Patterns of Mirrors on Quasi-Platonic Surfaces

Adnan Melekoğlu
Department of Mathematics
Adnan Menderes University
Aydın, Turkey

Graphs, groups and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

Koper, 28th May - 1st June 2018

Platonic Surfaces

It is known that every compact Riemann surface X of genus g can be expressed in the form \mathbb{U} / Ω, where \mathbb{U} is the Riemann sphere Σ, the Euclidean plane \mathbb{C}, or the hyperbolic plane \mathbb{H}, depending on whether g is 0 , 1 or >1, respectively, and Ω is a discrete group of isometries of \mathbb{U}.

Platonic Surfaces

It is known that every compact Riemann surface X of genus g can be expressed in the form \mathbb{U} / Ω, where \mathbb{U} is the Riemann sphere Σ, the Euclidean plane \mathbb{C}, or the hyperbolic plane \mathbb{H}, depending on whether g is 0 , 1 or >1, respectively, and Ω is a discrete group of isometries of \mathbb{U}.

If Ω is normal in the ordinary triangle group $\Gamma[2, m, n]$, which has a presentation

$$
\left\langle x, y, z \mid x^{2}=y^{m}=z^{n}=x y z=1\right\rangle
$$

then X is called Platonic.

A map \mathcal{M} on a Riemann surface X is an embedding of a finite connected graph \mathcal{G} into X such that the components of $X \backslash \mathcal{G}$ are open discs, which are called the faces of \mathcal{M}.
\mathcal{M} is said to be of type $\{m, n\}$ if every face and vertex of \mathcal{M} has valency m and n, respectively.

A map \mathcal{M} on a Riemann surface X is an embedding of a finite connected graph \mathcal{G} into X such that the components of $X \backslash \mathcal{G}$ are open discs, which are called the faces of \mathcal{M}.
\mathcal{M} is said to be of type $\{m, n\}$ if every face and vertex of \mathcal{M} has valency m and n, respectively.

An automorphism of \mathcal{M} is an automorphism of X that leaves \mathcal{M} invariant and preserves incidence.

Aut ${ }^{ \pm}(\mathcal{M})$: Group of all automorphisms of \mathcal{M}
Aut ${ }^{+}(\mathcal{M})$: Group of orientation-preserving automorphisms of M

If $\mathrm{Aut}^{+}(\mathcal{M})$ is transitive on the directed edges, then \mathcal{M} is called regular. If $\operatorname{Aut}^{ \pm}(\mathcal{M})$ is transitive on the flags, then \mathcal{M} is called reflexible.

Let \mathcal{M} be a reflexible regular map of type $\{m, n\}$ on a compact Riemann surface X of genus g. A reflection of \mathcal{M} fixes a number of simple closed geodesics on X, which are called mirrors.

Let \mathcal{M} be a reflexible regular map of type $\{m, n\}$ on a compact Riemann surface X of genus g. A reflection of \mathcal{M} fixes a number of simple closed geodesics on X, which are called mirrors.

All mirrors on X divide it into $\left|\operatorname{Aut}^{ \pm}(\mathcal{M})\right|$ triangles, each of which has angles $\pi / 2, \pi / m$ and π / n, and will be called a $(2, m, n)$ triangle.

Let \mathcal{M} be a reflexible regular map of type $\{m, n\}$ on a compact Riemann surface X of genus g. A reflection of \mathcal{M} fixes a number of simple closed geodesics on X, which are called mirrors.

All mirrors on X divide it into $\left|\operatorname{Aut}^{ \pm}(\mathcal{M})\right|$ triangles, each of which has angles $\pi / 2, \pi / m$ and π / n, and will be called a $(2, m, n)$ triangle.

Example
Klein's surface of genus 3 underlies a regular map \mathcal{M} of type $\{3,7\}$. This surface contains 28 mirrors fixed by the reflections of \mathcal{M} and these mirrors divide it into 336 (2,3,7)-triangles.

Klein's surface of genus 3

F. Klein, Über die Transformation siebenter Ordnung der elliptischen Funktionen, Math. Ann. 14 (1879), 428-471.

Kleins's Notation
b: vertex
c: edge center
a : face center

Kleins's Notation
b: vertex
c : edge center
a: face center

Coxeter's Notation

0 : vertex
1: edge center
2: face center

Every mirror M of a reflection of a regular map \mathcal{M} passes through some of the geometric points of \mathcal{M} such that these points form a periodic sequence, which is called the pattern of M. (By geometric points we mean the vertices, the face-centers and the edge-centers of \mathcal{M}.)

Every mirror M of a reflection of a regular map \mathcal{M} passes through some of the geometric points of \mathcal{M} such that these points form a periodic sequence, which is called the pattern of M. (By geometric points we mean the vertices, the face-centers and the edge-centers of \mathcal{M}.)

Each repeated part is called a link and the number of links is called the link index.

Every mirror M of a reflection of a regular map \mathcal{M} passes through some of the geometric points of \mathcal{M} such that these points form a periodic sequence, which is called the pattern of M. (By geometric points we mean the vertices, the face-centers and the edge-centers of \mathcal{M}.)

Each repeated part is called a link and the number of links is called the link index.

Example
Every mirror on Klein's surface of genus 3 has pattern
010212010212010212 which we abbreviate to $(\mathbf{0 1 0 2 1 2})^{3}$. Here 010212 is a link and the link index is 3.
[Melekoğlu-Singerman, 2016]:

- (i) The pattern of any mirror in a regular map \mathcal{M} of type $\{m, n\}$ is obtained from one of the six links $\mathbf{0 1}, \mathbf{0 2}, \mathbf{1 2}$, 0102, 0212 and 010212;
- (ii) There cannot be more than three mirrors with different patterns on the same Riemann surface.
[Melekoğlu-Singerman, 2016]:
- (i) The pattern of any mirror in a regular map \mathcal{M} of type $\{m, n\}$ is obtained from one of the six links $\mathbf{0 1}, \mathbf{0 2}, \mathbf{1 2}$, 0102, 0212 and 010212;
- (ii) There cannot be more than three mirrors with different patterns on the same Riemann surface.

The possible patterns according to the parity of m and n are given in the following table.

Table: Patterns

Case	Pattern
m and n odd	$(\mathbf{0 1 0 2 1 2})^{\ell}$
m odd n even	$(\mathbf{0 1})^{\ell_{1}}$
m odd n even	$(\mathbf{0 2 1 2})^{\ell_{2}}$
m even n odd	$(\mathbf{1 2})^{\ell_{1}}$
m even n odd	$(\mathbf{0 1 0 2})^{\ell_{2}}$
m and n even	$(\mathbf{0 1})^{\ell_{1}}$
m and n even	$(\mathbf{1 2})^{\ell_{2}}$
m and n even	$(\mathbf{0 2})^{\ell_{3}}$

Here ℓ, ℓ_{1}, ℓ_{2} and ℓ_{3} are the link indices and ℓ_{i} s in different lines need not be equal.

Quasi-Platonic Surfaces

Now let $X=\mathbb{U} / \Omega$ be a compact Riemann surface. If Ω is normal in the ordinary triangle group $\Gamma[I, m, n]$, which has a presentation

$$
\left\langle x, y, z \mid x^{\prime}=y^{m}=z^{n}=x y z=1\right\rangle
$$

then X is called Quasi-Platonic.

Quasi-Platonic Surfaces

Now let $X=\mathbb{U} / \Omega$ be a compact Riemann surface. If Ω is normal in the ordinary triangle group $\Gamma[I, m, n]$, which has a presentation

$$
\left\langle x, y, z \mid x^{\prime}=y^{m}=z^{n}=x y z=1\right\rangle
$$

then X is called Quasi-Platonic.
Let Ω be also normal in the extended triangle group $\Gamma(I, m, n)$, which has a presentation

$$
\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{\prime}=(b c)^{m}=(c a)^{n}=1\right\rangle .
$$

Then X can be divided into (I, m, n)-triangles.

As described in [Corn-Singerman, 1988], X can also be divided into I, m and $2 n$ sided regular polygons, which are hypervertices, hyperedges and hyperfaces of a reflexible regular hypermap \mathcal{H} of type (I, m, n) contained by X.

As described in [Corn-Singerman, 1988], X can also be divided into I, m and $2 n$ sided regular polygons, which are hypervertices, hyperedges and hyperfaces of a reflexible regular hypermap \mathcal{H} of type (I, m, n) contained by X.

Again, every corner of a (I, m, n)-triangle is either a hypervertex, hyperedge or hyperface \mathcal{H}, and we use the same notation.

0 : Hypervertex center
1: Hyperedge center
2: Hyperface center

A hypermap of type (3,6,2) and a (3,6,2)-triangle

Patterns of Mirrors

A mirror with pattern (12) ${ }^{\ell}$

A mirror with pattern (0102) ${ }^{\ell}$

Table: Patterns of Hypermaps

Case	l	m	n	Pattern
1	even	even	even	$\left.(\mathbf{0 2})^{\ell_{1}},(\mathbf{0 1})^{\ell_{2}}, \mathbf{(1 2}\right)^{\ell_{3}}$
2	odd	even	even	$(\mathbf{0 1 0 2})^{\ell_{1}},(\mathbf{1 2})^{\ell_{2}}$
3	even	odd	even	$(\mathbf{1 0 1 2})^{\ell_{1}},(\mathbf{0 2})^{\ell_{2}}$
4	even	even	odd	$(\mathbf{0 2 1 2})^{\ell_{1}},(\mathbf{0 1})^{\ell_{2}}$
5	even	odd	odd	$(\mathbf{(0 1 2 0 2 1})^{\ell}$
6	odd	even	odd	$(\mathbf{0 1 0 2 1 2})^{\ell}$
7	odd	odd	even	$(\mathbf{0 2 0 1 2 1})^{\ell}$
8	odd	odd	odd	$(\mathbf{0 1 2})^{\ell},(\mathbf{2 1 0})^{\ell}$

Mirror Automorphisms

Link indices of a regular hypermap \mathcal{H} are the orders of particular orientation-preserving automorphisms of \mathcal{H} called mirror automorphisms.

Mirror Automorphisms

Link indices of a regular hypermap \mathcal{H} are the orders of particular orientation-preserving automorphisms of \mathcal{H} called mirror automorphisms.

Let M be a mirror of a reflection of a \mathcal{H}. A mirror automorphism of M is an automorphism of \mathcal{H} that cyclically permutes the links of the pattern of M.

Mirror Automorphisms

Link indices of a regular hypermap \mathcal{H} are the orders of particular orientation-preserving automorphisms of \mathcal{H} called mirror automorphisms.

Let M be a mirror of a reflection of a \mathcal{H}. A mirror automorphism of M is an automorphism of \mathcal{H} that cyclically permutes the links of the pattern of M.
[Melekoğlu-Singerman, 2016]:
Each pattern corresponds to a conjugacy class of mirror automorphisms, and the order of the mirror automorphisms in that conjugacy class is equal to the corresponding link index.

In the following table, we give a representative mirror automorphism for each pattern (link). In the table, A, B and C are the generators of $\operatorname{Aut}^{+}(\mathcal{H})$ given below:

$$
\left\langle A, B, C \mid A^{\prime}=B^{m}=C^{n}=A B C=\cdots=1\right\rangle
$$

Note that each mirror automorphism is written as a product of two orientation-preserving involutions. Also, when we have a regular map, only the first six rows occur.

Table: Mirror Automorphisms

Case	Link	Mirror Automorphism
M 1	$\mathbf{0 1}$	$A^{\frac{l}{2}} B^{\frac{m}{2}}$
M 2	$\mathbf{0 2}$	$A^{\frac{1}{2}} C^{\frac{n}{2}}$
M 3	$\mathbf{1 2}$	$B^{\frac{m}{2}} C^{\frac{n}{2}}$
M 4	$\mathbf{0 1 0 2}$	$B^{\frac{m}{2}} A^{\frac{l-1}{2}} C^{\frac{n}{2}} A^{\frac{l+1}{2}}$
M 5	$\mathbf{0 2 1 2}$	$B^{\frac{m}{2}} C^{\frac{n+1}{2}} A^{\frac{l}{2}} C^{\frac{n-1}{2}}$
M 6	$\mathbf{0 1 0 2 1 2}$	$B^{\frac{m}{2}} C^{\frac{n+1}{2}} A^{\frac{l+1}{2}} B^{\frac{m}{2}} A^{\frac{l-1}{2}} C^{\frac{n-1}{2}}$
7	$\mathbf{1 0 1 2}$	$C^{\frac{n}{2}} B^{\frac{m-1}{2}} A^{\frac{l}{2}} B^{\frac{m+1}{2}}$
8	$\mathbf{0 1 2 0 2 1}$	$A^{\frac{1}{2}} B^{\frac{m+1}{2}} C^{\frac{n+1}{2}} A^{\frac{l}{2}} C^{\frac{n-1}{2}} B^{\frac{m-1}{2}}$
9	$\mathbf{0 2 0 1 2 1}$	$C^{\frac{n}{2}} B^{\frac{m-1}{2}} A^{\frac{l-1}{2}} C^{\frac{n}{2}} A^{\frac{l+1}{2}} B^{\frac{m+1}{2}}$
10	$\mathbf{0 1 2}$	$A^{\frac{l+1}{2}} B^{\frac{m+1}{2}} C^{\frac{n+1}{2}}$
11	$\mathbf{2 1 0}$	$C^{\frac{n-1}{2}} B^{\frac{m-1}{2}} A^{\frac{l-1}{2}}$

Thank You

