Self-dual codes from orbit matrices and quotient matrices of combinatorial designs

Nina Mostarac (nmavrovic@math.uniri.hr)

Dean Crnković (deanc@math.uniri.hr)

Department of Mathematics, University of Rijeka, Croatia Supported by CSF, Grant 1637

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays, Koper, Slovenia

June	1,	2018	

1/29

Content

Self-dual codes

2 Block designs

Orbit matrices of block designs

3 SGDDs

- Quotient matrices of SGDDs with the dual property
- 4 Constructions of self-dual codes
 - Codes from orbit matrices of block designs
 - Codes from symmetric block designs and SGDDs

Content

Self-dual codes

2 Block designs

Orbit matrices of block designs

3 SGDDs

- Quotient matrices of SGDDs with the dual property
- 4 Constructions of self-dual codes
 - Codes from orbit matrices of block designs
 - Codes from symmetric block designs and SGDDs

Codes

Definition 1

Let *p* be a prime power. A *p*-ary linear code *C* of **length** *n* and **dimension** *k* is a *k*-dimensional subspace of the vector space $(\mathbb{F}_p)^n$.

• Notation: $[n, k]_p$ code or [n, k] code

Definition 2

A generating matrix of a linear [n, k] code is a $k \times n$ matrix whose rows are the basis vectors of the code.

Self-dual codes

Definition 3

Let $C \subseteq \mathbb{F}_p^n$ be a linear code. Its dual code is the code $C^{\perp} = \{x \in \mathbb{F}_p^n | x \cdot c = 0, \forall c \in C\}$, where \cdot is the standard inner product. The code *C* is called self-orthogonal if $C \subseteq C^{\perp}$, and *C* is called self-dual if $C = C^{\perp}$.

Proposition 4

Let *G* be a generating matrix of a linear [n, k, d] code *C*.

1 *C* is self-orthogonal
$$\Leftrightarrow GG^T = 0$$
.

2 *C* is **self-dual**
$$\Leftrightarrow$$
 it is self-orthogonal and $k = \frac{n}{2}$.

Self-dual codes

Definition 5

We may use a symmetric nonsingular matrix U over the field \mathbb{F}_p to define a scalar product $\langle \cdot, \cdot \rangle_U$ for row vectors in \mathbb{F}_p^n : $\langle a, c \rangle_U = aUc^T$. The *U*-dual code of a linear code *C* is the code

$$C^{U} = \{ \boldsymbol{a} \in \mathbb{F}_{p}^{n} \mid \langle \boldsymbol{a}, \boldsymbol{c} \rangle_{U} = \boldsymbol{0}, \ \forall \boldsymbol{c} \in \boldsymbol{C} \}.$$

A code *C* is called self-*U*-dual, or self-dual with respect to *U*, if $C = C^{U}$.

Content

Self-dual codes

2 Block designs

Orbit matrices of block designs

3 SGDDs

- Quotient matrices of SGDDs with the dual property
- 4 Constructions of self-dual codes
 - Codes from orbit matrices of block designs
 - Codes from symmetric block designs and SGDDs

Block designs

Definition 6

A **block design** or a $2 - (v, k, \lambda)$ **design** is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ such that $|\mathcal{P}| = v$, each block is incident with exactly k points and each pair of points is incident with exactly λ blocks. If v = b, we say that a block design is **symmetric**.

Orbit matrices of block designs

- Let D = (P, B, I) be a 2-(v, k, λ) design and let G ≤ Aut(D).
- Denote with P₁,..., P_n G-orbits of points, and with B₁,..., B_m G-orbits of blocks and let |P_i| = ω_i, |B_j| = Ω_j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
- For $x \in \mathcal{B}$ and $Q \in \mathcal{P}$ we introduce the notation: $\langle x \rangle = \{ R \in \mathcal{P} | (R, x) \in I \}, \ \langle Q \rangle = \{ y \in \mathcal{B} | (Q, y) \in I \}.$
- Let $Q \in P_i$, $x \in B_j$. We will denote:

$$\Gamma_{ij} = |\langle Q \rangle \cap B_j|, \quad \gamma_{ij} = |\langle x \rangle \cap P_i|.$$

It holds:
$$\sum_{j=1}^{m} \Gamma_{ij} = r, \ \forall i \in \{1, ..., n\}, \qquad \sum_{i=1}^{n} \gamma_{ij} = k, \ \forall j \in \{1, ..., m\}.$$

Definition 7

Matrices $S = [\Gamma_{ij}]$ and $R = [\gamma_{ij}]$ are called point and block orbit matrix of the design D induced by the action of the group *G*.

Nina Mostarac

Lemma 8

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a block design, $G \leq Aut(\mathcal{D})$, and let $\omega_i, \Omega_j, \gamma_{ij}, \Gamma_{ij}$ be defined as before. The following equations hold:

a)
$$\Omega_j \gamma_{ij} = \omega_i \Gamma_{ij};$$

b) $\sum_{j=1}^m \Gamma_{ij} \gamma_{sj} = \lambda \omega_s + \delta_{is} \cdot (r - \lambda), \ i, s \in \{1, ..., n\}.$

Proposition 9

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a block design, $G \leq Aut(\mathcal{D})$, and let $\omega_i, \Omega_j, \gamma_{ij}, \Gamma_{ij}$ be defined as before. The following equations hold:

1
$$\sum_{i=1}^{n} \gamma_{ij} = k;$$

2 $\sum_{j=1}^{m} \frac{\Omega_j}{\omega_i} \gamma_{ij} \gamma_{sj} = \lambda \omega_s + \delta_{is} \cdot (r - \lambda).$

Content

Self-dual codes

2 Block designs

Orbit matrices of block designs

3 SGDDs

- Quotient matrices of SGDDs with the dual property
- 4 Constructions of self-dual codes
 - Codes from orbit matrices of block designs
 - Codes from symmetric block designs and SGDDs

SGDD

Definition 10

A (group) divisible design (GDD) with parameters (v, b, r, k, λ_1 , λ_2 , m, n) is an incidence structure with v points, b blocks and constant block size k in which every point appears in exactly r blocks and whose point set can be partitioned into m classes of size n, such that:

- two points from the same class appear together in exactly λ₁ blocks,
- two points from different classes appear together in exactly λ_2 blocks.

For the parameters of a GDD it holds:

$$v = mn$$
, $bk = vr$, $(n-1)\lambda_1 + n(m-1)\lambda_2 = r(k-1)$, $rk \ge v\lambda_2$.

SGDD

Definition 11

A GDD is called a symmetric GDD (SGDD) if v = b (or, equivalently,

r = k). It is then denoted by $D(v, k, \lambda_1, \lambda_2, m, n)$.

Definition 12

A SGDD D is said to have the dual property if the dual of D is again a divisible design with the same parameters as D.

Quotient matrices of SGDDs with the dual property

The point and the block partition from the definition of a SGDD with the dual property give us a canonical partition of the incidence matrix:

$$N = \begin{bmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mm} \end{bmatrix}, \text{ where } A_{ij}\text{'s are square submatrices of order } n.$$

$$\Rightarrow NN^{T} = \begin{bmatrix} B_{11} & \cdots & B_{1m} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mm} \end{bmatrix}, B_{ij} = [(k - \lambda_1)I_n + (\lambda_1 - \lambda_2)J_n]\delta_{ij} + \lambda_2 J_n$$

Quotient matrices of SGDDs with the dual property

Remark 1

Each block A_{ij} has constant row (and block) sum.

Definition 13

We say that an $m \times m$ matrix $R = [r_{ij}]$ is a quotient matrix of a SGDD with the dual property if every element r_{ij} is equal to the row sum of the block A_{ij} of the above canonical partition.

It holds:
$$RR^T = (k^2 - v\lambda_2)I_m + n\lambda_2J_m$$
.

Content

Self-dual codes

2 Block designs

Orbit matrices of block designs

3 SGDDs

Quotient matrices of SGDDs with the dual property

4 Constructions of self-dual codes

- Codes from orbit matrices of block designs
- Codes from symmetric block designs and SGDDs

Wilson describes the following result of Blokhuis and Calderbank:

Theorem 4.1

Let \mathcal{D} be a 2-(v, k, λ) design and p an odd prime which exactly divides $r - \lambda$ (that is $p|(r - \lambda)$, but $p^2 \nmid (r - \lambda)$). Suppose that $|S \cap T| \equiv k \pmod{p}$ for every two blocks S and T of the design and that v is odd. Then:

- 1 if $k \neq 0 \pmod{p}$, then there exists a self-dual p-ary code of length v + 1with respect to U = diag(1, ..., 1, -k);
- 2 if $k \equiv 0 \pmod{p}$, then there exists a self-dual p-ary code of length v + 1with respect to U' = diag(1, ..., 1, -v).

Sketch of the proof:

Let *N* be a $v \times b$ incidence matrix for \mathcal{D} .

$$M = \begin{bmatrix} & & & & 1 \\ & N^T & & \vdots \\ & 1 \end{bmatrix} , M' = \begin{bmatrix} & & 0 \\ N^T & \vdots \\ & & 0 \\ \hline 1 & \cdots & 1 & 1 \end{bmatrix}.$$

Theorem 4.2 (Crnković, Mostarac)

Let \mathcal{D} be a 2-(v, k, λ) design, $G \leq Aut(\mathcal{D})$, and let $\omega_i, \Omega_j, \gamma_{ij}, \Gamma_{ij}$ be defined as before. Let p be a prime such that $p|(r - \lambda)$, and $p \nmid \Omega_1, ..., \Omega_m, \omega_1, ..., \omega_n$. Then the following holds:

- if p ∤ λ then there exists a self-orthogonal p-ary code of length m + 1 with respect to U = diag(Ω₁,...,Ω_m, −λ);
- if p|λ and p ∤ b then there exists a self-orthogonal p-ary code of length m + 1 with respect to V = diag(Ω₁,...,Ω_m, -b).

Sketch of the proof:

Let *R* be a block orbit matrix for \mathcal{D} induced by the action of *G*.

$$M = \begin{bmatrix} & & & \omega_1 \\ & & \omega_2 \\ & & \vdots \\ & & \omega_n \end{bmatrix} \text{ and } M' = \begin{bmatrix} & & & 0 \\ & R & & \vdots \\ & & & 0 \\ \hline & 1 & \cdots & 1 & 1 \end{bmatrix} \dots$$

Self-orthogonal codes from orbit matrices of block designs

Theorem 4.3 (Crnković, Mostarac)

Let \mathcal{D} be a 2-(v, k, λ) design which admits an automorphism group G acting on \mathcal{D} with all orbits of the same size w, and let R be an orbit matrix induced by the action of the group G on the design \mathcal{D} . If all the block intersection numbers of the design (including k) are divisible by p, where p is a prime, then the matrix R^T spans a self-orthogonal code of length $\frac{v}{w}$ over \mathbb{F}_p .

Theorem 4.4 (Crnković, Mostarac)

Let \mathcal{D} be a 2-(v, k, λ) design which admits an automorphism group G acting on \mathcal{D} with all orbits of the same length q, and let R be an orbit matrix induced by the action of the group G on \mathcal{D} . Let p be a prime such that $p|(r - \lambda)$ but $p^2 \nmid (r - \lambda)$, and $p \nmid q$. If the number of point orbits n is odd, and all the block intersection numbers of \mathcal{D} (including k) are congruent modulo p, then:

- if p ∤ k then there exists a self-dual p-ary code of length n + 1 with respect to U = diag(q,...,q,-k);
- 2 if p|k then there exists a self-dual p-ary code of length n + 1 with respect to V = diag(1, ..., 1, -n).

Sketch of the proof:

$$M = \begin{bmatrix} & & & | & q \\ & & R^T & & \vdots \\ & & & q \end{bmatrix} \text{ and } M' = \begin{bmatrix} & & 0 \\ & & R^T & & \vdots \\ & & & 0 \\ \hline 1 & \cdots & 1 & 1 \end{bmatrix}$$

Nina Mostarac

Codes from symmetric block designs

• Assmus, Mezzaroba and Salwach used incidence matrices of symmetric designs to obtain **self-dual codes**.

Theorem 4.5 (E. F. Assmus, Jr., J. A. Mezzaroba, C. J. Salwach)

Let p be a prime and \mathcal{D} a symmetric (v, k, λ) -design with an incidence matrix M.

- **1** If p|k and $p|\lambda$, then the rows of M span a **self-orthogonal** code over \mathbb{F}_p .
- 2 Let $p|(k \lambda)$ and $p \nmid k$, and let a $v \times (v + 1)$ matrix G be defined as follows:

$$G = \begin{bmatrix} \sqrt{-k} & & \\ \vdots & & \\ \sqrt{-k} & & \end{bmatrix}$$

If -k is a quadratic residue mod p let $\mathbb{F} = \mathbb{F}_p$, if not let $\mathbb{F} = \mathbb{F}_{p^2}$. Then the rows of *G* span a self-orthogonal code over \mathbb{F} , and if $p^2 \nmid (k - \lambda)$ the code is self-dual.

- 3 If $p|\lambda$ and p|(k+1), then the rows of a $v \times 2v$ matrix G span a **self-dual** [2v, v]code over \mathbb{F}_p , where $G = \begin{bmatrix} I & M \end{bmatrix}$.
- 4 If p = 2, λ is odd, and k even, then the rows of a $(v + 1) \times (2v + 2)$ matrix G span a self-dual [2v + 2, v + 1] code over \mathbb{F}_2 , where G is defined as:

$$G = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & & & \\ & \ddots & & \\ & & M & \\ & & 1 \end{bmatrix}.$$
22/29 Self-dual codes from combine

Nina Mostarac

Codes from symmetric designs

- Instead of using incidence matrices of symmetric designs we will use orbit matrices of symmetric designs to obtain self-dual codes.
- We will assume an automorphism group of a symmetric design that acts on the set of points and on the set of blocks with all the orbits of the same lenght.

Theorem 4.6 (Crnković, Mostarac)

Let \mathcal{D} be a symmetric (v, k, λ) -design which admits the automorphism group G that acts on the set of points and on the set of blocks with $t = \frac{v}{\Omega}$ orbits of length Ω . Let R be the **orbit matrix** of the design \mathcal{D} induced by the action of the group G, and p a prime.

- If p|k and p|λ, then the rows of R span a self-orthogonal code of length t over F_p.
- **2** Let $p|(k \lambda)$, $p \nmid k\Omega$, and let a $t \times (t + 1)$ matrix G be defined as:

$$G = \begin{bmatrix} \sqrt{-K\Omega} & & \\ \vdots & & \\ \sqrt{-K\Omega} & & \end{bmatrix}$$

If $-k\Omega$ is a quadratic residue modulo p, then let $\mathbb{F} = \mathbb{F}_p$, otherwise let $\mathbb{F} = \mathbb{F}_{p^2}$. Then the rows of G span a **self-orthogonal** code over \mathbb{F} . Furthermore, if $p^2 \nmid (k - \lambda)$, this code is a self-dual $[t + 1, \frac{t+1}{2}]$ code.

Codes from symmetric designs

Theorem 4.6 continued.

- **3** If $p|\lambda$ and p|(k + 1), then the rows of a $t \times 2t$ matrix $G = \begin{bmatrix} I & R \end{bmatrix} G$ span a self-dual [2t, t] code over \mathbb{F}_p .
- 4 If p = 2, λ is odd, k is even, and Ω odd, then the rows of a (t + 1) × (2t + 2) matrix G span a self-dual [2t + 2, t + 1] code over F₂, where G is defined as:

$$G = \begin{bmatrix} & 0 & 1 & \cdots & 1 \\ & 1 & & & \\ & I & \vdots & R & \\ & & 1 & & & \end{bmatrix}$$

Codes from SGDDs with the dual property

• We will also use **quotient matrices** of SGDDs with the dual property to obtain **self-dual codes**.

Theorem 4.7 (Crnković, Mostarac)

Let $D = (v, k, \lambda_1, \lambda_2, m, n)$ be a SGDD with the dual property, with the **quotient matrix** *R*, and let *p* be a prime.

- If p | (k² vλ₂) and p | nλ₂, then the rows of R span a self-orthogonal code of lenght m over F_p.
- 2 Let $p|(k^2 v\lambda_2)$, $p \nmid n\lambda_2$, and let an $m \times (m + 1)$ matrix G be equal to:

$$G = \begin{bmatrix} \sqrt{-n\lambda_2} & & \\ \vdots & R & \\ \sqrt{-n\lambda_2} & & \end{bmatrix}$$

If $-n\lambda_2$ is a quadratic residue modulo p, then let $\mathbb{F} = \mathbb{F}_p$, otherwise let $\mathbb{F} = \mathbb{F}_{p^2}$. Then the rows of G span a **self-orthogonal** code over \mathbb{F} . Furthermore, if $p^2 \nmid (k^2 - v\lambda_2)$ and $p \nmid k$, then this code is a self-dual $[m + 1, \frac{m+1}{2}]$ code.

Codes from SGDDs with the dual property

Theorem 4.7 continued.

- **3** If $p|n\lambda_2$ and $p|(k^2 + 1)$, then the rows of an $m \times 2m$ matrix *G* span a self-dual [2m, m] code over \mathbb{F}_p , where $G = \begin{bmatrix} I & R \end{bmatrix}$.
- 4 If p = 2, k is even, and m, n and λ_2 are odd, then the rows of an $(m+1) \times (2m+2)$ matrix G span a self-dual [2m+2, m+1] code over \mathbb{F}_2 , where G is defined as:

$$G = \begin{bmatrix} & 0 & 1 & \cdots & 1 \\ & 1 & & & \\ & I & \vdots & R & \\ & & 1 & & & \end{bmatrix}$$

Thank you for your attention! ;)