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Platonic Surfaces

It is known that every compact Riemann surface X of genus g can
be expressed in the form U/Ω, where U is the Riemann sphere Σ,
the Euclidean plane C, or the hyperbolic plane H, depending on
whether g is 0, 1 or > 1, respectively, and Ω is a discrete group
of isometries of U.

If Ω is normal in the ordinary triangle group Γ[2,m, n], which has
a presentation

〈x , y , z | x2 = ym = zn = xyz = 1〉,

then X is called Platonic.
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A map M on a Riemann surface X is an embedding of a finite
connected graph G into X such that the components of X\G are
open discs, which are called the faces of M.

M is said to be of type {m, n} if every face and vertex ofM has
valency m and n, respectively.

An automorphism ofM is an automorphism of X that leavesM
invariant and preserves incidence.

Aut±(M) : Group of all automorphisms of M
Aut+(M) : Group of orientation-preserving automorphisms of
M

If Aut+(M) is transitive on the directed edges, thenM is called
regular. If Aut±(M) is transitive on the flags, then M is called
reflexible.
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Let M be a reflexible regular map of type {m, n} on a compact
Riemann surface X of genus g . A reflection ofM fixes a number
of simple closed geodesics on X , which are called mirrors.

All mirrors on X divide it into |Aut±(M)| triangles, each of which
has angles π/2, π/m and π/n, and will be called a (2,m, n)-
triangle.

Example

Klein’s surface of genus 3 underlies a regular map M of type
{3, 7}. This surface contains 28 mirrors fixed by the reflections of
M and these mirrors divide it into 336 (2,3,7)-triangles.
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Klein’s surface of genus 3

F. Klein, Über die Transformation siebenter Ordnung der ellip-
tischen Funktionen, Math. Ann. 14 (1879), 428–471.



Kleins’s Notation

b : vertex

c : edge center

a : face center
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Coxeter’s Notation

0 : vertex

1 : edge center

2 : face center
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Coxeter’s Notation

0 : vertex

1 : edge center

2 : face center
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Every mirror M of a reflection of a regular mapM passes through
some of the geometric points of M such that these points form
a periodic sequence, which is called the pattern of M. (By ge-
ometric points we mean the vertices, the face-centers and the
edge-centers of M.)

Each repeated part is called a link and the number of links is
called the link index.

Example

Every mirror on Klein’s surface of genus 3 has pattern
010212010212010212 which we abbreviate to (010212)3. Here
010212 is a link and the link index is 3.
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[Melekoğlu-Singerman, 2016]:

I (i) The pattern of any mirror in a regular map M of type
{m, n} is obtained from one of the six links 01, 02, 12,
0102, 0212 and 010212;

I (ii) There cannot be more than three mirrors with different
patterns on the same Riemann surface.

The possible patterns according to the parity of m and n are
given in the following table.
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Table : Patterns

Case Pattern

m and n odd (010212)`

m odd n even (01)`1

m odd n even (0212)`2

m even n odd (12)`1

m even n odd (0102)`2

m and n even (01)`1

m and n even (12)`2

m and n even (02)`3

Here `, `1, `2 and `3 are the link indices and `is in different lines
need not be equal.



Quasi-Platonic Surfaces

Now let X = U/Ω be a compact Riemann surface. If Ω is normal
in the ordinary triangle group Γ[l ,m, n], which has a presentation

〈x , y , z | x l = ym = zn = xyz = 1〉,

then X is called Quasi-Platonic.

Let Ω be also normal in the extended triangle group Γ(l ,m, n),
which has a presentation

〈a, b, c | a2 = b2 = c2 = (ab)l = (bc)m = (ca)n = 1〉.

Then X can be divided into (l ,m, n)-triangles.
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As described in [Corn-Singerman, 1988], X can also be divided
into l , m and 2n sided regular polygons, which are hypervertices,
hyperedges and hyperfaces of a reflexible regular hypermap H of
type (l ,m, n) contained by X .

Again, every corner of a (l ,m, n)-triangle is either a hypervertex,
hyperedge or hyperface H, and we use the same notation.

0 : Hypervertex center

1 : Hyperedge center
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A hypermap of type (3,6,2) and a (3,6,2)-triangle



Patterns of Mirrors

A mirror with pattern (12)`



A mirror with pattern (0102)`



Table : Patterns of Hypermaps

Case l m n Pattern

1 even even even (02)`1 , (01)`2 , (12)`3

2 odd even even (0102)`1 , (12)`2

3 even odd even (1012)`1 , (02)`2

4 even even odd (0212)`1 , (01)`2

5 even odd odd (012021)`

6 odd even odd (010212)`

7 odd odd even (020121)`

8 odd odd odd (012)`, (210)`



Mirror Automorphisms

Link indices of a regular hypermap H are the orders of particular
orientation-preserving automorphisms of H called mirror auto-
morphisms.

Let M be a mirror of a reflection of a H. A mirror automorphism
of M is an automorphism of H that cyclically permutes the links
of the pattern of M.

[Melekoğlu-Singerman, 2016]:

Each pattern corresponds to a conjugacy class of mirror auto-
morphisms, and the order of the mirror automorphisms in that
conjugacy class is equal to the corresponding link index.
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In the following table, we give a representative mirror automor-
phism for each pattern (link). In the table, A, B and C are the
generators of Aut+(H) given below:

〈A,B,C | Al = Bm = Cn = ABC = · · · = 1〉

Note that each mirror automorphism is written as a product of
two orientation-preserving involutions. Also, when we have a
regular map, only the first six rows occur.



Table : Mirror Automorphisms

Case Link Mirror Automorphism

M 1 01 A
l
2B

m
2

M 2 02 A
l
2C

n
2

M 3 12 B
m
2 C

n
2

M 4 0102 B
m
2 A

l−1
2 C

n
2A

l+1
2

M 5 0212 B
m
2 C

n+1
2 A

l
2C

n−1
2

M 6 010212 B
m
2 C

n+1
2 A

l+1
2 B

m
2 A

l−1
2 C

n−1
2

7 1012 C
n
2B

m−1
2 A

l
2B

m+1
2

8 012021 A
l
2B

m+1
2 C

n+1
2 A

l
2C

n−1
2 B

m−1
2

9 020121 C
n
2B

m−1
2 A

l−1
2 C

n
2A

l+1
2 B

m+1
2

10 012 A
l+1
2 B

m+1
2 C

n+1
2

11 210 C
n−1
2 B

m−1
2 A

l−1
2
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