On Reflexible Polynomials

Aleksander Malnič University of Ljubljana and University of Primorska

> Joint work with Boštjan Kuzman and Primož Potočnik

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušč's 65th birthdays Koper, Slovenia

May 28 - June 1, 2018

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i: \ \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4+2x+3x^2+x^3\in\mathbb{Z}_5[x]~~\lambda=-1,~~\text{type (1)}$$

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

over \mathbb{Z}_p : criptography, sequences, subfields in alg. closures

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

over \mathbb{Z}_p : criptography, sequences, subfields in alg. closures

over \mathbb{Q},\mathbb{C} : cyclotomic polynomials are self-reciprocal

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \ \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

over \mathbb{Z}_p : criptography, sequences, subfields in alg. closures

over \mathbb{Q},\mathbb{C} : cyclotomic polynomials are self-reciprocal

irr. over \mathbb{Q}/\mathbb{Z} : char. poly. of auto. of certain unimodular latices

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

over \mathbb{Z}_p : criptography, sequences, subfields in alg. closures

over \mathbb{Q},\mathbb{C} : cyclotomic polynomials are self-reciprocal

irr. over \mathbb{Q}/\mathbb{Z} : char. poly. of auto. of certain unimodular latices

type (2)
$$\Rightarrow \lambda^2 = (-1)^k$$

k even : $\lambda=\pm 1$, k odd : $\lambda^2=-1$ and $\mathbb{F}=\mathbb{Z}_p$, $p\equiv 1 \mod 4$

$$f(x) = a_0 + a_1 x + \ldots + a_k x^k \in \mathbb{F}[x]$$
 is **reflexible** if

type (1)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = a_i$$
 (1)

type (2)
$$\exists \lambda \in \mathbb{F}^* \ \forall i : \lambda a_{k-i} = (-1)^i a_i$$
 (2)

type (1)
$$\Rightarrow \lambda = \pm 1$$

$$4 + 2x + 3x^2 + x^3 \in \mathbb{Z}_5[x]$$
 $\lambda = -1$, type (1)

 $\lambda=1$ self-reciprocal, palindromic, Gorenstein polynomials

over \mathbb{Z}_p : criptography, sequences, subfields in alg. closures

over \mathbb{Q},\mathbb{C} : cyclotomic polynomials are self-reciprocal

irr. over \mathbb{Q}/\mathbb{Z} : char. poly. of auto. of certain unimodular latices

type (2)
$$\Rightarrow \lambda^2 = (-1)^k$$

k even : $\lambda=\pm 1$, k odd : $\lambda^2=-1$ and $\mathbb{F}=\mathbb{Z}_p$, $p\equiv 1 \mod 4$

$$3 + 4x + 2x^2 + x^3 \in \mathbb{Z}_5[x], \quad \lambda = 3, \text{ type (2)}$$

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple

first systematic approach by Gardiner and Praeger, 94

Praeger's normal reduction Recursive factorization by $N \min \triangleleft G$

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple

first systematic approach by Gardiner and Praeger, 94

Praeger's normal reduction Recursive factorization by $N \min \triangleleft G$

Classify Γ when $\Gamma/\mathbb{Z}_p^r = K_1, K_2, C_n$

4-val graphs with arc-transitive $G \leq \operatorname{Aut}(\Gamma)$, not semi-simple

first systematic approach by Gardiner and Praeger, 94

Praeger's normal reductionRecursive factorization by *N* min ⊲ *G*

Classify Γ when $\Gamma/\mathbb{Z}_p^r = K_1, K_2, C_n$

Completely solved, except for $\Gamma/\mathbb{Z}_p^r=\mathcal{C}_n$ and p odd

Minimal \mathbb{Z}_p^r -coverings $\Gamma \to C_n^{(2)}$

Minimal \mathbb{Z}_p^r -coverings $\Gamma o C_n^{(2)}$

Minimal \mathbb{Z}_p^r -coverings $\Gamma o C_n^{(2)}$

Classify minimal VT and ET elementary abelian covers of $C_n^{(2)}$

Minimal \mathbb{Z}_p^r -coverings $\Gamma o C_n^{(2)}$

Classify minimal VT and ET elementary abelian covers of $C_n^{(2)}$

M, Marušič, Potočnik, Elementary abelian covers, JACO, 2004.

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

$$M_{g(x)} = \begin{bmatrix} \alpha_0 & \dots & \alpha_m & 0 & \dots & & \dots & 0 \\ 0 & \alpha_0 & \dots & \alpha_m & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & & \ddots & & & & \\ & & & & \ddots & & \ddots & \vdots \\ \vdots & & & & \ddots & \alpha_0 & \dots & \alpha_m & 0 \\ 0 & \dots & & & \dots & 0 & \alpha_0 & \dots & \alpha_m \end{bmatrix} \in \mathbb{Z}_p^{r \times n}$$

matrix associated with a proper divisor $g(x) \mid x^n \pm 1$, $\deg(g(x)) = n - r$

Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.

$$M_{g(x)} = \begin{bmatrix} \alpha_0 & \dots & \alpha_m & 0 & \dots & & \dots & 0 \\ 0 & \alpha_0 & \dots & \alpha_m & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & & \ddots & & & & \\ & & & & \ddots & & \ddots & & \vdots \\ \vdots & & & & \ddots & \alpha_0 & \dots & \alpha_m & 0 \\ 0 & \dots & & & \dots & 0 & \alpha_0 & \dots & \alpha_m \end{bmatrix} \in \mathbb{Z}_p^{r \times n}$$

matrix associated with a proper divisor $g(x) \mid x^n \pm 1$, $\deg(g(x)) = n - r$

$$\Gamma = \Gamma_{g(x)}$$
 has vertex set $\mathbb{Z}_p^r \times \mathbb{Z}_p$ and $(\underline{v}, j) \sim (\underline{v} \pm \underline{u}_{i+1}, j+1)$

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M – the largest group that lifts. When is M AT?

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M – the largest group that lifts. When is M AT?

d maximal: $g(x) = g_d(x^d)$ $g_d(x)$: reduced polynomial

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M – the largest group that lifts. When is M AT?

d maximal: $g(x) = g_d(x^d)$ $g_d(x)$: reduced polynomial

Lemma. d|n and $d|r = \dim \mathbb{Z}_p^r$, and M acts on $V(C_n^{(2)})$ with kernel \mathbb{Z}_2^d .

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M – the largest group that lifts. When is M AT?

d maximal: $g(x) = g_d(x^d)$ $g_d(x)$: reduced polynomial

Lemma. d|n and $d|r = \dim \mathbb{Z}_p^r$, and M acts on $V(C_n^{(2)})$ with kernel \mathbb{Z}_2^d .

Thm 3. M, the largest group that lifts is AT $\Leftrightarrow g_d(x)$ is reflexible.

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M – the largest group that lifts. When is M AT?

d maximal:
$$g(x) = g_d(x^d)$$
 $g_d(x)$: reduced polynomial

Lemma. d|n and $d|r = \dim \mathbb{Z}_p^r$, and M acts on $V(C_n^{(2)})$ with kernel \mathbb{Z}_2^d .

Thm 3. M, the largest group that lifts is AT $\Leftrightarrow g_d(x)$ is reflexible.

Example.

$$g(x) = (3 + 4x^2 + 2x^4 + x^6) \mid (x^8 - 1) \in \mathbb{Z}_5[x],$$
 not reflexible $g_2(x) = (3 + 4x + 2x^2 + x^3) \mid (x^4 - 1) \in \mathbb{Z}_5[x],$ $\lambda = 3$, type 2

Thm 2. $\Gamma_{g(x)}$ is at least VT and ET.

Lifted groups preserve the degree of symmetry (Djoković, 74) \Rightarrow Consider M – the largest group that lifts. When is M AT?

d maximal:
$$g(x) = g_d(x^d)$$
 $g_d(x)$: reduced polynomial

Lemma. d|n and $d|r = \dim \mathbb{Z}_p^r$, and M acts on $V(C_n^{(2)})$ with kernel \mathbb{Z}_2^d .

Thm 3. M, the largest group that lifts is AT $\Leftrightarrow g_d(x)$ is reflexible.

Example.

$$g(x) = (3 + 4x^2 + 2x^4 + x^6) \mid (x^8 - 1) \in \mathbb{Z}_5[x],$$
 not reflexible $g_2(x) = (3 + 4x + 2x^2 + x^3) \mid (x^4 - 1) \in \mathbb{Z}_5[x],$ $\lambda = 3$, type 2

$$\Gamma_{g(x)}$$
 is AT

 $\Gamma_{g(x)} = C4[200, 22]$ in Potočnik-Wilson census

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

• $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d} \pm 1$

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d} \pm 1$

$$n = 3, p = 7, x^3 - 1 = (x - 1)(x - 2)(x - 4)$$

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d}\pm 1$

$$n = 3, p = 7, x^3 - 1 = (x - 1)(x - 2)(x - 4)$$

•
$$g(x) = g_1(x) = x^2 + 4x + 2 = (x - 1)(x - 2)$$

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d}\pm 1$

Example.

$$n = 3, p = 7, x^3 - 1 = (x - 1)(x - 2)(x - 4)$$

• $g(x) = g_1(x) = x^2 + 4x + 2 = (x - 1)(x - 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT.

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d} \pm 1$

Example.

$$n = 3$$
, $p = 7$, $x^3 - 1 = (x - 1)(x - 2)(x - 4)$

• $g(x) = g_1(x) = x^2 + 4x + 2 = (x - 1)(x - 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma = C4[21, 2]$ is AT

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d}\pm 1$

$$n = 3$$
, $p = 7$, $x^3 - 1 = (x - 1)(x - 2)(x - 4)$

- $g(x) = g_1(x) = x^2 + 4x + 2 = (x 1)(x 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma = C4[21, 2]$ is AT
- $g(x) = g_1(x) = x^2 + 2x + 4 = (x 1)(x 4)$

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d} \pm 1$

$$n = 3$$
, $p = 7$, $x^3 - 1 = (x - 1)(x - 2)(x - 4)$

- $g(x) = g_1(x) = x^2 + 4x + 2 = (x 1)(x 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma = C4[21, 2]$ is AT
- $g(x) = g_1(x) = x^2 + 2x + 4 = (x 1)(x 4)$ Same as above, $\Gamma = C4[21, 2]$.

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d}\pm 1$

$$n = 3$$
, $p = 7$, $x^3 - 1 = (x - 1)(x - 2)(x - 4)$

- $g(x) = g_1(x) = x^2 + 4x + 2 = (x 1)(x 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma = C4[21, 2]$ is AT
- $g(x) = g_1(x) = x^2 + 2x + 4 = (x 1)(x 4)$ Same as above, $\Gamma = C4[21, 2]$.
- $g(x) = g_1(x) = x 1$

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d} \pm 1$

$$n = 3$$
, $p = 7$, $x^3 - 1 = (x - 1)(x - 2)(x - 4)$

- $g(x) = g_1(x) = x^2 + 4x + 2 = (x 1)(x 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma = C4[21, 2]$ is AT
- $g(x) = g_1(x) = x^2 + 2x + 4 = (x 1)(x 4)$ Same as above, $\Gamma = C4[21, 2]$.
- g(x) = g₁(x) = x 1
 g₁(x) is reflexible and maximal weakly reflexible since x² + 4x + 2 and x² + 2x + 4 not reflexible.

Thm 4. $\Gamma_{g(x)} \to C_n^{(2)}$ is minimal \Leftrightarrow

- $g_d(x)$ not reflexible: $g_d(x)$ is a maximal proper divisor of $x^{n/d} \pm 1$
- $g_d(x)$ is reflexible: $g_d(x)$ is a maximal weakly reflexible proper divisor of $x^{n/d} \pm 1$

$$n = 3, p = 7, x^3 - 1 = (x - 1)(x - 2)(x - 4)$$

- $g(x) = g_1(x) = x^2 + 4x + 2 = (x 1)(x 2)$ $g_1(x)$ not reflexible, cover is minimal, M is not AT. However, $\Gamma = C4[21, 2]$ is AT
- $g(x) = g_1(x) = x^2 + 2x + 4 = (x 1)(x 4)$ Same as above, $\Gamma = C4[21, 2]$.
- $g(x) = g_1(x) = x 1$ $g_1(x)$ is reflexible and maximal weakly reflexible since $x^2 + 4x + 2$ and $x^2 + 2x + 4$ not reflexible. So the cover is minimal and AT, $\Gamma = C4[147, 6]$.

$$x^k f(x^{-1}) = \lambda f(x)$$
 type (1)
 $x^k f(-x^{-1}) = \lambda f(x)$ type (2)

$$x^k f(x^{-1}) = \lambda f(x)$$
 type (1)
 $x^k f(-x^{-1}) = \lambda f(x)$ type (2)

Prop 1.

- f(x), h(x) reflexible, same type $\Rightarrow f(x)h(x)$ reflexible, same type.
- f(x)h(x), f(x) reflexible, same type $\Rightarrow h(x)$ reflexible, same type.

$$x^k f(x^{-1}) = \lambda f(x)$$
 type (1)
 $x^k f(-x^{-1}) = \lambda f(x)$ type (2)

Prop 1.

- f(x), h(x) reflexible, same type $\Rightarrow f(x)h(x)$ reflexible, same type.
- f(x)h(x), f(x) reflexible, same type $\Rightarrow h(x)$ reflexible, same type.
- ⇒ Two semigroups, generated by minimal reflexible polynomials

$$x^k f(x^{-1}) = \lambda f(x)$$
 type (1)
 $x^k f(-x^{-1}) = \lambda f(x)$ type (2)

Prop 1.

- f(x), h(x) reflexible, same type $\Rightarrow f(x)h(x)$ reflexible, same type.
- f(x)h(x), f(x) reflexible, same type $\Rightarrow h(x)$ reflexible, same type.
- ⇒ Two semigroups, generated by **minimal reflexible** polynomials

Prop 2.

- f(x) reflexible type (1) $\Leftrightarrow f(a) = 0$ iff $f(a^{-1}) = 0$, same multiplicity
- f(x) reflexible type (2) $\Leftrightarrow f(a) = 0$ iff $f(-a^{-1}) = 0$, same multiplic.

$$x^k f(x^{-1}) = \lambda f(x)$$
 type (1)
 $x^k f(-x^{-1}) = \lambda f(x)$ type (2)

Prop 1.

- f(x), h(x) reflexible, same type $\Rightarrow f(x)h(x)$ reflexible, same type.
- f(x)h(x), f(x) reflexible, same type $\Rightarrow h(x)$ reflexible, same type.
- ⇒ Two semigroups, generated by minimal reflexible polynomials

Prop 2.

- f(x) reflexible type $(1) \Leftrightarrow f(a) = 0$ iff $f(a^{-1}) = 0$, same multiplicity
- f(x) reflexible type (2) $\Leftrightarrow f(a) = 0$ iff $f(-a^{-1}) = 0$, same multiplic.

Prop 3.

- type 1: $(x-1)^{k_1}(x+1)^{k_{-1}}\prod(x^2-(a+a^{-1})x+1)^{k_a}$
- type 2: $(x^2-1)^{k_{1,-1}}\prod(x^2-(a-a^{-1})x-1)^{k_{\theta}}(x-\theta)^{k_{\theta}}$ $\theta^2=-1,\ p\equiv 1\ \text{mod}\ 4.$

$$dt = d \deg(g_d(x)) = \deg(g(x)) = n - r$$
. Let $s = n/d$. Then $t = s - 1$.

$$dt = d \deg(g_d(x)) = \deg(g(x)) = n - r$$
. Let $s = n/d$. Then $t = s - 1$.

•
$$s = 1$$
: $t = 0$, $d = r = n$, so $g(x) = g_d(x) = 1$. Aut $(C_n^{(2)})$ lifts.

$$dt = d \deg(g_d(x)) = \deg(g(x)) = n - r$$
. Let $s = n/d$. Then $t = s - 1$.

- s = 1: t = 0, d = r = n, so $g(x) = g_d(x) = 1$. Aut $(C_n^{(2)})$ lifts.
- s > 1: $g_d(x)$ generates a 1-dim code in \mathbb{Z}_p^s with $g_d(x)$ reflexible

$$dt = d \deg(g_d(x)) = \deg(g(x)) = n - r$$
. Let $s = n/d$. Then $t = s - 1$.

- s = 1: t = 0, d = r = n, so $g(x) = g_d(x) = 1$. Aut $(C_n^{(2)})$ lifts.
- s>1: $g_d(x)$ generates a 1-dim code in \mathbb{Z}_p^s with $g_d(x)$ reflexible

$$x^s \pm 1 = (x - \theta)g_d(x)$$

$$dt = d \deg(g_d(x)) = \deg(g(x)) = n - r$$
. Let $s = n/d$. Then $t = s - 1$.

- s = 1: t = 0, d = r = n, so $g(x) = g_d(x) = 1$. Aut $(C_n^{(2)})$ lifts.
- ullet s>1: $g_d(x)$ generates a 1-dim code in \mathbb{Z}_p^s with $g_d(x)$ reflexible

$$x^s \pm 1 = (x - \theta)g_d(x)$$

• $g_d(x)$ type 1: $\theta = \pm 1$ $g_d(x) = 1 + x + ... + x^t$ $\Gamma = C^{\pm 1}(p, sr, r)$

$$dt = d \deg(g_d(x)) = \deg(g(x)) = n - r$$
. Let $s = n/d$. Then $t = s - 1$.

- s = 1: t = 0, d = r = n, so $g(x) = g_d(x) = 1$. Aut $(C_n^{(2)})$ lifts.
- ullet s>1: $g_d(x)$ generates a 1-dim code in \mathbb{Z}_p^s with $g_d(x)$ reflexible

$$x^s \pm 1 = (x - \theta)g_d(x)$$

• $g_d(x)$ type 1: $\theta = \pm 1$

$$g_d(x) = 1 + x + ... + x^t$$
 $\Gamma = C^{\pm 1}(p, sr, r)$

• $g_d(x)$ type 2: s = 2q, $\theta^2 = -1$, $p \equiv 1 \mod 4$

$$g_d(x) = \theta^t + \theta^{t-1}x + \dots x^t$$
, $\Gamma = C^{\pm \theta}(p, 2qr, r)$

$$\Rightarrow$$
 $r=2$ and $d|r \Rightarrow d=1$

$$\Rightarrow r = 2 \text{ and } d | r \Rightarrow d = 1$$

$$x^n \pm 1 = (x^2 - \gamma x + \delta)g(x)$$
, $g(x) = g_d(x)$, maximal refleksible

$$\Rightarrow r = 2 \text{ and } d | r \Rightarrow d = 1$$

$$x^n \pm 1 = (x^2 - \gamma x + \delta)g(x)$$
, $g(x) = g_d(x)$, maximal refleksible

• g(x) type 1: $\Rightarrow x^2 - \gamma x + \delta$ type $1 \Rightarrow (x - a)(x - a^{-1})$

$$\Rightarrow r = 2 \text{ and } d | r \Rightarrow d = 1$$

$$x^n \pm 1 = (x^2 - \gamma x + \delta)g(x), \quad g(x) = g_d(x),$$
 maximal refleksible

• g(x) type $1: \Rightarrow x^2 - \gamma x + \delta$ type $1 \Rightarrow (x - a)(x - a^{-1})$ $a \notin \mathbb{Z}_p$, irreducible $a \in \mathbb{Z}_p$, $a^2 \neq \pm 1$

$$\Rightarrow r = 2 \text{ and } d | r \Rightarrow d = 1$$

$$x^n \pm 1 = (x^2 - \gamma x + \delta)g(x)$$
, $g(x) = g_d(x)$, maximal refleksible

- g(x) type $\mathbf{1}$: $\Rightarrow x^2 \gamma x + \delta$ type $1 \Rightarrow (x a)(x a^{-1})$ $a \notin \mathbb{Z}_p$, irreducible $a \in \mathbb{Z}_p$, $a^2 \neq \pm 1$
- g(x) type 2:

$$\Rightarrow r = 2 \text{ and } d | r \Rightarrow d = 1$$

$$x^n \pm 1 = (x^2 - \gamma x + \delta)g(x)$$
, $g(x) = g_d(x)$, maximal refleksible

- g(x) type $\mathbf{1}$: $\Rightarrow x^2 \gamma x + \delta$ type $1 \Rightarrow (x a)(x a^{-1})$ $a \notin \mathbb{Z}_p$, irreducible $a \in \mathbb{Z}_p$, $a^2 \neq \pm 1$
- g(x) type 2:

$$n$$
 even: $\Rightarrow x^2 - \gamma x + \delta = (x - a)(x + a^{-1})$ type 2 $a \notin \mathbb{Z}_p$, irreducible $a \in \mathbb{Z}_p$, $a^2 \neq \pm 1$

$$\Rightarrow r = 2 \text{ and } d | r \Rightarrow d = 1$$

$$x^n \pm 1 = (x^2 - \gamma x + \delta)g(x)$$
, $g(x) = g_d(x)$, maximal refleksible

- g(x) type $\mathbf{1}$: $\Rightarrow x^2 \gamma x + \delta$ type $1 \Rightarrow (x a)(x a^{-1})$ $a \notin \mathbb{Z}_p$, irreducible $a \in \mathbb{Z}_p$, $a^2 \neq \pm 1$
- g(x) type 2:

$$n$$
 even: $\Rightarrow x^2 - \gamma x + \delta = (x - a)(x + a^{-1})$ type 2 $a \notin \mathbb{Z}_p$, irreducible $a \in \mathbb{Z}_p$, $a^2 \neq \pm 1$

n **odd**: No.

Thank you!