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K9 into 4 C3-factors
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K9 into 4 C3-factors and 0 C9-factors
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K9 into 2 C3-factors and 2 C9-factors
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K9 into 1 C3-factor and 3 C9-factors
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K9 into 0 C3-factors and 4 C9-factors
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K10 into a 1-factor, 2 C10-factors, and 2 C5-factors
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The Uniform Hamilton-Waterloo Problem for Complete
Graphs

Question

Given m, v and w , such that v and w divide m, the Uniform
Hamilton-Waterloo Problem asks whether Km can be decomposed into r
Cv -factors and s Cw -factors (and a 1-factor) for every r + s = (m − 1)/2
(r + s = (m − 2)/2).

Almost completely solved when v ,w are both odd, gcd(v ,w) = 1
(Burgess, Danziger, Traetta).

Completely solved when v ,w are both even (Bryant, Danziger, Dean).

Thus, we work on v ,w such that gcd(v ,w) ≥ 3, with w odd, and
allowing v to be either even or odd.
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K(5:3) into 2 C3-factors and 3 C15-factors
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Needed Known Results

Theorem (Alspach and Haggkvist, 1985; Alspach, Schellenberg, Stinson
and Wagner, 1989; Hoffman and Schellenberg 1991; Ray-Chadhuri and
Wilson, 1971)

Km (or Km − F if m is even) can be decomposed into Cv -factors if and
only if m ≡ 0 (mod v), (m, v) 6= (6, 3) and (m, v) 6= (12, 3).

Theorem (Liu)

If v ≥ 3 and t ≥ 2, K(m:t) can be decomposed into Cv -factors if and only
if v divides (mt), m(t − 1) is even, c is even if t = 2, and
(m, t, c) 6∈ {(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)}.
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Main Result

Theorem (KP)

Let m, k , v , and w be positive integers with
m gcd(v ,w)

4kvw
≥ 3 an integer,

gcd(v ,w) ≥ 3, v ,w odd. Then Km can be decomposed into s
C2kv -factors, r Cw -factors and a 1-factor for every s, r 6= 1.
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Construction schematics

In order to decompose Km into Cv -factors and Cw -factors.

With
gcd(v ,w) ≥ 3, v1 = v/ gcd(v ,w), w1 = w/ gcd(v ,w),
m/ gcd(v ,w)v1w1 ≥ 3.

Take t = m/v1w1 gcd(v ,w),

consider K(gcd(v ,w):t),

descompose K(gcd(v ,w):t) into Cgcd(v ,w)-factors,

give weight v1w1 to each vertex,

after giving weight we get K(v1w1 gcd(v ,w):t) decomposed into the
Cgcd(v ,w)-factors with weight,

the edges of Km not used give copies of Kgcd(v ,w)v1w1
,

decompose each copy of Kgcd(v ,w)v1w1
into Cv -factors or into

Cw -factors, and find the necessary decompositions of the
Cgcd(v ,w)-factors, after giving them weight.
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C(2:4)

G = C(2:4)
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C(3:3) into 3 C3-factors, and C(3:3) into 1 C3-factor and 2
C9-factors

H3(0, 0) H3(1, 1) H3(2, 2)

0

1

2
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Using permutations

If φ is a permutation of {0, 1, ..., v1 − 1}, then C(v1:t) can be decomposed
into Hv1(0, φ(0)), . . . ,Hv1(v1 − 1, φ(v1 − 1)).

If i = φ(i), then Hv1(i , φ(i)) is a Ct-factor.
If gcd(i − φ(i), v1) = 1, then Hv1(i , φ(i)) is a Hamilton cycle.
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Using Rings of Polynomials

We are going to decompose C(4k :t) into C2k t-factors and Ct-factors.

A. Pastine (TAG-UNSL) Hamilton-Waterloo 31/05/2018 16 / 18



Using Rings of Polynomials

Consider the ring R = Z2k [x ]/(x2 + x + 1). Label the vertices of C(4k :t)

with the elements of R.
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Using Rings of Polynomials

0

1

x

x + 1

0

1

x

x + 1

0

1

x

x + 1
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Using Rings of Polynomials

For each α ∈ R, define the bijection fα(γ) = xγ + α. Note that
fβ ◦ f 2

α (γ) = γ − α + β, f 3
α (γ) = γ.
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Using Rings of Polynomials
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What now?

Find decompositions when 2k divides m, but 4k does not.

Decide whether decompositions with r or s equal to 1 can be
achieved.

Study non-uniform decompositions.

Study a different problem.
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Thank you!!!
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