Self-dual codes from orbit matrices and quotient matrices of combinatorial designs

Nina Mostarac (nmavrovic@math.uniri.hr)
Dean Crnković (deanc@math.uniri.hr)

Department of Mathematics, University of Rijeka, Croatia Supported by CSF, Grant 1637

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays, Koper, Slovenia

June 1, 2018

Content

(1) Self-dual codes

(2) Block designs

- Orbit matrices of block designs
(3) SGDDs
- Quotient matrices of SGDDs with the dual property

4 Constructions of self-dual codes

- Codes from orbit matrices of block designs
- Codes from symmetric block designs and SGDDs

Content

(1) Self-dual codes

(2) Block designs

- Orbit matrices of block designs
(3) SGDDS
- Quotient matrices of SGDDs with the dual property

4. Constructions of self-dual codes

- Codes from orbit matrices of block designs
- Codes from symmetric block designs and SGDDs

Codes

Definition 1

Let p be a prime power. A p-ary linear code C of length n and dimension k is a k-dimensional subspace of the vector space $\left(\mathbb{F}_{p}\right)^{n}$.

- Notation: $[n, k]_{p}$ code or $[n, k]$ code

Definition 2

A generating matrix of a linear $[n, k]$ code is a $k \times n$ matrix whose rows are the basis vectors of the code.

Self-dual codes

Definition 3

Let $C \subseteq \mathbb{F}_{p}^{n}$ be a linear code. Its dual code is the code $C^{\perp}=\left\{x \in \mathbb{F}_{p}^{n} \mid x \cdot c=0, \forall c \in C\right\}$, where \cdot is the standard inner product. The code C is called self-orthogonal if $C \subseteq C^{\perp}$, and C is called self-dual if $C=C^{\perp}$.

Proposition 4

Let G be a generating matrix of a linear $[n, k, d]$ code C.
(1) C is self-orthogonal $\Leftrightarrow G G^{T}=0$.
(2) C is self-dual \Leftrightarrow it is self-orthogonal and $k=\frac{n}{2}$.

Self-dual codes

Definition 5

We may use a symmetric nonsingular matrix U over the field \mathbb{F}_{p} to define a scalar product $\langle\cdot, \cdot\rangle_{U}$ for row vectors in $\mathbb{F}_{p}^{n}:\langle a, c\rangle_{U}=a U c^{T}$. The U-dual code of a linear code C is the code

$$
C^{U}=\left\{a \in \mathbb{F}_{p}^{n} \mid\langle a, c\rangle_{U}=0, \forall c \in C\right\} .
$$

A code C is called self- U-dual, or self-dual with respect to U, if $C=C^{U}$.

Content

(1) Self-dual codes

(2) Block designs

- Orbit matrices of block designs
(3) SGDDs
- Quotient matrices of SGDDs with the dual property

4. Constructions of self-dual codes

- Codes from orbit matrices of block clesigns
- Codes from symmetric block designs and SGDDs

Block designs

Definition 6

A block design or a $2-(v, k, \lambda)$ design is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ such that $|\mathcal{P}|=v$, each block is incident with exactly k points and each pair of points is incident with exactly λ blocks. If $v=b$, we say that a block design is symmetric.

Orbit matrices of block designs

- Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $2-(v, k, \lambda)$ design and let $G \leq \operatorname{Aut}(\mathcal{D})$.
- Denote with $P_{1}, \ldots, P_{n} G$-orbits of points, and with $B_{1}, \ldots, B_{m} G$-orbits of blocks and let $\left|P_{i}\right|=\omega_{i},\left|B_{j}\right|=\Omega_{j}, 1 \leq i \leq n, 1 \leq j \leq m$.
- For $x \in \mathcal{B}$ and $Q \in \mathcal{P}$ we introduce the notation:

$$
\langle x\rangle=\{R \in \mathcal{P} \mid(R, x) \in I\},\langle Q\rangle=\{y \in \mathcal{B} \mid(Q, y) \in I\}
$$

- Let $Q \in P_{i}, x \in B_{j}$. We will denote:

$$
\Gamma_{i j}=\left|\langle Q\rangle \cap B_{j}\right|, \quad \gamma_{i j}=\left|\langle x\rangle \cap P_{i}\right|
$$

It holds: $\sum_{j=1}^{m} \Gamma_{i j}=r, \forall i \in\{1, \ldots, n\}, \quad \sum_{i=1}^{n} \gamma_{i j}=k, \forall j \in\{1, \ldots, m\}$.

Definition 7

Matrices $S=\left[\Gamma_{i j}\right]$ and $R=\left[\gamma_{i j}\right]$ are called point and block orbit matrix of the design \mathcal{D} induced by the action of the group G.

Lemma 8

Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a block design, $G \leq \operatorname{Aut}(\mathcal{D})$, and let $\omega_{i}, \Omega_{j}, \gamma_{i j}, \Gamma_{i j}$ be defined as before. The following equations hold:
a) $\Omega_{j} \gamma_{i j}=\omega_{i} \Gamma_{i j}$;
b) $\sum_{j=1}^{m} \Gamma_{i j} \gamma_{s j}=\lambda \omega_{s}+\delta_{i s} \cdot(r-\lambda), i, s \in\{1, \ldots, n\}$.

Proposition 9

Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a block design, $G \leq \operatorname{Aut}(\mathcal{D})$, and let $\omega_{i}, \Omega_{j}, \gamma_{i j}, \Gamma_{i j}$ be defined as before. The following equations hold:
(1) $\sum_{i=1}^{n} \gamma_{i j}=k$;
(2) $\sum_{j=1}^{m} \frac{\Omega_{j}}{\omega_{i}} \gamma_{i j} \gamma_{s j}=\lambda \omega_{s}+\delta_{i s} \cdot(r-\lambda)$.

Content

1 Self-dual codes

(2) Block designs

- Orbit matrices of block designs

(3) SGDDs

- Quotient matrices of SGDDs with the dual property

4. Constructions of self-dual codes

- Codes from orbit matrices of block clesigns
- Codes from symmetric block designs and SGDDs

SGDD

Definition 10

A (group) divisible design (GDD) with parameters $\left(v, b, r, k, \lambda_{1}, \lambda_{2}, m, n\right)$ is an incidence structure with v points, b blocks and constant block size k in which every point appears in exactly r blocks and whose point set can be partitioned into m classes of size n, such that:

- two points from the same class appear together in exactly λ_{1} blocks,
- two points from different classes appear together in exactly λ_{2} blocks.

For the parameters of a GDD it holds:

$$
v=m n, b k=v r,(n-1) \lambda_{1}+n(m-1) \lambda_{2}=r(k-1), r k \geq v \lambda_{2}
$$

SGDD

Definition 11

A GDD is called a symmetric GDD (SGDD) if $v=b$ (or, equivalently, $r=k)$. It is then denoted by $D\left(v, k, \lambda_{1}, \lambda_{2}, m, n\right)$.

Definition 12

A SGDD \mathcal{D} is said to have the dual property if the dual of \mathcal{D} is again a divisible design with the same parameters as \mathcal{D}.

Quotient matrices of SGDDs with the dual property

The point and the block partition from the definition of a SGDD with the dual property give us a canonical partition of the incidence matrix:

$$
\begin{aligned}
& N=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m m}
\end{array}\right] \text {, where } A_{i j} \text { 's are square submatrices of order } n . \\
& \Rightarrow N N^{T}=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 m} \\
\vdots & \ddots & \vdots \\
B_{m 1} & \cdots & B_{m m}
\end{array}\right], B_{i j}=\left[\left(k-\lambda_{1}\right) I_{n}+\left(\lambda_{1}-\lambda_{2}\right) J_{n}\right] \delta_{i j}+\lambda_{2} J_{n}
\end{aligned}
$$

Quotient matrices of SGDDs with the dual property

Remark 1

Each block $A_{i j}$ has constant row (and block) sum.

Definition 13

We say that an $m \times m$ matrix $R=\left[r_{i j}\right]$ is a quotient matrix of a SGDD with the dual property if every element $r_{i j}$ is equal to the row sum of the block $A_{i j}$ of the above canonical partition.

It holds: $\quad R R^{T}=\left(k^{2}-v \lambda_{2}\right) I_{m}+n \lambda_{2} J_{m}$.

Content

Self-dual codes

Block designs

- Orbit matrices of block designs
(3) SGDDs
- Quotient matrices of SGDDs with the dual property

4 Constructions of self-dual codes

- Codes from orbit matrices of block designs
- Codes from symmetric block designs and SGDDs

Wilson describes the following result of Blokhuis and Calderbank:

Theorem 4.1

Let \mathcal{D} be a $2-(v, k, \lambda)$ design and p an odd prime which exactly divides $r-\lambda$ (that is $p \mid(r-\lambda)$, but $p^{2} \nmid(r-\lambda)$). Suppose that $|S \cap T| \equiv k(\bmod p)$ for every two blocks S and T of the design and that v is odd. Then:
(1) if $k \not \equiv 0(\bmod p)$, then there exists a self-dual p-ary code of length $v+1$ with respect to $U=\operatorname{diag}(1, \ldots, 1,-k)$;
(2) if $k \equiv 0(\bmod p)$, then there exists a self-dual p-ary code of length $v+1$ with respect to $U^{\prime}=\operatorname{diag}(1, \ldots, 1,-v)$.

Sketch of the proof:

Let N be a $v \times b$ incidence matrix for \mathcal{D}.

$$
M=\left[\begin{array}{l|l}
N^{T} & \vdots \\
& 1
\end{array}\right] \quad, M^{\prime}=\left[\begin{array}{ccc|c}
& & 0 \\
& N^{T} & & \vdots \\
& & & 0 \\
\hline 1 & \cdots & 1 & 1
\end{array}\right] \ldots
$$

Theorem 4.2 (Crnković, Mostarac)

Let \mathcal{D} be a $2-(v, k, \lambda)$ design, $G \leq \operatorname{Aut}(\mathcal{D})$, and let $\omega_{i}, \Omega_{j}, \gamma_{i j}, \Gamma_{i j}$ be defined as before. Let p be a prime such that $p \mid(r-\lambda)$, and $p \nmid \Omega_{1}, \ldots, \Omega_{m}, \omega_{1}, \ldots, \omega_{n}$. Then the following holds:
(1) if $p \nmid \lambda$ then there exists a self-orthogonal p-ary code of length $m+1$ with respect to $U=\operatorname{diag}\left(\Omega_{1}, \ldots, \Omega_{m},-\lambda\right)$;
(2) if $p \mid \lambda$ and $p \nmid b$ then there exists a self-orthogonal p-ary code of length $m+1$ with respect to $V=\operatorname{diag}\left(\Omega_{1}, \ldots, \Omega_{m},-b\right)$.

Sketch of the proof:

Let R be a block orbit matrix for \mathcal{D} induced by the action of G.

Self-orthogonal codes from orbit matrices of block designs

Theorem 4.3 (Crnković, Mostarac)

Let \mathcal{D} be a $2-(v, k, \lambda)$ design which admits an automorphism group G acting on \mathcal{D} with all orbits of the same size w, and let R be an orbit matrix induced by the action of the group G on the design \mathcal{D}. If all the block intersection numbers of the design (including k) are divisible by p, where p is a prime, then the matrix R^{T} spans a self-orthogonal code of length $\frac{v}{w}$ over \mathbb{F}_{p}.

Theorem 4.4 (Crnković, Mostarac)

Let \mathcal{D} be a 2-($v, k, \lambda)$ design which admits an automorphism group G acting on \mathcal{D} with all orbits of the same length q, and let R be an orbit matrix induced by the action of the group G on \mathcal{D}. Let p be a prime such that $p \mid(r-\lambda)$ but $p^{2} \nmid(r-\lambda)$, and $p \nmid q$. If the number of point orbits n is odd, and all the block intersection numbers of \mathcal{D} (including k) are congruent modulo p, then:
(1) if $p \nmid k$ then there exists a self-dual p-ary code of length $n+1$ with respect to $U=\operatorname{diag}(q, \ldots, q,-k)$;
(2) if $p \mid k$ then there exists a self-dual p-ary code of length $n+1$ with respect to $V=\operatorname{diag}(1, \ldots, 1,-n)$.

Sketch of the proof:

$$
M=\left[\begin{array}{c|c}
R^{T} & \vdots \\
& q
\end{array}\right] \text { and } M^{\prime}=\left[\begin{array}{ccc|c}
& & 0 \\
& R^{T} & \vdots \\
& & 0 \\
\hline 1 & \cdots & 1 & 1
\end{array}\right] \cdots
$$

Codes from symmetric block designs

- Assmus, Mezzaroba and Salwach used incidence matrices of symmetric designs to obtain self-dual codes.

Theorem 4.5 (E. F. Assmus, Jr., J. A. Mezzaroba, C. J. Salwach)

Let p be a prime and \mathcal{D} a symmetric (v, k, λ)-design with an incidence matrix M.
(1) If $p \mid k$ and $p \mid \lambda$, then the rows of M span a self-orthogonal code over \mathbb{F}_{p}.
(2) Let $p \mid(k-\lambda)$ and $p \nmid k$, and let a $v \times(v+1)$ matrix G be defined as follows:

$$
G=\left[\begin{array}{cc}
\sqrt{-k} & \\
\vdots & M \\
\sqrt{-k} &
\end{array}\right]
$$

If $-k$ is a quadratic residue $\bmod p$ let $\mathbb{F}=\mathbb{F}_{p}$, if not let $\mathbb{F}=\mathbb{F}_{p^{2}}$. Then the rows of G span a self-orthogonal code over \mathbb{F}, and if $p^{2} \nmid(k-\lambda)$ the code is self-dual.
(3) If $p \mid \lambda$ and $p \mid(k+1)$, then the rows of a $v \times 2 v$ matrix G span a self-dual [$2 v, v$] code over \mathbb{F}_{p}, where $G=\left[\begin{array}{lll}1 & \mid & M\end{array}\right]$.
4. If $p=2, \lambda$ is odd, and k even, then the rows of $a(v+1) \times(2 v+2)$ matrix G span a self-dual $[2 v+2, v+1]$ code over \mathbb{F}_{2}, where G is defined as:

$$
G=\left[\begin{array}{ccccc}
& 0 & 1 & \cdots & 1 \\
& & 1 & & \\
\\
& & \vdots & & \\
& & & & \\
& & &
\end{array}\right] .
$$

Codes from symmetric designs

- Instead of using incidence matrices of symmetric designs we will use orbit matrices of symmetric designs to obtain self-dual codes.
- We will assume an automorphism group of a symmetric design that acts on the set of points and on the set of blocks with all the orbits of the same lenght.

Theorem 4.6 (Crnković, Mostarac)

Let \mathcal{D} be a symmetric (v, k, λ)-design which admits the automorphism group G that acts on the set of points and on the set of blocks with $t=\frac{v}{\Omega}$ orbits of length Ω. Let R be the orbit matrix of the design \mathcal{D} induced by the action of the group G, and p a prime.
(1) If $p \mid k$ and $p \mid \lambda$, then the rows of R span a self-orthogonal code of length t over \mathbb{F}_{p}.
(2) Let $p \mid(k-\lambda), p \nmid k \Omega$, and let a $t \times(t+1)$ matrix G be defined as:

$$
G=\left[\begin{array}{cc}
\sqrt{-k \Omega} & \\
\vdots & R \\
\sqrt{-k \Omega} &
\end{array}\right]
$$

If $-k \Omega$ is a quadratic residue modulo p, then let $\mathbb{F}=\mathbb{F}_{p}$, otherwise let
$\mathbb{F}=\mathbb{F}_{p^{2}}$. Then the rows of G span a self-orthogonal code over \mathbb{F}. Furthermore, if $p^{2} \nmid(k-\lambda)$, this code is a self-dual $\left[t+1, \frac{t+1}{2}\right]$ code.

Codes from symmetric designs

Theorem 4.6 continued.

3 If $p \mid \lambda$ and $p \mid(k+1)$, then the rows of a $t \times 2 t$ matrix $G=\left[\begin{array}{ll}I & R\end{array}\right]$ G span a self-dual $[2 t, t]$ code over \mathbb{F}_{p}.
4 If $p=2, \lambda$ is odd, k is even, and Ω odd, then the rows of a $(t+1) \times(2 t+2)$ matrix G span a self-dual $[2 t+2, t+1]$ code over \mathbb{F}_{2}, where G is defined as:

$$
G=\left[\begin{array}{ccccc}
& 0 & 1 & \cdots & 1 \\
& & 1 & & \\
\\
& I & \vdots & & R \\
& & 1 & & \\
& & &
\end{array}\right]
$$

Codes from SGDDs with the dual property

- We will also use quotient matrices of SGDDs with the dual property to obtain self-dual codes.

Theorem 4.7 (Crnković, Mostarac)

Let $D=\left(v, k, \lambda_{1}, \lambda_{2}, m, n\right)$ be a SGDD with the dual property, with the quotient matrix R, and let p be a prime.
(1) If $p \mid\left(k^{2}-v \lambda_{2}\right)$ and $p \mid n \lambda_{2}$, then the rows of R span a self-orthogonal code of lenght m over \mathbb{F}_{p}.
(2) Let $p \mid\left(k^{2}-v \lambda_{2}\right), p \nmid n \lambda_{2}$, and let an $m \times(m+1)$ matrix G be equal to:

$$
G=\left[\begin{array}{cc}
\sqrt{-n \lambda_{2}} & \\
\vdots & R \\
\sqrt{-n \lambda_{2}} &
\end{array}\right]
$$

If $-n \lambda_{2}$ is a quadratic residue modulo p, then let $\mathbb{F}=\mathbb{F}_{p}$, otherwise let $\mathbb{F}=\mathbb{F}_{p^{2}}$. Then the rows of G span a self-orthogonal code over \mathbb{F}. Furthermore, if $p^{2} \nmid\left(k^{2}-v \lambda_{2}\right)$ and $p \nmid k$, then this code is a self-dual $\left[m+1, \frac{m+1}{2}\right]$ code.

Codes from SGDDs with the dual property

Theorem 4.7 continued.

3 If $p \mid n \lambda_{2}$ and $p \mid\left(k^{2}+1\right)$, then the rows of an $m \times 2 m$ matrix G span a self-dual $[2 m, m]$ code over \mathbb{F}_{p}, where $G=\left[\begin{array}{ll}l & R\end{array}\right]$.
4 If $p=2, k$ is even, and m, n and λ_{2} are odd, then the rows of an $(m+1) \times(2 m+2)$ matrix G span a self-dual $[2 m+2, m+1]$ code over \mathbb{F}_{2}, where G is defined as:

$$
G=\left[\begin{array}{ccccc}
& 0 & 1 & \cdots & 1 \\
& & 1 & & \\
\\
& I & \vdots & & R \\
& & 1 & & \\
& &
\end{array}\right] .
$$

Thank you for your attention! ;)

