
Codes Block designs SGDDs Constructions

Self-dual codes from orbit matrices and quotient
matrices of combinatorial designs

Nina Mostarac (nmavrovic@math.uniri.hr)
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Codes

Definition 1
Let p be a prime power. A p-ary linear code C of length n and
dimension k is a k -dimensional subspace of the vector space (Fp)n.

• Notation: [n, k ]p code or [n, k ] code

Definition 2
A generating matrix of a linear [n, k ] code is a k × n matrix whose
rows are the basis vectors of the code.
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Self-dual codes

Definition 3
Let C ⊆ Fn

p be a linear code. Its dual code is the code
C⊥ = {x ∈ Fn

p|x · c = 0, ∀c ∈ C}, where · is the standard inner
product. The code C is called self-orthogonal if C ⊆ C⊥, and C is
called self-dual if C = C⊥.

Proposition 4

Let G be a generating matrix of a linear [n, k ,d ] code C.

1 C is self-orthogonal⇔ GGT = 0.

2 C is self-dual⇔ it is self-orthogonal and k =
n
2

.
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Self-dual codes

Definition 5
We may use a symmetric nonsingular matrix U over the field Fp to
define a scalar product 〈·, ·〉U for row vectors in Fn

p: 〈a, c〉U = aUcT .
The U-dual code of a linear code C is the code

CU = {a ∈ Fn
p | 〈a, c〉U = 0, ∀c ∈ C}.

A code C is called self-U-dual, or self-dual with respect to U, if
C = CU .
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Block designs

Definition 6
A block design or a 2− (v , k , λ) design is a finite incidence structure
D = (P,B, I) such that |P| = v , each block is incident with exactly k
points and each pair of points is incident with exactly λ blocks.
If v = b, we say that a block design is symmetric.
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Orbit matrices of block designs

• Let D = (P,B, I) be a 2-(v , k , λ) design and let G ≤ Aut(D).

• Denote with P1, ...,Pn G-orbits of points, and with B1, ...,Bm G-orbits of
blocks and let |Pi | = ωi , |Bj | = Ωj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

• For x ∈ B and Q ∈ P we introduce the notation:
〈x〉 = {R ∈ P|(R, x) ∈ I}, 〈Q〉 = {y ∈ B|(Q, y) ∈ I}.

• Let Q ∈ Pi , x ∈ Bj . We will denote:

Γij = | 〈Q〉 ∩ Bj |, γij = | 〈x〉 ∩ Pi |.

It holds:
m∑

j=1

Γij = r , ∀i ∈ {1, ..., n},
n∑

i=1

γij = k , ∀j ∈ {1, ...,m}.

Definition 7

Matrices S = [Γij ] and R = [γij ] are called point and block orbit matrix of the
design D induced by the action of the group G.
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Lemma 8

Let D = (P,B, I) be a block design, G ≤ Aut(D), and let ωi , Ωj , γij , Γij be
defined as before. The following equations hold:

a) Ωjγij = ωi Γij ;

b)
m∑

j=1

Γijγsj = λωs + δis · (r − λ), i, s ∈ {1, ..., n}.

Proposition 9

Let D = (P,B, I) be a block design, G ≤ Aut(D), and let ωi , Ωj , γij , Γij be
defined as before. The following equations hold:

1
n∑

i=1

γij = k ;

2
m∑

j=1

Ωj

ωi
γijγsj = λωs + δis · (r − λ).
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SGDD

Definition 10

A (group) divisible design (GDD) with parameters (v , b, r , k , λ1, λ2,m, n) is an
incidence structure with v points, b blocks and constant block size k in which
every point appears in exactly r blocks and whose point set can be
partitioned into m classes of size n, such that:

• two points from the same class appear together in exactly λ1 blocks,

• two points from different classes appear together in exactly λ2 blocks.

For the parameters of a GDD it holds:

v = mn, bk = vr , (n − 1)λ1 + n(m − 1)λ2 = r(k − 1), rk ≥ vλ2.
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SGDD

Definition 11
A GDD is called a symmetric GDD (SGDD) if v = b (or, equivalently,
r = k ). It is then denoted by D(v , k , λ1, λ2,m,n).

Definition 12
A SGDD D is said to have the dual property if the dual of D is again a
divisible design with the same parameters as D.
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Quotient matrices of SGDDs with the dual property

The point and the block partition from the definition of a SGDD with the dual
property give us a canonical partition of the incidence matrix:

N =


A11 · · · A1m

...
. . .

...
Am1 · · · Amm

 , where Aij ’s are square submatrices of order n.

⇒ NNT =


B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm

 , Bij = [(k − λ1)In + (λ1 − λ2)Jn]δij + λ2Jn
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Quotient matrices of SGDDs with the dual property

Remark 1
Each block Aij has constant row (and block) sum.

Definition 13
We say that an m ×m matrix R = [rij ] is a quotient matrix of a SGDD
with the dual property if every element rij is equal to the row sum of
the block Aij of the above canonical partition.

It holds: RRT = (k2 − vλ2)Im + nλ2Jm.
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Wilson describes the following result of Blokhuis and Calderbank:

Theorem 4.1

Let D be a 2-(v , k , λ) design and p an odd prime which exactly divides r − λ
(that is p|(r − λ), but p2 - (r − λ)). Suppose that |S ∩ T | ≡ k(mod p) for every
two blocks S and T of the design and that v is odd. Then:

1 if k 6≡ 0(mod p), then there exists a self-dual p-ary code of length v + 1
with respect to U = diag(1, ..., 1,−k);

2 if k ≡ 0(mod p), then there exists a self-dual p-ary code of length v + 1
with respect to U ′ = diag(1, ..., 1,−v).

Sketch of the proof:

Let N be a v × b incidence matrix for D.

M =


1

NT
...
1

 , M ′ =


0

NT
...
0

1 · · · 1 1

 ...
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Theorem 4.2 (Crnković, Mostarac)

Let D be a 2-(v , k , λ) design, G ≤ Aut(D), and let ωi , Ωj , γij , Γij be defined as
before. Let p be a prime such that p|(r − λ), and p - Ω1, ...,Ωm, ω1, ..., ωn.
Then the following holds:

1 if p - λ then there exists a self-orthogonal p-ary code of length m + 1
with respect to U = diag(Ω1, ...,Ωm,−λ);

2 if p|λ and p - b then there exists a self-orthogonal p-ary code of length
m + 1 with respect to V = diag(Ω1, ...,Ωm,−b).

Sketch of the proof:

Let R be a block orbit matrix for D induced by the action of G.

M =


ω1

ω2

R
...
ωn

 and M ′ =


0

R
...
0

1 · · · 1 1

 ...
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Self-orthogonal codes from orbit matrices of block designs

Theorem 4.3 (Crnković, Mostarac)

Let D be a 2-(v , k , λ) design which admits an automorphism group G
acting on D with all orbits of the same size w, and let R be an orbit
matrix induced by the action of the group G on the design D. If all the
block intersection numbers of the design (including k) are divisible by
p, where p is a prime, then the matrix RT spans a self-orthogonal
code of length v

w over Fp.
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Theorem 4.4 (Crnković, Mostarac)

Let D be a 2-(v , k , λ) design which admits an automorphism group G acting
on D with all orbits of the same length q, and let R be an orbit matrix induced
by the action of the group G on D. Let p be a prime such that p|(r − λ) but
p2 - (r − λ), and p - q. If the number of point orbits n is odd, and all the block
intersection numbers of D (including k) are congruent modulo p, then:

1 if p - k then there exists a self-dual p-ary code of length n + 1 with
respect to U = diag(q, ..., q,−k);

2 if p|k then there exists a self-dual p-ary code of length n + 1 with
respect to V = diag(1, ..., 1,−n).

Sketch of the proof:

M =


q

RT
...
q

 and M ′ =


0

RT
...
0

1 · · · 1 1

 ...
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Codes from symmetric block designs

• Assmus, Mezzaroba and Salwach used incidence matrices
of symmetric designs to obtain self-dual codes.
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Theorem 4.5 (E. F. Assmus, Jr., J. A. Mezzaroba, C. J. Salwach)

Let p be a prime and D a symmetric (v , k , λ)-design with an incidence matrix M.

1 If p|k and p|λ, then the rows of M span a self-orthogonal code over Fp .

2 Let p|(k − λ) and p - k, and let a v × (v + 1) matrix G be defined as follows:

G =


√
−k
.
.
. M√
−k

 .

If −k is a quadratic residue mod p let F = Fp , if not let F = Fp2 . Then the rows of
G span a self-orthogonal code over F, and if p2 - (k − λ) the code is self-dual.

3 If p|λ and p|(k + 1), then the rows of a v × 2v matrix G span a self-dual [2v , v ]

code over Fp , where G =
[

I | M
]
.

4 If p = 2, λ is odd, and k even, then the rows of a (v + 1)× (2v + 2) matrix G
span a self-dual [2v + 2, v + 1] code over F2, where G is defined as:

G =


0 1 · · · 1
1

I
.
.
. M
1

 .
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Codes from symmetric designs

• Instead of using incidence matrices of symmetric designs we will
use orbit matrices of symmetric designs to obtain self-dual
codes.

• We will assume an automorphism group of a symmetric design
that acts on the set of points and on the set of blocks with all the
orbits of the same lenght.
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Theorem 4.6 (Crnković, Mostarac)

Let D be a symmetric (v , k , λ)-design which admits the automorphism group
G that acts on the set of points and on the set of blocks with t = v

Ω
orbits of

length Ω. Let R be the orbit matrix of the design D induced by the action of
the group G, and p a prime.

1 If p|k and p|λ, then the rows of R span a self-orthogonal code of length
t over Fp.

2 Let p|(k − λ), p - kΩ, and let a t × (t + 1) matrix G be defined as:

G =


√
−kΩ
... R√
−kΩ

 .
If −kΩ is a quadratic residue modulo p, then let F = Fp, otherwise let
F = Fp2 . Then the rows of G span a self-orthogonal code over F.
Furthermore, if p2 - (k − λ), this code is a self-dual [t + 1, t+1

2 ] code.
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Codes from symmetric designs

Theorem 4.6 continued.

3 If p|λ and p|(k + 1), then the rows of a t × 2t matrix
G =

[
I R

]
G span a self-dual [2t , t ] code over Fp.

4 If p = 2, λ is odd, k is even, and Ω odd, then the rows of a
(t + 1)× (2t + 2) matrix G span a self-dual [2t + 2, t + 1] code
over F2, where G is defined as:

G =


0 1 · · · 1
1

I
... R
1

 .
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Codes from SGDDs with the dual property

• We will also use quotient matrices of SGDDs with the dual
property to obtain self-dual codes.
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Theorem 4.7 (Crnković, Mostarac)

Let D = (v , k , λ1, λ2,m, n) be a SGDD with the dual property, with the
quotient matrix R, and let p be a prime.

1 If p | (k2 − vλ2) and p | nλ2, then the rows of R span a self-orthogonal
code of lenght m over Fp.

2 Let p|(k2 − vλ2), p - nλ2, and let an m × (m + 1) matrix G be equal to:

G =


√
−nλ2

... R√
−nλ2

 .
If −nλ2 is a quadratic residue modulo p, then let F = Fp, otherwise let
F = Fp2 . Then the rows of G span a self-orthogonal code over F.
Furthermore, if p2 - (k2 − vλ2) and p - k, then this code is a self-dual
[m + 1, m+1

2 ] code.
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Codes from SGDDs with the dual property

Theorem 4.7 continued.

3 If p|nλ2 and p|(k2 + 1), then the rows of an m × 2m matrix G
span a self-dual [2m,m] code over Fp, where G =

[
I R

]
.

4 If p = 2, k is even, and m, n and λ2 are odd, then the rows of an
(m + 1)× (2m + 2) matrix G span a self-dual [2m + 2,m + 1]

code over F2, where G is defined as:

G =


0 1 · · · 1
1

I
... R
1

 .
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Thank you for your attention! ;)
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