The Hamilton-Waterloo Problem with Cycle Sizes of Different Parity

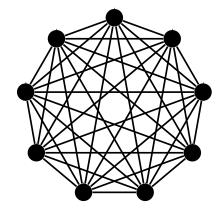
Adrián Pastine

Melissa S. Keranen (Michigan Technological University)

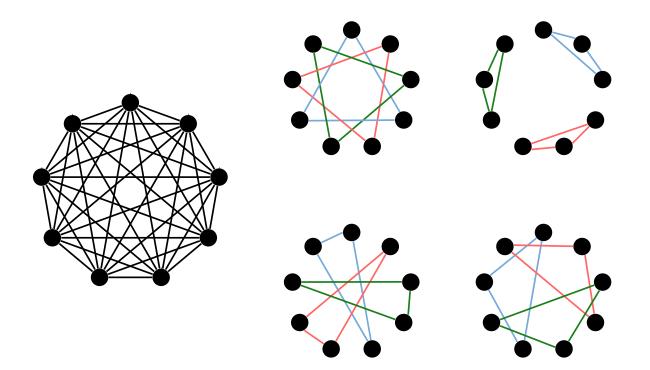
Grupo de Teoría Algebraica de Grafos Universidad Nacional de San Luis

Graphs, groups and more May 31st, 2018

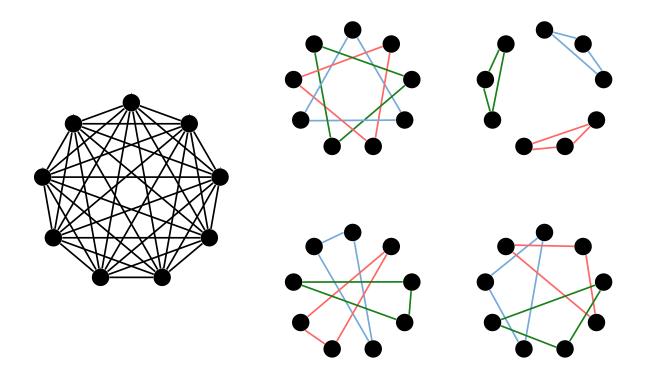
K_9 into 4 C_3 -factors



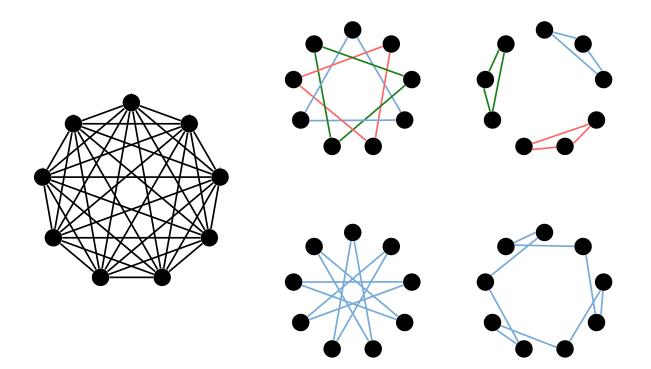
K_9 into 4 C_3 -factors



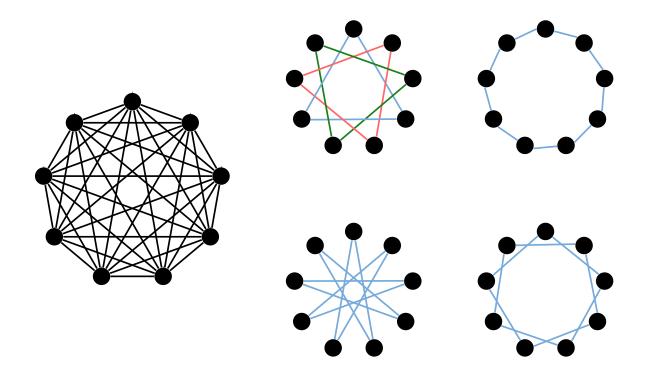
K_9 into 4 C_3 -factors and 0 C_9 -factors



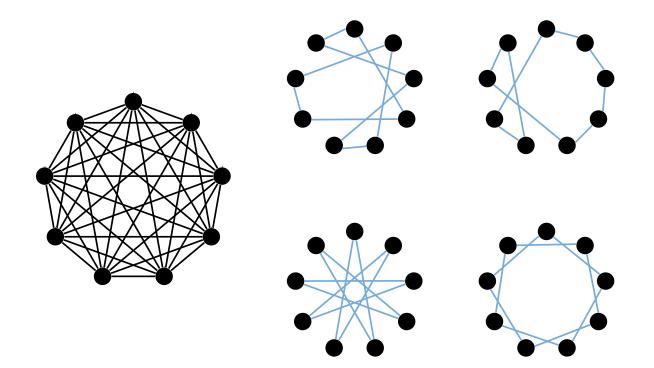
K_9 into 2 C_3 -factors and 2 C_9 -factors



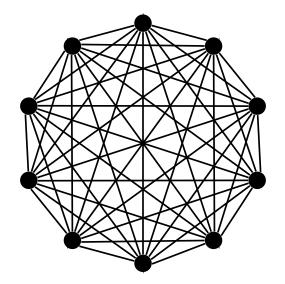
K_9 into 1 C_3 -factor and 3 C_9 -factors



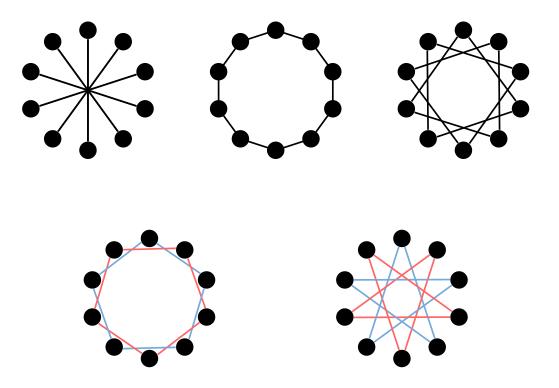
K_9 into 0 C_3 -factors and 4 C_9 -factors



K_{10} into a 1-factor, 2 C_{10} -factors, and 2 C_{5} -factors



 K_{10} into a 1-factor, 2 C_{10} -factors, and 2 C_{5} -factors



Question

Given *m*, *v* and *w*, such that *v* and *w* divide *m*, the Uniform Hamilton-Waterloo Problem asks whether K_m can be decomposed into *r* C_v -factors and *s* C_w -factors (and a 1-factor) for every r + s = (m - 1)/2(r + s = (m - 2)/2).

Question

Given *m*, *v* and *w*, such that *v* and *w* divide *m*, the Uniform Hamilton-Waterloo Problem asks whether K_m can be decomposed into *r* C_v -factors and *s* C_w -factors (and a 1-factor) for every r + s = (m - 1)/2(r + s = (m - 2)/2).

 Almost completely solved when v, w are both odd, gcd(v, w) = 1 (Burgess, Danziger, Traetta).

Question

Given *m*, *v* and *w*, such that *v* and *w* divide *m*, the Uniform Hamilton-Waterloo Problem asks whether K_m can be decomposed into *r* C_v -factors and *s* C_w -factors (and a 1-factor) for every r + s = (m - 1)/2(r + s = (m - 2)/2).

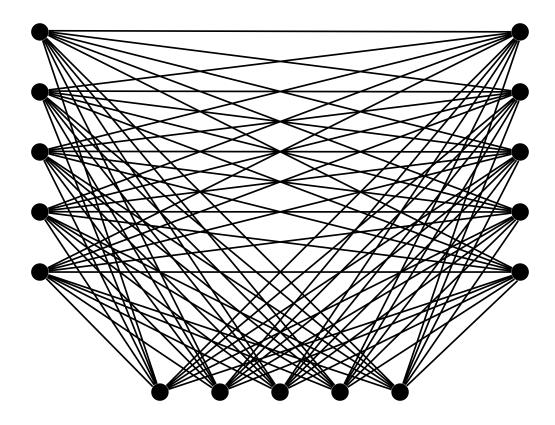
- Almost completely solved when v, w are both odd, gcd(v, w) = 1 (Burgess, Danziger, Traetta).
- Completely solved when v, w are both even (Bryant, Danziger, Dean).

Question

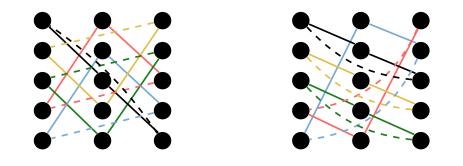
Given *m*, *v* and *w*, such that *v* and *w* divide *m*, the Uniform Hamilton-Waterloo Problem asks whether K_m can be decomposed into *r* C_v -factors and *s* C_w -factors (and a 1-factor) for every r + s = (m - 1)/2(r + s = (m - 2)/2).

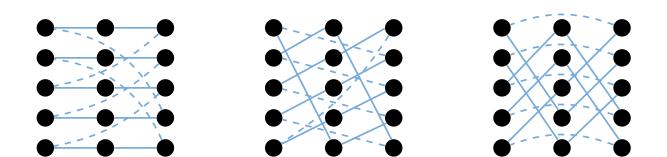
- Almost completely solved when v, w are both odd, gcd(v, w) = 1 (Burgess, Danziger, Traetta).
- Completely solved when v, w are both even (Bryant, Danziger, Dean).
- Thus, we work on v, w such that gcd(v, w) ≥ 3, with w odd, and allowing v to be either even or odd.

$K_{(5:3)}$ into 2 C_3 -factors and 3 C_{15} -factors



$K_{(5:3)}$ into 2 C_3 -factors and 3 C_{15} -factors





Theorem (Alspach and Haggkvist, 1985; Alspach, Schellenberg, Stinson and Wagner, 1989; Hoffman and Schellenberg 1991; Ray-Chadhuri and Wilson, 1971)

 K_m (or $K_m - F$ if m is even) can be decomposed into C_v -factors if and only if $m \equiv 0 \pmod{v}$, $(m, v) \neq (6, 3)$ and $(m, v) \neq (12, 3)$.

Theorem (Alspach and Haggkvist, 1985; Alspach, Schellenberg, Stinson and Wagner, 1989; Hoffman and Schellenberg 1991; Ray-Chadhuri and Wilson, 1971)

 K_m (or $K_m - F$ if m is even) can be decomposed into C_v -factors if and only if $m \equiv 0 \pmod{v}$, $(m, v) \neq (6, 3)$ and $(m, v) \neq (12, 3)$.

Theorem (Liu)

If $v \ge 3$ and $t \ge 2$, $K_{(m:t)}$ can be decomposed into C_v -factors if and only if v divides (mt), m(t-1) is even, c is even if t = 2, and $(m, t, c) \notin \{(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)\}.$

Theorem (KP)

Let m, k, v, and w be positive integers with $\frac{m \operatorname{gcd}(v, w)}{4^{k} v w} \ge 3$ an integer, $\operatorname{gcd}(v, w) \ge 3$, v, w odd. Then K_m can be decomposed into s $C_{2^{k}v}$ -factors, $r C_w$ -factors and a 1-factor for every $s, r \ne 1$. In order to decompose K_m into C_v -factors and C_w -factors.

• Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,

- Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,
- consider $K_{(gcd(v,w):t)}$,

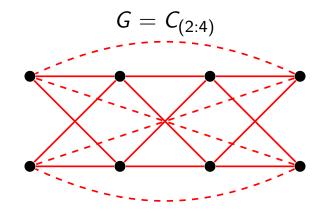
- Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,
- consider $K_{(gcd(v,w):t)}$,
- descompose $K_{(gcd(v,w):t)}$ into $C_{gcd(v,w)}$ -factors,

- Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,
- consider $K_{(gcd(v,w):t)}$,
- descompose $K_{(gcd(v,w):t)}$ into $C_{gcd(v,w)}$ -factors,
- give weight $v_1 w_1$ to each vertex,

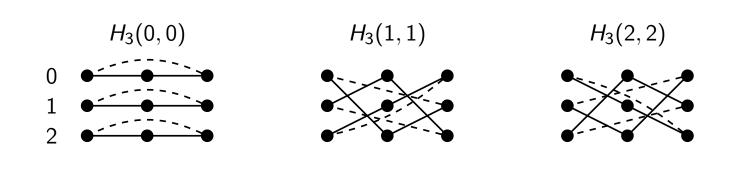
- Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,
- consider $K_{(gcd(v,w):t)}$,
- descompose $K_{(gcd(v,w):t)}$ into $C_{gcd(v,w)}$ -factors,
- give weight $v_1 w_1$ to each vertex,
- after giving weight we get $K_{(v_1w_1 \operatorname{gcd}(v,w):t)}$ decomposed into the $C_{\operatorname{gcd}(v,w)}$ -factors with weight,

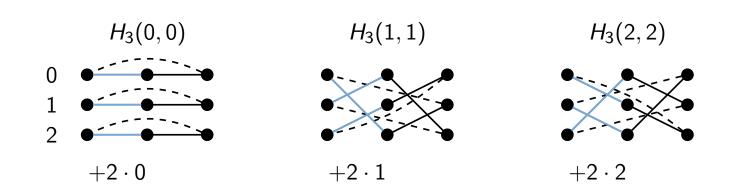
- Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,
- consider $K_{(gcd(v,w):t)}$,
- descompose $K_{(gcd(v,w):t)}$ into $C_{gcd(v,w)}$ -factors,
- give weight $v_1 w_1$ to each vertex,
- after giving weight we get $K_{(v_1w_1 \operatorname{gcd}(v,w):t)}$ decomposed into the $C_{\operatorname{gcd}(v,w)}$ -factors with weight,
- the edges of K_m not used give copies of $K_{gcd(v,w)v_1w_1}$,

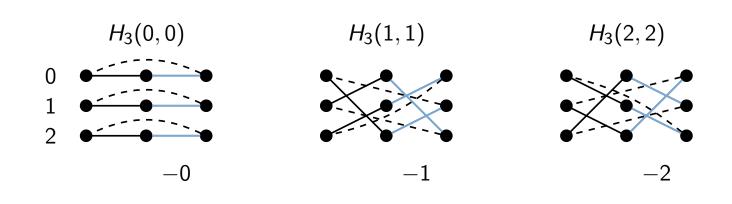
- Take $t = m/v_1w_1 \operatorname{gcd}(v, w)$,
- consider $K_{(gcd(v,w):t)}$,
- descompose $K_{(gcd(v,w):t)}$ into $C_{gcd(v,w)}$ -factors,
- give weight $v_1 w_1$ to each vertex,
- after giving weight we get $K_{(v_1w_1 \operatorname{gcd}(v,w):t)}$ decomposed into the $C_{\operatorname{gcd}(v,w)}$ -factors with weight,
- the edges of K_m not used give copies of $K_{gcd(v,w)v_1w_1}$,
- decompose each copy of $K_{gcd(v,w)v_1w_1}$ into C_v -factors or into C_w -factors, and find the necessary decompositions of the $C_{gcd(v,w)}$ -factors, after giving them weight.

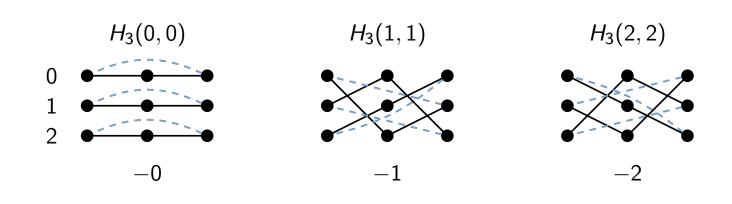


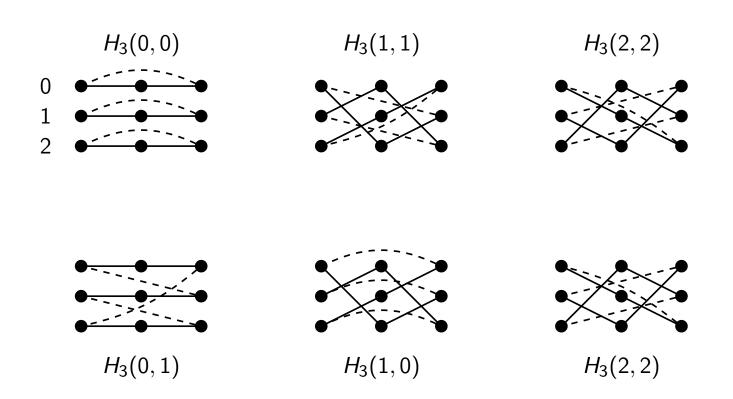
31/05/2018 13/18





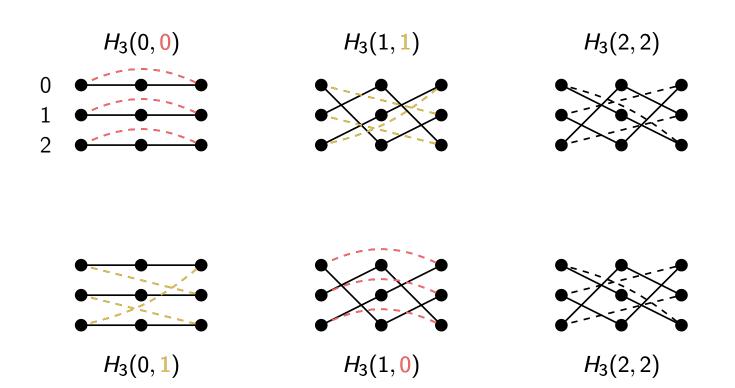






A. Pastine (TAG-UNSL)

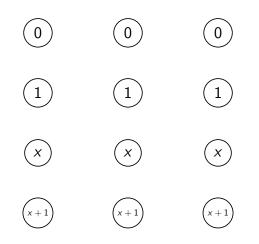
31/05/2018 14/1



If ϕ is a permutation of $\{0, 1, ..., v_1 - 1\}$, then $C_{(v_1:t)}$ can be decomposed into $H_{v_1}(0, \phi(0)), \ldots, H_{v_1}(v_1 - 1, \phi(v_1 - 1))$.

If ϕ is a permutation of $\{0, 1, ..., v_1 - 1\}$, then $C_{(v_1:t)}$ can be decomposed into $H_{v_1}(0, \phi(0)), \ldots, H_{v_1}(v_1 - 1, \phi(v_1 - 1))$. If $i = \phi(i)$, then $H_{v_1}(i, \phi(i))$ is a C_t -factor. If ϕ is a permutation of $\{0, 1, ..., v_1 - 1\}$, then $C_{(v_1:t)}$ can be decomposed into $H_{v_1}(0, \phi(0)), \ldots, H_{v_1}(v_1 - 1, \phi(v_1 - 1))$. If $i = \phi(i)$, then $H_{v_1}(i, \phi(i))$ is a C_t -factor. If $gcd(i - \phi(i), v_1) = 1$, then $H_{v_1}(i, \phi(i))$ is a Hamilton cycle. We are going to decompose $C_{(4^k:t)}$ into C_{2^kt} -factors and C_t -factors.

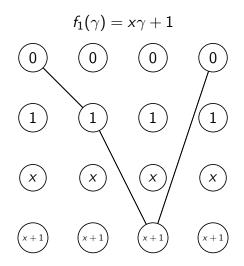
Consider the ring $R = \mathbb{Z}_{2^k}[x]/(x^2 + x + 1)$. Label the vertices of $C_{(4^k:t)}$ with the elements of R.

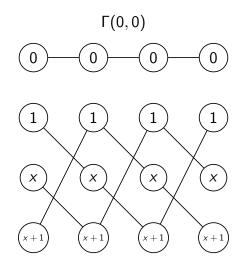


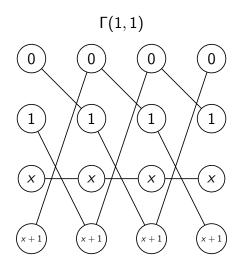
For each $\alpha \in R$, define the bijection $f_{\alpha}(\gamma) = x\gamma + \alpha$. Note that $f_{\beta} \circ f_{\alpha}^2(\gamma) = \gamma - \alpha + \beta$, $f_{\alpha}^3(\gamma) = \gamma$.

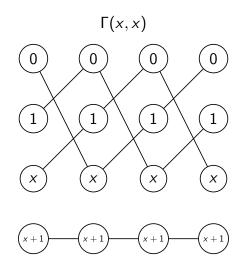
For each $\alpha \in R$, define the bijection $f_{\alpha}(\gamma) = x\gamma + \alpha$. Note that $f_{\beta} \circ f_{\alpha}^2(\gamma) = \gamma - \alpha + \beta$, $f_{\alpha}^3(\gamma) = \gamma$.

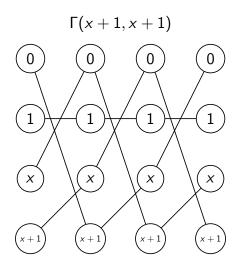
For each $\alpha \in R$, define the bijection $f_{\alpha}(\gamma) = x\gamma + \alpha$. Note that $f_{\beta} \circ f_{\alpha}^2(\gamma) = \gamma - \alpha + \beta$, $f_{\alpha}^3(\gamma) = \gamma$.

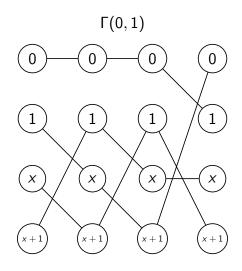


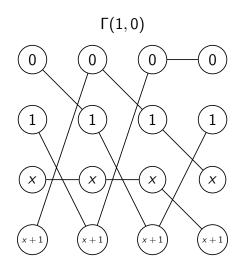


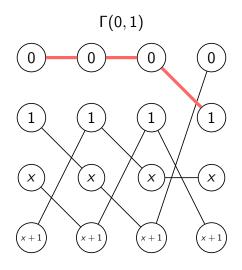


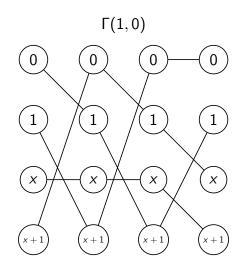


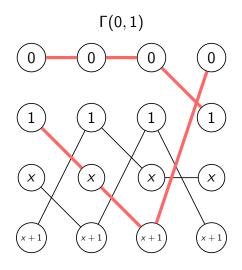


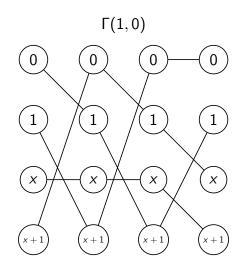


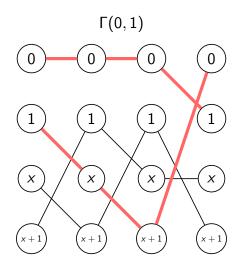


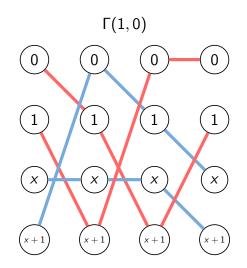












• Find decompositions when 2^k divides m, but 4^k does not.

- Find decompositions when 2^k divides m, but 4^k does not.
- Decide whether decompositions with *r* or *s* equal to 1 can be achieved.

- Find decompositions when 2^k divides m, but 4^k does not.
- Decide whether decompositions with *r* or *s* equal to 1 can be achieved.
- Study non-uniform decompositions.

- Find decompositions when 2^k divides m, but 4^k does not.
- Decide whether decompositions with *r* or *s* equal to 1 can be achieved.
- Study non-uniform decompositions.
- Study a different problem.

Thank you!!!