3,3}$,
- $g(X)=4, a b a=b^{ \pm 1}, G$ is abelian, or dihedral, and X is, a prism or a Mobius ladder,
- $g(X)=4$, and $b^{4}=1$,

generalised Petersen graph $\operatorname{GP}(8,3)$,
\square
- $g(X)=6$, and either $(a b)^{3}=1$, or $b^{6}=1$

Graphs of type II.

Theorem
Let X be a Cayley cubic graph $X=\operatorname{Cay}(G ; a, b), a^{2}=1$, of girth $g(X) \leq 6$. Then X one of the following cases happens:

- $g(X)=3$, and $b^{3}=1$, or $G \cong C_{4}$ and $X \cong K_{4}$,
- $g(X)=4, a=b^{3}, G \cong C_{6}$ and X is $K_{3,3}$,
- $g(X)=4, a b a=b^{ \pm 1}, G$ is abelian, or dihedral, and X is, a prism or a Mobius ladder,
- $g(X)=4$, and $b^{4}=1$,
- $g(X)=5$, and $b^{5}=1$,
generalised Petersen graph $\operatorname{GP}(8,3)$,

Graphs of type II.

Theorem

Let X be a Cayley cubic graph $X=\operatorname{Cay}(G ; a, b), a^{2}=1$, of girth $g(X) \leq 6$. Then X one of the following cases happens:

- $g(X)=3$, and $b^{3}=1$, or $G \cong C_{4}$ and $X \cong K_{4}$,
- $g(X)=4, a=b^{3}, G \cong C_{6}$ and X is $K_{3,3}$,
- $g(X)=4, a b a=b^{ \pm 1}, G$ is abelian, or dihedral, and X is, a prism or a Mobius ladder,
- $g(X)=4$, and $b^{4}=1$,
- $g(X)=5$, and $b^{5}=1$,
- $g(X)=6$, and $G=\left\langle a, b \mid a^{2}=b^{8}=1, a b a=b^{ \pm 3}\right\rangle, X$ is the generalised Petersen graph $\operatorname{GP}(8,3)$,
- $g(X)=6, a b^{2} a=b^{ \pm 2}$ and X is a honeycomb graph,
- $g(X)=6$, and either $(a b)^{3}=1$, or $b^{6}=1$.

Hamiltonicity, the difficult cases

The difficult cases are:

- $b^{3}=1$, this case can be solved by using Conjecture T^{*}
- $b^{5}=1, b^{6}=1$, no idea how to solve these cases,
- $(a b)^{3}=1$, G.M. method gives existence of hamilton path, and in most cases a hamilton cycle as well,

In all the other cases we can verify the hamiltonicity.

