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Cubic graphs of large cyclic connectivity

• Conjecture T (C. Thomassen): If the cyclic connectivity of a
cubic graph X is large, then X is hamiltonian.

• Conjecture T∗ (the strongest version of A): Every
7-cyclically connected cubic graph except the Coxeter
graph is hamiltonian.

• Remark: 7 in Conj. T ∗ cannot be replaced by 6, because
there are infine families of cyclically 6-connected snarks, in
fact they form an NP-class of cubic graphs.

• Conjectures T and T∗ are very strong, in particular, a positive
solution of T∗ would imply that there no cyclically
7-connected snarks, thus confirming in the affirmative the
Jaeger’s conjecture open since 1979.
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Hamiltonicity in cubic Cayley graphs

A folklore conjecture inspired by the Lovasz conjecture:

Conjecture F: Every Cayley graph is hamiltonian.

Assume T∗ holds, then to prove Conj. F for cubic Cayley graphs
we have to deal with the following problem:

Problem: Prove that cubic Cayley graphs of girth at most six
are hamiltonian.

Note that N. and Škoviera proved in 1995 that for a cubic
vertex-transitive graph the cyclic connectivity is equal to the girth!

Hence, the cyclic connectivity c, implies there exists a cycle of
length c, and this implies that there exists a relation of length c in
terms of the generators.
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Type I. X = Cay(G; a, b, c), where a2 = b2 = c2 = 1

We may assume that |ab| ≤ |ac| ≤ |bc|, G is a finite quotient of
the extended triangle group of type (k,m, n), k ≤ m ≤ n.

Theorem

If the girth g(X) ≤ 6, then one of the following happens:

• g(X) = 3, G = C2 × C2 and X ∼= K4,

• g(X) = 4, and (ab)2 = 1,

• g(X) = 6, and (abc)2 = 1, and X is a honeycomb graph,

• g(X) = 6, and (ab)3 = 1. (the difficult case)



Hamiltonicity of graphs of Type I, case (ab)2 = 1

Proposition: Graphs of type I satisfying (ab)2 = 1 are hamiltonian.

• Proved by Rappaport-Strasser, see Pak, Radoičič DM 2009 for
the proof,

• It follows from a result by Powers (1985), who proved that
Cayley cubic graphs of girth 4 are hamiltonian,

• There is a proof based on the method by Glower and
Marušič



Essence of G-M method

Let X be a cubic strongly embedded graph into a surface (the
faces are bounded by true cycles). Let the of faces can be
3-coloured F = F1 ∪ F2 ∪ F3 such that

• F1 is independent, and the collection of cycles bounding faces
in F1 forms a 2-factor,

• F2 is independent,

• F3 induces a tree in the dual.

Then X admits a contractible hamilton cycle.



Case I (ab)2 = 1: proof by G-M. method

• form an embedding of X into a surface by attaching a 2-cell
to all the (ab)-cycles, (bc)-cycles and (ac)-cycles.

• consider the partial dual Y = X∗, induced by the vertices that
correspond to the (ab)-cycles and (bc)-cycles.

• observation Y is a bipartite graph, where all the (ab)-vertices
are of degree two,

• take a spanning tree T of Y and form a vertex decomposition
into an induced tree T ′ and an independent set I by setting I
to be the set of (ab)-vertices that are of degree 1 in T .

• by G-M. T ′ determines in the embedding of X a tree of faces
bounded by a (contractible) hamilton cycle.
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Case II. (abc)2 = 1

Proposition: Graphs of type I (abc)2 = 1 are hamiltonian.

Outline of the proof:

• Observe that each edge of X lies in exactly two 6-cycles
induced by the relation (abc)2 = 1,

• Thus X is a honeycomb graph on the torus,

• Honeycomb graphs are hamiltonian, see B. Alspach and D.
Matthew (2009), or Yang et.all (2004)



Case I (ab)3 = 1, the difficult case

Wanted: Cayley graphs coming from finite (torsion free) quotients
of the extedned triangle group:

∆(3,m, n) = 〈a, b, c| a2 = b2 = c2 = (ab)3 = (ac)m = (bc)n = 1〉
are hamiltonian.

G-M. method gives almost the result for (k,m, n) = (3, 3, n)!



Graphs of type II.

Theorem

Let X be a Cayley cubic graph X = Cay(G; a, b), a2 = 1, of girth
g(X) ≤ 6. Then X one of the following cases happens:

• g(X) = 3, and b3 = 1, or G ∼= C4 and X ∼= K4,

• g(X) = 4, a = b3, G ∼= C6 and X is K3,3,

• g(X) = 4, aba = b±1, G is abelian, or dihedral, and X is, a
prism or a Mobius ladder,

• g(X) = 4, and b4 = 1,

• g(X) = 5, and b5 = 1,

• g(X) = 6, and G = 〈a, b | a2 = b8 = 1, aba = b±3〉, X is the
generalised Petersen graph GP (8, 3),

• g(X) = 6, ab2a = b±2 and X is a honeycomb graph,

• g(X) = 6, and either (ab)3 = 1, or b6 = 1.
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Hamiltonicity, the difficult cases

The difficult cases are:

• b3 = 1, this case can be solved by using Conjecture T∗

• b5 = 1, b6 = 1, no idea how to solve these cases,

• (ab)3 = 1, G.M. method gives existence of hamilton path,
and in most cases a hamilton cycle as well,

In all the other cases we can verify the hamiltonicity.


