Patterns of Mirrors on Quasi-Platonic Surfaces

Adnan Melekoğlu

Department of Mathematics Adnan Menderes University Aydın, Turkey

Graphs, groups and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays Koper, 28th May - 1st June 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Platonic Surfaces

It is known that every compact Riemann surface X of genus g can be expressed in the form \mathbb{U}/Ω , where U is the Riemann sphere Σ , the Euclidean plane \mathbb{C} , or the hyperbolic plane \mathbb{H} , depending on whether g is 0, 1 or > 1, respectively, and Ω is a discrete group of isometries of U.

Platonic Surfaces

It is known that every compact Riemann surface X of genus g can be expressed in the form \mathbb{U}/Ω , where \mathbb{U} is the Riemann sphere Σ , the Euclidean plane \mathbb{C} , or the hyperbolic plane \mathbb{H} , depending on whether g is 0, 1 or > 1, respectively, and Ω is a discrete group of isometries of \mathbb{U} .

If Ω is normal in the ordinary triangle group $\Gamma[2,m,n],$ which has a presentation

$$\langle x, y, z \mid x^2 = y^m = z^n = xyz = 1 \rangle,$$

then X is called Platonic.

A map \mathcal{M} on a Riemann surface X is an embedding of a finite connected graph \mathcal{G} into X such that the components of $X \setminus \mathcal{G}$ are open discs, which are called the faces of \mathcal{M} .

 \mathcal{M} is said to be of type $\{m, n\}$ if every face and vertex of \mathcal{M} has valency m and n, respectively.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A map \mathcal{M} on a Riemann surface X is an embedding of a finite connected graph \mathcal{G} into X such that the components of $X \setminus \mathcal{G}$ are open discs, which are called the faces of \mathcal{M} .

 \mathcal{M} is said to be of type $\{m, n\}$ if every face and vertex of \mathcal{M} has valency m and n, respectively.

An automorphism of \mathcal{M} is an automorphism of X that leaves \mathcal{M} invariant and preserves incidence.

 $\operatorname{Aut}^{\pm}(\mathcal{M})$: Group of all automorphisms of \mathcal{M} $\operatorname{Aut}^{+}(\mathcal{M})$: Group of orientation-preserving automorphisms of \mathcal{M}

If $\operatorname{Aut}^+(\mathcal{M})$ is transitive on the directed edges, then \mathcal{M} is called regular. If $\operatorname{Aut}^{\pm}(\mathcal{M})$ is transitive on the flags, then \mathcal{M} is called reflexible.

Let \mathcal{M} be a reflexible regular map of type $\{m, n\}$ on a compact Riemann surface X of genus g. A reflection of \mathcal{M} fixes a number of simple closed geodesics on X, which are called mirrors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{M} be a reflexible regular map of type $\{m, n\}$ on a compact Riemann surface X of genus g. A reflection of \mathcal{M} fixes a number of simple closed geodesics on X, which are called mirrors.

All mirrors on X divide it into $|\operatorname{Aut}^{\pm}(\mathcal{M})|$ triangles, each of which has angles $\pi/2$, π/m and π/n , and will be called a (2, m, n)-triangle.

Let \mathcal{M} be a reflexible regular map of type $\{m, n\}$ on a compact Riemann surface X of genus g. A reflection of \mathcal{M} fixes a number of simple closed geodesics on X, which are called mirrors.

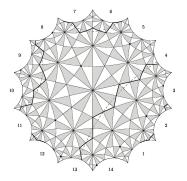
All mirrors on X divide it into $|\operatorname{Aut}^{\pm}(\mathcal{M})|$ triangles, each of which has angles $\pi/2$, π/m and π/n , and will be called a (2, m, n)-triangle.

Example

Klein's surface of genus 3 underlies a regular map \mathcal{M} of type $\{3,7\}$. This surface contains 28 mirrors fixed by the reflections of \mathcal{M} and these mirrors divide it into 336 (2,3,7)-triangles.

(日) (同) (三) (三) (三) (○) (○)

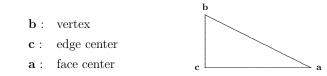
Klein's surface of genus 3



F. Klein, Über die Transformation siebenter Ordnung der elliptischen Funktionen, Math. Ann. **14** (1879), 428–471.

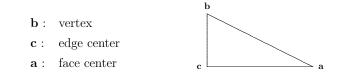
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kleins's Notation

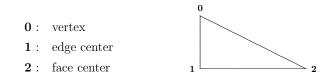


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Kleins's Notation



Coxeter's Notation



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Every mirror M of a reflection of a regular map \mathcal{M} passes through some of the geometric points of \mathcal{M} such that these points form a periodic sequence, which is called the pattern of M. (By geometric points we mean the vertices, the face-centers and the edge-centers of \mathcal{M} .)

Every mirror M of a reflection of a regular map \mathcal{M} passes through some of the geometric points of \mathcal{M} such that these points form a periodic sequence, which is called the pattern of M. (By geometric points we mean the vertices, the face-centers and the edge-centers of \mathcal{M} .)

Each repeated part is called a link and the number of links is called the link index.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every mirror M of a reflection of a regular map \mathcal{M} passes through some of the geometric points of \mathcal{M} such that these points form a periodic sequence, which is called the pattern of M. (By geometric points we mean the vertices, the face-centers and the edge-centers of \mathcal{M} .)

Each repeated part is called a link and the number of links is called the link index.

Example

Every mirror on Klein's surface of genus 3 has pattern 010212010212010212 which we abbreviate to $(010212)^3$. Here 010212 is a link and the link index is 3.

(日) (同) (三) (三) (三) (○) (○)

 $[Melekoğlu-Singerman,\ 2016]:$

- (i) The pattern of any mirror in a regular map \mathcal{M} of type $\{m, n\}$ is obtained from one of the six links **01**, **02**, **12**, **0102**, **0212** and **010212**;
- ▶ (ii) There cannot be more than three mirrors with different patterns on the same Riemann surface.

 $[Melekoğlu-Singerman,\ 2016]:$

- (i) The pattern of any mirror in a regular map \mathcal{M} of type $\{m, n\}$ is obtained from one of the six links **01**, **02**, **12**, **0102**, **0212** and **010212**;
- ▶ (ii) There cannot be more than three mirrors with different patterns on the same Riemann surface.

The possible patterns according to the parity of m and n are given in the following table.

Table : Pa	atterns
Case	Pattern
<i>m</i> and <i>n</i> odd	(010212) ^ℓ
m odd n even	$(01)^{\ell_1}$
m odd n even	$(0212)^{\ell_2}$
m even n odd	$(12)^{\ell_1}$
m even n odd	$(0102)^{\ell_2}$
m and n even	$(01)^{\ell_1}$
m and n even	$(12)^{\ell_2}$
m and n even	$(02)^{\ell_3}$

. .

Here ℓ , ℓ_1 , ℓ_2 and ℓ_3 are the link indices and ℓ_i s in different lines need not be equal.

Quasi-Platonic Surfaces

Now let $X = \mathbb{U}/\Omega$ be a compact Riemann surface. If Ω is normal in the ordinary triangle group $\Gamma[I, m, n]$, which has a presentation

$$\langle x, y, z \mid x' = y^m = z^n = xyz = 1 \rangle,$$

then X is called Quasi-Platonic.

Quasi-Platonic Surfaces

Now let $X = \mathbb{U}/\Omega$ be a compact Riemann surface. If Ω is normal in the ordinary triangle group $\Gamma[I, m, n]$, which has a presentation

$$\langle x, y, z \mid x' = y^m = z^n = xyz = 1 \rangle,$$

then X is called Quasi-Platonic.

Let Ω be also normal in the extended triangle group $\Gamma(I, m, n)$, which has a presentation

$$\langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^I = (bc)^m = (ca)^n = 1 \rangle.$$

Then X can be divided into (I, m, n)-triangles.

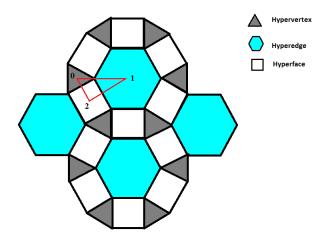
As described in [Corn-Singerman, 1988], X can also be divided into I, m and 2n sided regular polygons, which are hypervertices, hyperedges and hyperfaces of a reflexible regular hypermap \mathcal{H} of type (I, m, n) contained by X.

As described in [Corn-Singerman, 1988], X can also be divided into I, m and 2n sided regular polygons, which are hypervertices, hyperedges and hyperfaces of a reflexible regular hypermap \mathcal{H} of type (I, m, n) contained by X.

Again, every corner of a (I, m, n)-triangle is either a hypervertex, hyperedge or hyperface \mathcal{H} , and we use the same notation.

ex center $\frac{\pi}{l}$

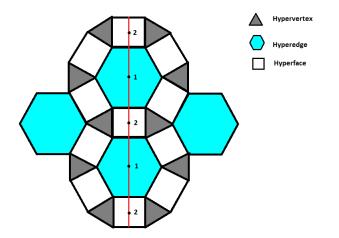
- $0: \ \ \, \mathrm{Hypervertex} \ \, \mathrm{center}$
- ${\bf 1}: \ \ {\rm Hyperedge \ center}$
- 2 : Hyperface center



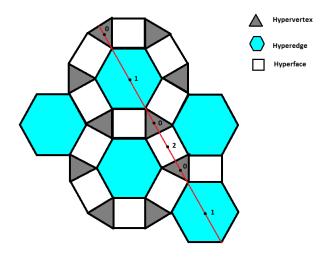
A hypermap of type (3,6,2) and a (3,6,2)-triangle

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Patterns of Mirrors



A mirror with pattern $(12)^{\ell}$



A mirror with pattern $(0102)^{\ell}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Case I m n Pattern 1 even even even $(02)^{\ell_1}, (01)^{\ell_2}, (12)^{\ell_3}$ 2 odd even even $(0102)^{\ell_1}, (02)^{\ell_2}$ 3 even odd even $(1012)^{\ell_1}, (02)^{\ell_2}$ 4 even odd odd $(0212)^{\ell_1}, (01)^{\ell_2}$ 5 even odd odd $(012021)^{\ell}$ 6 odd even odd $(012021)^{\ell}$ 7 odd odd even $(020121)^{\ell}$ 8 odd odd odd $(012)^{\ell}, (210)^{\ell}$					
2 odd even even $(0102)^{\ell_1}, (12)^{\ell_2}$ 3 even odd even $(1012)^{\ell_1}, (02)^{\ell_2}$ 4 even even odd $(0212)^{\ell_1}, (01)^{\ell_2}$ 5 even odd odd $(012021)^{\ell}$ 6 odd even odd $(010212)^{\ell}$ 7 odd odd even $(020121)^{\ell}$	Case	Ι	т	п	Pattern
3 even odd even $(1012)^{\ell_1}, (02)^{\ell_2}$ 4 even even odd $(0212)^{\ell_1}, (01)^{\ell_2}$ 5 even odd odd $(012021)^{\ell}$ 6 odd even odd $(010212)^{\ell}$ 7 odd odd even $(020121)^{\ell}$	1	even	even	even	$(02)^{\ell_1},(01)^{\ell_2},(12)^{\ell_3}$
4 even even odd $(0212)^{\ell_1}, (01)^{\ell_2}$ 5 even odd odd $(012021)^{\ell}$ 6 odd even odd $(010212)^{\ell}$ 7 odd odd even $(020121)^{\ell}$	2	odd	even	even	$(0102)^{\ell_1},(12)^{\ell_2}$
5 even odd $(012021)^{\ell}$ 6 odd even odd $(010212)^{\ell}$ 7 odd odd even $(020121)^{\ell}$	3	even	odd	even	$(1012)^{\ell_1},(02)^{\ell_2}$
6 odd even odd $(010212)^{\ell}$ 7 odd odd even $(020121)^{\ell}$	4	even	even	odd	$(0212)^{\ell_1},(01)^{\ell_2}$
7 odd odd even $(020121)^{\ell}$	5	even	odd	odd	(012021) ^ℓ
	6	odd	even	odd	(010212)ℓ
8 odd odd odd $(012)^{\ell}, (210)^{\ell}$	7	odd	odd	even	(020121)ℓ
	8	odd	odd	odd	(012) ^ℓ , (210) ^ℓ

Table : Patterns of Hypermaps

Mirror Automorphisms

Link indices of a regular hypermap \mathcal{H} are the orders of particular orientation-preserving automorphisms of \mathcal{H} called mirror automorphisms.

(ロ)、(型)、(E)、(E)、 E) のQの

Mirror Automorphisms

Link indices of a regular hypermap \mathcal{H} are the orders of particular orientation-preserving automorphisms of \mathcal{H} called mirror automorphisms.

Let M be a mirror of a reflection of a \mathcal{H} . A mirror automorphism of M is an automorphism of \mathcal{H} that cyclically permutes the links of the pattern of M.

Mirror Automorphisms

Link indices of a regular hypermap \mathcal{H} are the orders of particular orientation-preserving automorphisms of \mathcal{H} called mirror automorphisms.

Let M be a mirror of a reflection of a \mathcal{H} . A mirror automorphism of M is an automorphism of \mathcal{H} that cyclically permutes the links of the pattern of M.

[Melekoğlu-Singerman, 2016]:

Each pattern corresponds to a conjugacy class of mirror automorphisms, and the order of the mirror automorphisms in that conjugacy class is equal to the corresponding link index. In the following table, we give a representative mirror automorphism for each pattern (link). In the table, A, B and C are the generators of $\operatorname{Aut}^+(\mathcal{H})$ given below:

$$\langle A, B, C \mid A' = B^m = C^n = ABC = \dots = 1 \rangle$$

Note that each mirror automorphism is written as a product of two orientation-preserving involutions. Also, when we have a regular map, only the first six rows occur.

Table : Mirror Automorphisms

Case	Link	Mirror Automorphism
M 1	01	$A^{\frac{l}{2}}B^{\frac{m}{2}}$
M 2	02	$A^{\frac{l}{2}}C^{\frac{n}{2}}$
M 3	12	$B^{\frac{m}{2}}C^{\frac{n}{2}}$
M 4	0102	$B^{\frac{m}{2}}A^{\frac{l-1}{2}}C^{\frac{n}{2}}A^{\frac{l+1}{2}}$
M 5	0212	$B^{\frac{m}{2}}C^{\frac{n+1}{2}}A^{\frac{l}{2}}C^{\frac{n-1}{2}}$
M 6	010212	$B^{\frac{m}{2}}C^{\frac{n+1}{2}}A^{\frac{l+1}{2}}B^{\frac{m}{2}}A^{\frac{l-1}{2}}C^{\frac{n-1}{2}}$
7	1012	$C^{\frac{n}{2}}B^{\frac{m-1}{2}}A^{\frac{l}{2}}B^{\frac{m+1}{2}}$
8	012021	$A^{\frac{l}{2}}B^{\frac{m+1}{2}}C^{\frac{n+1}{2}}A^{\frac{l}{2}}C^{\frac{n-1}{2}}B^{\frac{m-1}{2}}$
9	020121	$C^{\frac{n}{2}}B^{\frac{m-1}{2}}A^{\frac{l-1}{2}}C^{\frac{n}{2}}A^{\frac{l+1}{2}}B^{\frac{m+1}{2}}$
10	012	$A^{\frac{l+1}{2}}B^{\frac{m+1}{2}}C^{\frac{n+1}{2}}$
11	210	$C^{\frac{n-1}{2}}B^{\frac{m-1}{2}}A^{\frac{l-1}{2}}$

Thank You

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>