On Reflexible Polynomials

Aleksander Malnič
University of Ljubljana and University of Primorska

Joint work with
Boštjan Kuzman and Primož Potočnik

Graphs, groups, and more:
celebrating Brian Alspach's 80th and Dragan Marušč's 65th birthdays Koper, Slovenia

May 28 - June 1, 2018

Reflexible polynomials

Reflexible polynomials

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if }
$$

$$
\begin{align*}
& \text { type (1) } \quad \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \quad \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

Reflexible polynomials

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if }
$$

$$
\begin{align*}
& \text { type (1) } \quad \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \quad \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

$$
\text { type (1) } \Rightarrow \lambda= \pm 1
$$

Reflexible polynomials

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if }
$$

$$
\begin{align*}
& \text { type (1) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}\\
& \text { type (1) } \Rightarrow \lambda= \pm 1 \\
& 4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type (1) }
\end{align*}
$$

Reflexible polynomials

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if }
$$

$$
\begin{array}{lll}
\text { type (1) } & \exists \lambda \in \mathbb{F}^{*} \forall i: & \lambda a_{k-i}=a_{i} \\
\text { type (2) } & \exists \lambda \in \mathbb{F}^{*} \forall i: & \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{array}
$$

$$
\text { type } \mathbf{(1)} \Rightarrow \lambda= \pm 1
$$

$$
4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type (1) }
$$

$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

Reflexible polynomials

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if }
$$

$$
\begin{array}{lll}
\text { type (1) } & \exists \lambda \in \mathbb{F}^{*} \forall i: & \lambda a_{k-i}=a_{i} \\
\text { type (2) } & \exists \lambda \in \mathbb{F}^{*} \forall i: & \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{array}
$$

$$
\text { type } \mathbf{(1)} \Rightarrow \lambda= \pm 1
$$

$$
4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type (1) }
$$

$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

Reflexible polynomials

$$
\begin{align*}
& f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if } \\
& \text { type (1) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

type (1) $\Rightarrow \lambda= \pm 1$
$4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad$ type (1)
$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials
over \mathbb{Z}_{p} : criptography, sequences, subfields in alg. closures

Reflexible polynomials

$$
\begin{align*}
& f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if } \\
& \text { type (1) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

type (1) $\Rightarrow \lambda= \pm 1$

$$
4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type }(1)
$$

$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials
over \mathbb{Z}_{p} : criptography, sequences, subfields in alg. closures over $\mathbb{Q}, \mathbb{C}:$ cyclotomic polynomials are self-reciprocal

Reflexible polynomials

$$
\begin{align*}
& f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if } \\
& \text { type (1) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

type (1) $\Rightarrow \lambda= \pm 1$

$$
4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type (1) }
$$

$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials
over \mathbb{Z}_{p} : criptography, sequences, subfields in alg. closures over \mathbb{Q}, \mathbb{C} : cyclotomic polynomials are self-reciprocal irr. over \mathbb{Q} / \mathbb{Z} : char. poly. of auto. of certain unimodular latices

Reflexible polynomials

$$
\begin{align*}
& f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if } \\
& \text { type (1) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

type (1) $\Rightarrow \lambda= \pm 1$

$$
4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type }(1)
$$

$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials
over \mathbb{Z}_{p} : criptography, sequences, subfields in alg. closures
over $\mathbb{Q}, \mathbb{C}:$ cyclotomic polynomials are self-reciprocal irr. over \mathbb{Q} / \mathbb{Z} : char. poly. of auto. of certain unimodular latices type (2) $\Rightarrow \lambda^{2}=(-1)^{k}$ k even $: \lambda= \pm 1, \quad k$ odd $: \lambda^{2}=-1$ and $\mathbb{F}=\mathbb{Z}_{p}, p \equiv 1 \bmod 4$

Reflexible polynomials

$$
\begin{align*}
& f(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k} \in \mathbb{F}[x] \text { is reflexible if } \\
& \text { type (1) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=a_{i} \tag{1}\\
& \text { type (2) } \exists \lambda \in \mathbb{F}^{*} \forall i: \quad \lambda a_{k-i}=(-1)^{i} a_{i} \tag{2}
\end{align*}
$$

type (1) $\Rightarrow \lambda= \pm 1$

$$
4+2 x+3 x^{2}+x^{3} \in \mathbb{Z}_{5}[x] \quad \lambda=-1, \quad \text { type }(1)
$$

$\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials
over \mathbb{Z}_{p} : criptography, sequences, subfields in alg. closures
over $\mathbb{Q}, \mathbb{C}: \quad$ cyclotomic polynomials are self-reciprocal irr. over \mathbb{Q} / \mathbb{Z} : char. poly. of auto. of certain unimodular latices
type (2) $\Rightarrow \lambda^{2}=(-1)^{k}$
k even $: \lambda= \pm 1, \quad k$ odd $: \lambda^{2}=-1$ and $\mathbb{F}=\mathbb{Z}_{p}, p \equiv 1 \bmod 4$

$$
3+4 x+2 x^{2}+x^{3} \in \mathbb{Z}_{5}[x], \quad \lambda=3, \quad \text { type }(2)
$$

Our motivation: symmetries of arc-transitive graphs

Our motivation: symmetries of arc-transitive graphs

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple

Our motivation: symmetries of arc-transitive graphs

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple first systematic approach by Gardiner and Praeger, 94

Praeger's normal reduction

Recursive factorization by $N \min \triangleleft G$

Our motivation: symmetries of arc-transitive graphs

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple first systematic approach by Gardiner and Praeger, 94

Praeger's normal reduction

Recursive factorization by $N \min \triangleleft G$
Classify Γ when $\Gamma / \mathbb{Z}_{p}^{r}=K_{1}, K_{2}, C_{n}$

Our motivation: symmetries of arc-transitive graphs

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple first systematic approach by Gardiner and Praeger, 94

Praeger's normal reduction

Recursive factorization by $N \min \triangleleft G$
Classify Γ when $\Gamma / \mathbb{Z}_{p}^{r}=K_{1}, K_{2}, C_{n}$
Completely solved, except for $\Gamma / \mathbb{Z}_{p}^{r}=C_{n}$ and p odd

Minimal \mathbb{Z}_{p}^{r}-coverings $\Gamma \rightarrow C_{n}^{(2)}$

Minimal \mathbb{Z}_{p}^{r}-coverings $\Gamma \rightarrow C_{n}^{(2)}$

Minimal \mathbb{Z}_{p}^{r}-coverings $\Gamma \rightarrow C_{n}^{(2)}$

Classify minimal VT and ET elementary abelian covers of $C_{n}^{(2)}$

Minimal \mathbb{Z}_{p}^{r}-coverings $\Gamma \rightarrow C_{n}^{(2)}$

Classify minimal VT and ET elementary abelian covers of $C_{n}^{(2)}$
M, Marušič, Potočnik, Elementary abelian covers, JACO, 2004.

Results: $\Gamma / \mathbb{Z}_{p}^{r}=C_{n}^{(2)}$, where $\mathbb{Z}_{p}^{r} \min \triangleleft H: \mathrm{VT}$ and ET

Results: $\Gamma / \mathbb{Z}_{p}^{r}=C_{n}^{(2)}$, where $\mathbb{Z}_{p}^{r} \min \triangleleft H: \mathrm{VT}$ and ET

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

Results: $\Gamma / \mathbb{Z}_{p}^{r}=C_{n}^{(2)}$, where $\mathbb{Z}_{p}^{r} \min \triangleleft H: \mathrm{VT}$ and ET

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

$$
M_{g(x)}=\left[\begin{array}{cccccccc}
\alpha_{0} & \ldots & \alpha_{m} & 0 & \ldots & & \cdots & 0 \\
0 & \alpha_{0} & \ldots & \alpha_{m} & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & & \ddots & & & \\
& & & & & & & \\
& & & & \ddots & & \ddots & \ddots
\end{array}\right] \quad \vdots \quad \mathbb{Z}_{p}^{r \times n}
$$

matrix associated with a proper divisor $g(x) \mid x^{n} \pm 1, \operatorname{deg}(g(x))=n-r$

Results: $\Gamma / \mathbb{Z}_{p}^{r}=C_{n}^{(2)}$, where $\mathbb{Z}_{p}^{r} \min \triangleleft H: \mathrm{VT}$ and ET

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

$$
M_{g(x)}=\left[\begin{array}{ccccccccc}
\alpha_{0} & \ldots & \alpha_{m} & 0 & \ldots & & \cdots & 0 \\
0 & \alpha_{0} & \ldots & \alpha_{m} & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & & \ddots & & & \\
& & & & & & & \\
& & & & \ddots & & \ddots & \ddots & \vdots \\
\vdots & & & & \ddots & \alpha_{0} & \ldots & \alpha_{m} & 0 \\
0 & \cdots & & & \cdots & 0 & \alpha_{0} & \ldots & \alpha_{m}
\end{array}\right] \in \mathbb{Z}_{p}^{r \times n}
$$

matrix associated with a proper divisor $g(x) \mid x^{n} \pm 1, \operatorname{deg}(g(x))=n-r$

$$
\Gamma=\Gamma_{g(x)} \text { has vertex set } \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{n} \text { and }(\underline{v}, j) \sim\left(\underline{v} \pm \underline{u}_{j+1}, j+1\right)
$$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.
Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M - the largest group that lifts. When is M AT?

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.
Lifted groups preserve the degree of symmetry (Djoković, 74)
\Rightarrow Consider M - the largest group that lifts. When is M AT?
d maximal: $\quad g(x)=g_{d}\left(x^{d}\right) \quad g_{d}(x)$: reduced polynomial

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.
Lifted groups preserve the degree of symmetry (Djoković, 74)
\Rightarrow Consider M - the largest group that lifts. When is M AT?
d maximal: $\quad g(x)=g_{d}\left(x^{d}\right) \quad g_{d}(x)$: reduced polynomial
Lemma. $d \mid n$ and $d \mid r=\operatorname{dim} \mathbb{Z}_{p}^{r}$, and M acts on $V\left(C_{n}^{(2)}\right)$ with kernel \mathbb{Z}_{2}^{d}.

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.
Lifted groups preserve the degree of symmetry (Djoković, 74)
\Rightarrow Consider M - the largest group that lifts. When is M AT?
d maximal: $\quad g(x)=g_{d}\left(x^{d}\right) \quad g_{d}(x)$: reduced polynomial
Lemma. $d \mid n$ and $d \mid r=\operatorname{dim} \mathbb{Z}_{p}^{r}$, and M acts on $V\left(C_{n}^{(2)}\right)$ with kernel \mathbb{Z}_{2}^{d}.
Thm 3. M, the largest group that lifts is $A T \Leftrightarrow g_{d}(x)$ is reflexible.

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.
Lifted groups preserve the degree of symmetry (Djoković, 74)
\Rightarrow Consider M - the largest group that lifts. When is M AT?
d maximal: $\quad g(x)=g_{d}\left(x^{d}\right) \quad g_{d}(x)$: reduced polynomial
Lemma. $d \mid n$ and $d \mid r=\operatorname{dim} \mathbb{Z}_{p}^{r}$, and M acts on $V\left(C_{n}^{(2)}\right)$ with kernel \mathbb{Z}_{2}^{d}.
Thm 3. M, the largest group that lifts is $A T \Leftrightarrow g_{d}(x)$ is reflexible.
Example.
$g(x)=\left(3+4 x^{2}+2 x^{4}+x^{6}\right) \mid\left(x^{8}-1\right) \in \mathbb{Z}_{5}[x]$, not reflexible $g_{2}(x)=\left(3+4 x+2 x^{2}+x^{3}\right) \mid\left(x^{4}-1\right) \in \mathbb{Z}_{5}[x], \quad \lambda=3, \quad$ type 2

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.
Lifted groups preserve the degree of symmetry (Djoković, 74)
\Rightarrow Consider M - the largest group that lifts. When is M AT?
d maximal: $\quad g(x)=g_{d}\left(x^{d}\right) \quad g_{d}(x)$: reduced polynomial
Lemma. $d \mid n$ and $d \mid r=\operatorname{dim} \mathbb{Z}_{p}^{r}$, and M acts on $V\left(C_{n}^{(2)}\right)$ with kernel \mathbb{Z}_{2}^{d}.
Thm 3. M, the largest group that lifts is $A T \Leftrightarrow g_{d}(x)$ is reflexible.
Example.
$g(x)=\left(3+4 x^{2}+2 x^{4}+x^{6}\right) \mid\left(x^{8}-1\right) \in \mathbb{Z}_{5}[x]$, not reflexible $g_{2}(x)=\left(3+4 x+2 x^{2}+x^{3}\right) \mid\left(x^{4}-1\right) \in \mathbb{Z}_{5}[x], \quad \lambda=3, \quad$ type 2

$$
\Gamma_{g(x)} \text { is AT }
$$

$$
\Gamma_{g(x)}=C 4[200,22] \text { in Potočnik-Wilson census }
$$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$
Example.
$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$
Example.
$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$
- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$
Example.
$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$
- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$
$g_{1}(x)$ not reflexible, cover is minimal, M is not AT.

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$
Example.
$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$
- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$
$g_{1}(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma=C 4[21,2]$ is AT

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$

Example.

$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$

- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$ $g_{1}(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma=C 4[21,2]$ is AT
- $g(x)=g_{1}(x)=x^{2}+2 x+4=(x-1)(x-4)$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$

Example.

$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$

- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$ $g_{1}(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma=C 4[21,2]$ is AT
- $g(x)=g_{1}(x)=x^{2}+2 x+4=(x-1)(x-4)$

Same as above, $\Gamma=C 4[21,2]$.

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$

Example.

$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$

- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$
$g_{1}(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma=C 4[21,2]$ is AT
- $g(x)=g_{1}(x)=x^{2}+2 x+4=(x-1)(x-4)$

Same as above, $\Gamma=C 4[21,2]$.

- $g(x)=g_{1}(x)=x-1$

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$

Example.

$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$

- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$
$g_{1}(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma=C 4[21,2]$ is AT
- $g(x)=g_{1}(x)=x^{2}+2 x+4=(x-1)(x-4)$

Same as above, $\Gamma=C 4[21,2]$.

- $g(x)=g_{1}(x)=x-1$
$g_{1}(x)$ is reflexible and maximal weakly reflexible since $x^{2}+4 x+2$ and $x^{2}+2 x+4$ not reflexible.

Starting with a proper divisor $g(x) \mid x^{n} \pm 1$

Thm 4. $\Gamma_{g(x)} \rightarrow C_{n}^{(2)}$ is minimal \Leftrightarrow

- $g_{d}(x)$ not reflexible:
$g_{d}(x)$ is a maximal proper divisor of $x^{n / d} \pm 1$
- $g_{d}(x)$ is reflexible:
$g_{d}(x)$ is a maximal weakly reflexible proper divisor of $x^{n / d} \pm 1$

Example.

$n=3, p=7, \quad x^{3}-1=(x-1)(x-2)(x-4)$

- $g(x)=g_{1}(x)=x^{2}+4 x+2=(x-1)(x-2)$
$g_{1}(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma=C 4[21,2]$ is AT
- $g(x)=g_{1}(x)=x^{2}+2 x+4=(x-1)(x-4)$

Same as above, $\Gamma=C 4[21,2]$.

- $g(x)=g_{1}(x)=x-1$
$g_{1}(x)$ is reflexible and maximal weakly reflexible since $x^{2}+4 x+2$ and $x^{2}+2 x+4$ not reflexible.
So the cover is minimal and AT, $\Gamma=C 4[147,6]$.

Reflexible polynomials - further properties

Reflexible polynomials - further properties

$$
\begin{aligned}
x^{k} f\left(x^{-1}\right) & =\lambda f(x) & & \text { type (1) } \\
x^{k} f\left(-x^{-1}\right) & =\lambda f(x) & & \text { type (2) }
\end{aligned}
$$

Reflexible polynomials - further properties

$$
\begin{aligned}
x^{k} f\left(x^{-1}\right) & =\lambda f(x) & & \text { type (1) } \\
x^{k} f\left(-x^{-1}\right) & =\lambda f(x) & & \text { type (2) }
\end{aligned}
$$

Prop 1.

- $f(x), h(x)$ reflexible, same type $\Rightarrow f(x) h(x)$ reflexible, same type.
- $f(x) h(x), f(x)$ reflexible, same type $\Rightarrow h(x)$ reflexible, same type.

Reflexible polynomials - further properties

$$
\begin{aligned}
x^{k} f\left(x^{-1}\right) & =\lambda f(x) & \text { type (1) } \\
x^{k} f\left(-x^{-1}\right) & =\lambda f(x) & \text { type (2) }
\end{aligned}
$$

Prop 1.

- $f(x), h(x)$ reflexible, same type $\Rightarrow f(x) h(x)$ reflexible, same type.
- $f(x) h(x), f(x)$ reflexible, same type $\Rightarrow h(x)$ reflexible, same type.
\Rightarrow Two semigroups, generated by minimal reflexible polynomials

Reflexible polynomials - further properties

$$
\begin{aligned}
x^{k} f\left(x^{-1}\right) & =\lambda f(x) & \text { type (1) } \\
x^{k} f\left(-x^{-1}\right) & =\lambda f(x) & \text { type (2) }
\end{aligned}
$$

Prop 1.

- $f(x), h(x)$ reflexible, same type $\Rightarrow f(x) h(x)$ reflexible, same type.
- $f(x) h(x), f(x)$ reflexible, same type $\Rightarrow h(x)$ reflexible, same type.
\Rightarrow Two semigroups, generated by minimal reflexible polynomials
Prop 2.
- $f(x)$ reflexible type $(1) \Leftrightarrow f(a)=0$ iff $f\left(a^{-1}\right)=0$, same multiplicity
- $f(x)$ reflexible type $(2) \Leftrightarrow f(a)=0$ iff $f\left(-a^{-1}\right)=0$, same multiplic.

Reflexible polynomials - further properties

$$
\begin{aligned}
x^{k} f\left(x^{-1}\right) & =\lambda f(x) & \text { type (1) } \\
x^{k} f\left(-x^{-1}\right) & =\lambda f(x) & \text { type (2) }
\end{aligned}
$$

Prop 1.

- $f(x), h(x)$ reflexible, same type $\Rightarrow f(x) h(x)$ reflexible, same type.
- $f(x) h(x), f(x)$ reflexible, same type $\Rightarrow h(x)$ reflexible, same type.
\Rightarrow Two semigroups, generated by minimal reflexible polynomials

Prop 2.

- $f(x)$ reflexible type $(1) \Leftrightarrow f(a)=0$ iff $f\left(a^{-1}\right)=0$, same multiplicity
- $f(x)$ reflexible type $(2) \Leftrightarrow f(a)=0$ iff $f\left(-a^{-1}\right)=0$, same multiplic.

Prop 3.

- type 1: $\quad(x-1)^{k_{1}}(x+1)^{k_{-1}} \Pi\left(x^{2}-\left(a+a^{-1}\right) x+1\right)^{k_{a}}$
- type 2: $\quad\left(x^{2}-1\right)^{k_{1,-1}} \prod\left(x^{2}-\left(a-a^{-1}\right) x-1\right)^{k_{a}}(x-\theta)^{k_{\theta}}$ $\theta^{2}=-1, p \equiv 1 \bmod 4$.

Extremal case: $d=r$ (lifted group has max stab)

Extremal case: $d=r$ (lifted group has max stab)

$$
d t=d \operatorname{deg}\left(g_{d}(x)\right)=\operatorname{deg}(g(x))=n-r . \text { Let } s=n / d \text {. Then } t=s-1 \text {. }
$$

Extremal case: $d=r$ (lifted group has max stab)

$d t=d \operatorname{deg}\left(g_{d}(x)\right)=\operatorname{deg}(g(x))=n-r$. Let $s=n / d$. Then $t=s-1$.

- $s=1: t=0, d=r=n$, so $g(x)=g_{d}(x)=1$. $\operatorname{Aut}\left(C_{n}^{(2)}\right)$ lifts.

Extremal case: $d=r$ (lifted group has max stab)

$d t=d \operatorname{deg}\left(g_{d}(x)\right)=\operatorname{deg}(g(x))=n-r$. Let $s=n / d$. Then $t=s-1$.

- $s=1: t=0, d=r=n$, so $g(x)=g_{d}(x)=1$. $\operatorname{Aut}\left(C_{n}^{(2)}\right)$ lifts.
- $s>1: g_{d}(x)$ generates a 1-dim code in \mathbb{Z}_{p}^{s} with $g_{d}(x)$ reflexible

Extremal case: $d=r$ (lifted group has max stab)

$d t=d \operatorname{deg}\left(g_{d}(x)\right)=\operatorname{deg}(g(x))=n-r$. Let $s=n / d$. Then $t=s-1$.

- $s=1: t=0, d=r=n$, so $g(x)=g_{d}(x)=1$. $\operatorname{Aut}\left(C_{n}^{(2)}\right)$ lifts.
- $s>1$: $g_{d}(x)$ generates a 1-dim code in \mathbb{Z}_{p}^{s} with $g_{d}(x)$ reflexible

$$
x^{s} \pm 1=(x-\theta) g_{d}(x)
$$

Extremal case: $d=r$ (lifted group has max stab)

$d t=d \operatorname{deg}\left(g_{d}(x)\right)=\operatorname{deg}(g(x))=n-r$. Let $s=n / d$. Then $t=s-1$.

- $s=1: t=0, d=r=n$, so $g(x)=g_{d}(x)=1$. $\operatorname{Aut}\left(C_{n}^{(2)}\right)$ lifts.
- $s>1$: $g_{d}(x)$ generates a 1-dim code in \mathbb{Z}_{p}^{s} with $g_{d}(x)$ reflexible

$$
x^{s} \pm 1=(x-\theta) g_{d}(x)
$$

- $g_{d}(x)$ type 1: $\theta= \pm 1$

$$
g_{d}(x)=1+x+\ldots+x^{t} \quad \Gamma=C^{ \pm 1}(p, s r, r)
$$

Extremal case: $d=r$ (lifted group has max stab)

$d t=d \operatorname{deg}\left(g_{d}(x)\right)=\operatorname{deg}(g(x))=n-r$. Let $s=n / d$. Then $t=s-1$.

- $s=1: t=0, d=r=n$, so $g(x)=g_{d}(x)=1$. $\operatorname{Aut}\left(C_{n}^{(2)}\right)$ lifts.
- $s>1$: $g_{d}(x)$ generates a 1-dim code in \mathbb{Z}_{p}^{s} with $g_{d}(x)$ reflexible

$$
x^{s} \pm 1=(x-\theta) g_{d}(x)
$$

- $g_{d}(x)$ type 1: $\theta= \pm 1$

$$
g_{d}(x)=1+x+\ldots+x^{t} \quad \Gamma=C^{ \pm 1}(p, s r, r)
$$

- $g_{d}(x)$ type 2: $s=2 q, \quad \theta^{2}=-1, \quad p \equiv 1 \bmod 4$

$$
g_{d}(x)=\theta^{t}+\theta^{t-1} x+\ldots x^{t}, \quad \Gamma=C^{ \pm \theta}(p, 2 q r, r)
$$

Extremal case: \mathbb{Z}_{p}^{2}

Extremal case: \mathbb{Z}_{p}^{2}

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$x^{n} \pm 1=\left(x^{2}-\gamma x+\delta\right) g(x), \quad g(x)=g_{d}(x)$, maximal refleksible

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$x^{n} \pm 1=\left(x^{2}-\gamma x+\delta\right) g(x), \quad g(x)=g_{d}(x)$, maximal refleksible

- $g(x)$ type 1: $\Rightarrow x^{2}-\gamma x+\delta$ type $1 \Rightarrow(x-a)\left(x-a^{-1}\right)$

Extremal case: \mathbb{Z}_{p}^{2}

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$x^{n} \pm 1=\left(x^{2}-\gamma x+\delta\right) g(x), \quad g(x)=g_{d}(x)$, maximal refleksible

- $g(x)$ type 1: $\Rightarrow x^{2}-\gamma x+\delta$ type $1 \Rightarrow(x-a)\left(x-a^{-1}\right)$
$a \notin \mathbb{Z}_{p}$, irreducible
$a \in \mathbb{Z}_{p}, a^{2} \neq \pm 1$

Extremal case: \mathbb{Z}_{p}^{2}

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$x^{n} \pm 1=\left(x^{2}-\gamma x+\delta\right) g(x), \quad g(x)=g_{d}(x)$, maximal refleksible

- $g(x)$ type 1: $\Rightarrow x^{2}-\gamma x+\delta$ type $1 \Rightarrow(x-a)\left(x-a^{-1}\right)$
$a \notin \mathbb{Z}_{p}$, irreducible
$a \in \mathbb{Z}_{p}, a^{2} \neq \pm 1$
- $g(x)$ type 2 :

Extremal case: \mathbb{Z}_{p}^{2}

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$x^{n} \pm 1=\left(x^{2}-\gamma x+\delta\right) g(x), \quad g(x)=g_{d}(x)$, maximal refleksible

- $g(x)$ type 1: $\Rightarrow x^{2}-\gamma x+\delta$ type $1 \Rightarrow(x-a)\left(x-a^{-1}\right)$
$a \notin \mathbb{Z}_{p}$, irreducible
$a \in \mathbb{Z}_{p}, a^{2} \neq \pm 1$
- $g(x)$ type 2 :
n even: $\Rightarrow x^{2}-\gamma x+\delta=(x-a)\left(x+a^{-1}\right)$ type 2
a $\notin \mathbb{Z}_{p}$, irreducible
$a \in \mathbb{Z}_{p}, \quad a^{2} \neq \pm 1$

Extremal case: \mathbb{Z}_{p}^{2}

$$
\Rightarrow r=2 \text { and } d \mid r \Rightarrow d=1
$$

$x^{n} \pm 1=\left(x^{2}-\gamma x+\delta\right) g(x), \quad g(x)=g_{d}(x)$, maximal refleksible

- $g(x)$ type 1: $\Rightarrow x^{2}-\gamma x+\delta$ type $1 \Rightarrow(x-a)\left(x-a^{-1}\right)$
$a \notin \mathbb{Z}_{p}$, irreducible
$a \in \mathbb{Z}_{p}, a^{2} \neq \pm 1$
- $g(x)$ type 2 :
n even: $\Rightarrow x^{2}-\gamma x+\delta=(x-a)\left(x+a^{-1}\right)$ type 2
a $\notin \mathbb{Z}_{p}$, irreducible
$a \in \mathbb{Z}_{p}, \quad a^{2} \neq \pm 1$
n odd: No.

Thank you!

