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Reflexible polynomials

f (x) = a0 + a1x + . . .+ akx
k ∈ F[x ] is reflexible if

type (1) ∃λ ∈ F∗ ∀ i : λak−i = ai (1)

type (2) ∃λ ∈ F∗ ∀ i : λak−i = (−1)iai (2)

type (1) ⇒ λ = ±1

4 + 2x + 3x2 + x3 ∈ Z5[x ] λ = −1, type (1)

λ = 1 self-reciprocal, palindromic, Gorenstein polynomials

over Zp : criptography, sequences, subfields in alg. closures

over Q,C : cyclotomic polynomials are self-reciprocal

irr. over Q/Z : char. poly. of auto. of certain unimodular latices

type (2) ⇒ λ2 = (−1)k

k even : λ = ±1, k odd : λ2 = −1 and F = Zp, p ≡ 1 mod 4

3 + 4x + 2x2 + x3 ∈ ZZ5[x ], λ = 3, type (2)
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Our motivation: symmetries of arc-transitive graphs

4-val graphs with arc-transitive G ≤ Aut(Γ), not semi-simple

first systematic approach by Gardiner and Praeger, 94

Praeger’s normal reduction
Recursive factorization by N min / G

Classify Γ when Γ/ZZr
p = K1,K2,Cn

Completely solved, except for Γ/ZZr
p = Cn and p odd
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Minimal ZZr
p-coverings Γ→ C

(2)
n

Classify minimal VT and ET elementary abelian covers of C(2)
n

M, Marušič, Potočnik, Elementary abelian covers, JACO, 2004.
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Results: Γ/ZZr
p = C

(2)
n , where ZZr

p min / H : VT and ET

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

Mg(x) =



α0 . . . αm 0 . . . · · · 0

0 α0 . . . αm
. . .

...
...

. . .
. . .

. . .

. . .
. . .

. . .
...

...
. . . α0 . . . αm 0

0 · · · · · · 0 α0 . . . αm


∈ ZZr×n

p

matrix associated with a proper divisor g(x) | xn ± 1, deg(g(x)) = n − r

Γ = Γg(x) has vertex set ZZr
p × ZZn and (v , j) ∼ (v ± uj+1, j + 1)
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Starting with a proper divisor g(x) | xn ± 1

Thm 2. Γg(x) is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74)
⇒ Consider M – the largest group that lifts. When is M AT?

d maximal: g(x) = gd(xd) gd(x) : reduced polynomial

Lemma. d |n and d |r = dimZr
p, and M acts on V (C

(2)
n ) with kernel Zd

2 .

Thm 3. M, the largest group that lifts is AT ⇔ gd(x) is reflexible.

Example.
g(x) = (3 + 4x2 + 2x4 + x6) | (x8 − 1) ∈ ZZ5[x ], not reflexible
g2(x) = (3 + 4x + 2x2 + x3) | (x4 − 1) ∈ ZZ5[x ], λ = 3, type 2

Γg(x) is AT

Γg(x) = C4[200, 22] in Potočnik-Wilson census
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Starting with a proper divisor g(x) | xn ± 1

Thm 4. Γg(x) → C
(2)
n is minimal ⇔

gd(x) not reflexible:
gd(x) is a maximal proper divisor of xn/d ± 1

gd(x) is reflexible:
gd(x) is a maximal weakly reflexible proper divisor of xn/d ± 1

Example.
n = 3, p = 7, x3 − 1 = (x − 1)(x − 2)(x − 4)

g(x) = g1(x) = x2 + 4x + 2 = (x − 1)(x − 2)

g1(x) not reflexible, cover is minimal, M is not AT.
However, Γ = C4[21, 2] is AT

g(x) = g1(x) = x2 + 2x + 4 = (x − 1)(x − 4)

Same as above, Γ = C4[21, 2].

g(x) = g1(x) = x − 1
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Reflexible polynomials – further properties

xk f (x−1) = λf (x) type (1)

xk f (−x−1) = λf (x) type (2)

Prop 1.

f (x), h(x) reflexible, same type ⇒ f (x)h(x) reflexible, same type.

f (x)h(x), f (x) reflexible, same type ⇒ h(x) reflexible, same type.

⇒ Two semigroups, generated by minimal reflexible polynomials

Prop 2.

f (x) reflexible type (1) ⇔ f (a) = 0 iff f (a−1) = 0, same multiplicity

f (x) reflexible type (2) ⇔ f (a) = 0 iff f (−a−1) = 0, same multiplic.

Prop 3.

type 1: (x − 1)k1(x + 1)k−1
∏

(x2 − (a + a−1)x + 1)ka

type 2: (x2 − 1)k1,−1
∏

(x2 − (a− a−1)x − 1)ka(x − θ)kθ

θ2 = −1, p ≡ 1 mod 4.
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Extremal case: d = r (lifted group has max stab)

dt = d deg(gd(x)) = deg(g(x)) = n − r . Let s = n/d . Then t = s − 1.

s = 1: t = 0, d = r = n, so g(x) = gd(x) = 1. Aut(C
(2)
n ) lifts.

s > 1: gd(x) generates a 1-dim code in ZZs
p with gd(x) reflexible

x s ± 1 = (x − θ)gd(x)

gd(x) type 1: θ = ±1

gd(x) = 1 + x + . . .+ x t Γ = C±1(p, sr , r)

gd(x) type 2: s = 2q, θ2 = −1, p ≡ 1 mod 4

gd(x) = θt + θt−1x + . . . x t , Γ = C±θ(p, 2qr , r)
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Extremal case: Z2
p

⇒ r = 2 and d |r ⇒ d = 1

xn ± 1 = (x2 − γx + δ)g(x), g(x) = gd(x), maximal refleksible

g(x) type 1: ⇒ x2 − γx + δ type 1 ⇒ (x − a)(x − a−1)

a 6∈ Zp, irreducible

a ∈ Zp, a2 6= ±1

g(x) type 2:

n even: ⇒ x2 − γx + δ = (x − a)(x + a−1) type 2

a 6∈ Zp, irreducible

a ∈ Zp, a2 6= ±1

n odd: No.
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