Hamilton decompositions of one-ended Cayley graphs

Florian Lehner

University of Warwick

with J. Erde and M. Pitz

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem.

Does every Cayley graph of a finite Abelian group have a Hamilton decomposition? Alspach '84

イロト 不得 トイヨト イヨト

3

Problem.

Does every Cayley graph of a finite Abelian group have a Hamilton decomposition? Alspach '84

Question. What about infinite groups?

伺 と く ヨ と く ヨ と

э

Problem.

Does every Cayley graph of a finite Abelian group have a Hamilton decomposition? Alspach '84

Question. What about infinite groups?

Bryant, Herke, Maenhaut, Webb '17

同下 イヨト イヨト

-

Theorem.

Any Cayley graph of a countable Abelian group has a Hamilton cycle. Nash-Williams '59

□ > < = > <

3 N

Theorem.

Any Cayley graph of a countable Abelian group has a Hamilton cycle (double ray). Nash-Williams '59

Theorem.

Any Cayley graph of a countable Abelian group has a Hamilton cycle (double ray). Nash-Williams '59

A 10

Theorem.

Any Cayley graph of a countable Abelian group has a Hamilton cycle (double ray). Nash-Williams '59

Theorem.

Any Cayley graph of a countable Abelian group has a Hamilton cycle (double ray). Nash-Williams '59

Any Cayley graph of a countable Abelian group has a Hamilton cycle (double ray). Nash-Williams '59

Observation.

Any 2k-regular graph admitting a Hamilton decomposition satisfies

(*) $|K| \equiv k \mod 2$ for every finite cut K with two infinite sides.

If a 4-regular Cayley graph of an Abelian group satisfies $\circledast),$ then it has a Hamilton decomposition.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Theorem. Let G be a finitely generated Abelian group. Then

$$G \simeq \mathbb{Z}^n \times F$$

for some $n \ge 0$ and some finite Abelian group F.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. Let G be a finitely generated Abelian group. Then

$$G \simeq \mathbb{Z}^n \times F$$

for some $n \ge 0$ and some finite Abelian group F.

Definition. *n* is called the rank of *G* n = 0 finite groups n = 1 two-ended groups $n \ge 2$ one-ended groups

同下 イヨト イヨト

If a 4-regular Cayley graph of an Abelian group satisfies $\circledast)$, then it has a Hamilton decomposition.

伺 と く き と く き とう

-

If a 4-regular Cayley graph of an Abelian group satisfies $\circledast)$, then it has a Hamilton decomposition.

G finite Bermond, Favaron, Maheo '89

伺 と く ヨ と く ヨ と .

If a 4-regular Cayley graph of an Abelian group satisfies $\circledast)$, then it has a Hamilton decomposition.

G finite Bermond, Favaron, Maheo '89 two ends $G = \mathbb{Z}$: Bryant, Herke, Maenhaut, Webb '17

伺 と く ヨ と く ヨ と

If a 4-regular Cayley graph of an Abelian group satisfies $\circledast)$, then it has a Hamilton decomposition.

G finite Bermond, Favaron, Maheo '89 two ends $G = \mathbb{Z}$: Bryant, Herke, Maenhaut, Webb '17 G arbitrary: Erde, FL '18+

If a 4-regular Cayley graph of an Abelian group satisfies $\circledast)$, then it has a Hamilton decomposition.

G finite Bermond, Favaron, Maheo '89 two ends $G = \mathbb{Z}$: Bryant, Herke, Maenhaut, Webb '17 *G* arbitrary: Erde, FL '18+ one end $G = \mathbb{Z}^2$

伺 と く ヨ と く ヨ と

Let G be a one ended Abelian group, and let S be a generating set containing no torsion elements.

Then Cay(G, S) has a Hamilton decomposition.

Erde, FL, Pitz '18+

同下 イヨト イヨト

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

伺 と く き と く き とう

э

- ► *S* a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

直 と く ヨ と く ヨ と

-

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

standard colouring with finitely many changes

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

standard colouring with finitely many changes

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

A 10

→ 3 → 4 3

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

A 10

→ □ → → □ →

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

A 10

A B > A B >

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

/□ ▶ < 글 ▶ < 글

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

□ ▶ < □ ▶ < □</p>

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

/□ ▶ < 글 ▶ < 글

► S a generating set without torsion elements,

• $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- 4 同 ト 4 目 ト 4 目 ト

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- 4 同 ト 4 目 ト 4 目 ト

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- 4 同 ト 4 目 ト 4 目 ト

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- 4 同 ト 4 目 ト 4 目 ト

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- 4 同 6 4 日 6 4 日 6

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- 4 同 ト 4 目 ト 4 目 ト

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

- ► S a generating set without torsion elements,
- $g \in S$, $h \in S$ linearly independent

- standard colouring with finitely many changes
- all components in each colour are double rays

Let G be a one ended Abelian group, and let S be a generating set containing no torsion elements.

Then Cay(G, S) has a Hamilton decomposition.

Erde, FL, Pitz '18+

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Let G be a one ended Abelian group, and let S be a generating set containing no torsion elements.

Then Cay(G, S) has a Hamilton decomposition.

Erde, FL, Pitz '18+

- What about torsion generators?
- Two-ended groups?

Let G be a one ended Abelian group, and let S be a generating set containing no torsion elements.

Then Cay(G, S) has a Hamilton decomposition.

Erde, FL, Pitz '18+

- What about torsion generators?
- Two-ended groups?
- Other notions of infinite Hamilton cycles?