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f(x) = ao + a1x + ... + axx € F[x] is reflexible if

type (1)
type (2)
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type (1) = A =+1
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over
over

irr. over

k even :

ZP
Q,C
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cyclotomic polynomials are self-reciprocal

char. poly. of auto. of certain unimodular latices
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Reflexible polynomials

f(x) = ao + a1x + ... + axx € F[x] is reflexible if

type (1) IAe€F* Vi: da; = a (1)

type (2) INEF* Vi: dap; = (—1)a (2)
type (1) = A =+1

44 2x+3x>+x3 € Zs[x] A=-1, type (1)

A = 1 self-reciprocal, palindromic, Gorenstein polynomials

over Z, : criptography, sequences, subfields in alg. closures
over Q,C : cyclotomic polynomials are self-reciprocal
irr. over Q/Z : char. poly. of auto. of certain unimodular latices

type (2) = A2 = (-1)*
k even : A\ = +£1, kodd:)\zz—landIF:Zp,pzl mod 4

3+4x+2x2+x3 € Zs[x], A=3, type (2)
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4-val graphs with arc-transitive G < Aut(l'), not semi-simple
first systematic approach by Gardiner and Praeger, 94

Praeger’s normal reduction
Recursive factorization by N min< G

Classify I when I'/Z, = K1, K3, C,

Completely solved, except for F/Z; = C, and p odd
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oo . 2
Minimal Z;—covermgs M — G,

bpy by

Classify minimal VT and ET elementary abelian covers of C,Sz)

M, Marusi¢, Pototnik, Elementary abelian covers, JACO, 2004.
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Thm 1. All minimal graphs I arise from cyclic or negacyclic codes.

_040 . Oy 0
0 o« O
Me(x) =
. Qg ...
0 - 0

Om

0

Am

rxn
€z,

matrix associated with a proper divisor g(x) | x" &1, deg(g(x)) =n—r
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Results: F/Z; = C,”, where Z; min <H : VT and ET

Thm 1. All minimal graphs I arise from cyclic or negacyclic codes.

[ ... am 0 ... e 0]
0 o« O
Meg(x) = €z,"
. Qg ... Qp 0
| 0 .- e 0w .. am |

matrix associated with a proper divisor g(x) | x" &1, deg(g(x)) =n—r

= Tg(x) has vertex set Z, x Z, and (v,j) ~ (v £ u; 4,/ +1)
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Thm 2. [z, is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djokovi¢, 74)
= Consider M — the largest group that lifts. When is M AT?

d maximal:  g(x) = ga(x?)  gq(x) : reduced polynomial
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d maximal:  g(x) = ga(x?)  gq(x) : reduced polynomial
Lemma. d|n and d|r = dimZ[, and M acts on V(C,(,z)) with kernel Z§.
Thm 3. M, the largest group that lifts is AT < gg(x) is reflexible.
Example.

g(x) = (3+4x®+2x* +x°%) | (x® — 1) € Zs[x], not reflexible
2(x)=B+4x+2x2+x3) | (x* —1) € Zs[x], A=3, type2
I'g(x) is AT

lg(x) = C4[200,22] in Pototnik-Wilson census
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Starting with a proper divisor g(x) | x" +1

Thm 4. Ty — C,(,2) is minimal <
@ gu(x) not reflexible:
g4(x) is a maximal proper divisor of x"/¢ +1
@ gy(x) is reflexible:
g4(x) is a maximal weakly reflexible proper divisor of x"d 41

Example.
n=3p=1, x3—1:(x—1)(x—2)(x—4)

0 g(X)=g(x)=x>+4x+2=(x—1)(x—-2)
g1(x) not reflexible, cover is minimal, M is not AT.
However, I = C4[21,2] is AT

0 g(X)=gi(x)=x>*+2x+4=(x—1)(x—4)
Same as above, ' = C4[21,2].

0 g(x)=g(x)=x-1
g1(x) is reflexible and maximal weakly reflexible
since x? + 4x + 2 and x2 + 2x + 4 not reflexible.
So the cover is minimal and AT, I = C4[147, 6].
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(Y Mf(x)  type (1)
Kf(—x71) = M(x)  type (2)

Prop 1.
@ f(x), h(x) reflexible, same type = f(x)h(x) reflexible, same type.
o f(x)h(x), f(x) reflexible, same type = h(x) reflexible, same type.

= Two semigroups, generated by minimal reflexible polynomials

Prop 2.
@ f(x) reflexible type (1) < f(a) = 0 iff f(a~1) = 0, same multiplicity
@ f(x) reflexible type (2) < f(a) = 0 iff f(—a~1) = 0, same multiplic.

Prop 3.
@ type 1  (x—L)(x+ 1)1 [[(x* = (a+a )x+ 1)k

o type 2. (x2— 1)k [[(x*—(a—a H)x—1)k(x —f)k
0?2 =—1, p=1 mod 4.
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dt = ddeg(gy(x)) = deg(g(x)) =n—r. Let s=n/d. Thent =5s—1.

0s=11t=0d=r=n,sog(x)=gsx)=1 Aut(C,Sz)) lifts.

@ 5> 1: gy(x) generates a 1-dim code in Z; with g4(x) reflexible

x*+1=(x—0)gs(x)

@ gy(x) type 1: 0 =+1
gi(x)=1+x+...+xt T=C*(p,srr)
® gy(x) type 2: s=2q, #*=-1, p=1 mod4
ga(x) =0t + 0 Ix+ .. .xt, [ =C*(p,2qr,r)
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