Hamilton Paths and Cycles in Vertex-transitive Graphs

Klavdija Kutnar

University of Primorska, Slovenia

Koper, June 1, 2018

klavdija.kutnar@upr.si
Lovász question

Lovász, 1969
Does every connected vertex-transitive graph have a Hamilton path?
All known VTG have Hamilton path. Only 4 CVTG (having at least three vertices) not having a Hamilton cycle are known to exist. None of them is a Cayley graph.

Folklore conjecture
Every connected Cayley graph contains a Hamilton cycle.
The current situation

Hamilton cycles (paths) are known to exist in these cases:

- VTG of order p, $2p$, $3p$, $4p$, $5p$, $6p$, $2p^2$, p^k (for $k \leq 4$), $10p$ ($p > 7$) (Alspach, Chen, Du, Marušič, Parsons, Šparl, Zhang, KK, etc.);
- CG of p-groups (Witte);
- VTG having groups with a cyclic commutator subgroup of order p^k (Durenberger, Gavlas, Keating, Marušič, Morris, Morris-Witte, etc.).
- CG Cay(G, $\{a, b, a^b\}$), where a is an involution (Pak, Radoičić).
- Cubic CG Cay(G, S), where $S = \{a, b, c\}$ and $a^2 = b^2 = c^2 = 1$ and $ab = ba$ (Cherkassoff, Sjerve).
- Cubic CG Cay(G, S), where $S = \{a, x, x^{-1}\}$ and $a^2 = 1$, $x^s = 1$ and $(ax)^3 = 1$ (Glover, Marušič).
- CG on groups whose orders have small prime factorization (Morris-Witte, ...).
- and in some other cases.

In short: the problem is still open.
Hamiltonicity of vertex-transitive graphs of order $4p$

Klavdija Kutnara, Dragan Marušiča,b

a University of Primorska, Faculty of Electrical Engineering, Cathedral Square 8, 6000 Koper, Slovenia
b University of Ljubljana, Institute of Mathematics, University of Ljubljana, Slovenia

Received 26 September 2006; accepted 15 February 2007
Available online 1 March 2007

Hamiltonian cycles in cubic Cayley graphs: the $(2, 4k, 3)$ case

Henry H. Glover · Klavdija Kutnar · Dragan Marušič

Hamilton paths and cycles in vertex-transitive graphs of order $6p$

Klavdija Kutnara, Primož Šparlb,c

a University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
b IAM, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
c IMF, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
Hamiltonian cycles in Cayley graphs whose order has few prime factors

K. Kutnar
University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia

D. Marušič
University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
University of Ljubljana, PEF, Kardeševa pl. 16, 1000 Ljubljana, Slovenia

D. W. Morris
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

J. Morris
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

P. Šparl
University of Ljubljana, PEF, Kardeševa pl. 16, 1000 Ljubljana, Slovenia

Received 3 October 2010, accepted 4 April 2011, published online xx October 2011

Contents lists available at ScienceDirect
European Journal of Combinatorics
journal homepage: www.elsevier.com/locate/ejc

Hamilton paths in vertex-transitive graphs of order 10p
Klavdija Kutnar, Dragan Marušić, Cui Zhang

University of Ljubljana, PEF, Kardeševa pl. 16, 1000 Ljubljana, Slovenia

Hamilton cycles in (2, odd, 3)-Cayley graphs

Henry H. Glover, Klavdija Kutnar, Aleksander Malnič and Dragan Marušić

University of Primorska, Slovenia
LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS

Brian ALSPACH*

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada

Dedicated to the memory of Tory Parsons

Received 19 November 1987
Revised 20 August 1988

Using a standard notion of a quotient graph of certain vertex-transitive graphs, methods for lifting a Hamilton cycle in the quotient graph to a Hamilton cycle in the original graph are discussed.
If Cay(G, S) is a cubic Cayley graph then $|S| = 3$, and either

- $S = \{a, b, c \mid a^2 = b^2 = c^2 = 1\}$, or
- $S = \{a, x, x^{-1} \mid a^2 = x^s = 1\}$ where $s \geq 3$.
(2, s, t)-Cayley graphs

Definition

Let $G = \langle a, x \mid a^2 = x^s = (ax)^t = 1, \ldots \rangle$ be a group. Then the Cayley graph $X = \text{Cay}(G, S)$ of G with respect to the generating set $S = \{a, x, x^{-1}\}$ is called $(2, s, t)$-Cayley graph.

A $(2, s, t)$-Cayley graph is a Cayley graph of a quotient group of the triangle group $T(2, s, t)$.

A $(2, s, 3)$-Cayley graph is a Cayley graph of a quotient group of the modular group $\langle a, x \mid a^2 = (ax)^3 = 1 \rangle$.
Let $s \geq 3$ be an integer and let $X = \text{Cay}(G, S)$ be a $(2, s, 3)$-Cayley graph of a group G. Then X has

- a Hamilton cycle when $|G|$ is congruent to 2 modulo 4, and
- a cycle of length $|G| - 2$, and also a Hamilton path, when $|G|$ is congruent to 0 modulo 4.
A $(2, s, 3)$-Cayley graph X can be embedded in the closed orientable surface of genus

$$1 + (s - 6)|G|/12s$$

with faces $|G|/s$ disjoint s-gons and $|G|/3$ hexagons.
Soccer ball

$(2, 5, 3)$-Cayley graph of $A_5 = \langle a, x \mid a^2 = x^5 = (ax)^3 = 1 \rangle$.
Example: $|G| \equiv 2 \pmod{4}$

$G = S_3 \times \mathbb{Z}_3$ with a $(2, 6, 3)$-presentation
\[
\langle a, x \mid a^2 = x^6 = (ax)^3 = 1, \ldots \rangle,
\]
where $a = ((12), 0)$ and $x = ((13), 1)$.

The corresponding hexagon graph.

A Hamilton tree of hexagons.

The corresponding Hamilton cycle in X.

Klavdija Kutnar

University of Primorska, Slovenia
Example: \(|G| \equiv 0(\text{mod } 4)\)

\[G = S_4 \text{ with a } (2, 4, 3)\text{-presentation } \langle a, x \mid a^2 = x^4 = (ax)^3 = 1 \rangle, \]

where \(a = (12)\) and \(x = (1234)\).
Cyclically stable subsets

F4

F6

F8

F10
Let X be a cyclically 4-edge-connected cubic graph of order n, and let S be a maximum cyclically stable subset of $V(X)$. Then $|S| = \lfloor (3n - 2)/2 \rfloor$ and more precisely, the following hold.

- If $n \equiv 2 \pmod{4}$ then $|S| = (3n - 2)/4$, and $X[S]$ is a tree and $V(X) \setminus S$ is an independent set of vertices;
- If $n \equiv 0 \pmod{4}$ then $|S| = (3n - 4)/4$, and either $X[S]$ is a tree and $V(X) \setminus S$ induces a graph with a single edge, or $X[S]$ has two components and $V(X) \setminus S$ is an independent set of vertices.
The edge cyclic connectivity of a cubic vertex-transitive graph X equals its girth $g(X)$.
For a $(2, s, 3)$-Cayley graph of order $0 \pmod{4}$ three cases can occur:

- $s \equiv 0 \pmod{4}$.
- $s \equiv 2 \pmod{4}$.
- s odd.
Let \(s \equiv 0 \pmod{4} \geq 4 \) be an integer. Then a \((2, s, 3)\)-Cayley graph \(X \) has a Hamilton cycle.

Essential ingredients in the proof

- Glover-Marušič method.
- Classification of cubic ATG of girth 6.
- Results on cubic ATG admitting a 1-regular subgroup.
We consider the graph of hexagons $\text{Hex}X$.

The graph of hexagons $\text{Hex}X$ is modified so as to get a graph $\text{Mod}X$ with $2 \equiv (\text{mod } 4)$ vertices and cyclically 4-edge-connected, so to be able to get by [Payan, Sakarovitch, 1975] a tree whose complement is an independent set of vertices giving rise to a Hamilton cycle in X.
Example

Modified Hex surface for $S_4 <2,4,3>$

Hamilton tree of faces for $S_4 <2,4,3>$
Let s be an odd integer. Then a $(2, s, 3)$-Cayley graph X has a Hamilton cycle.

- $\langle x \rangle$ is corefree in $G = \langle a, x \mid a^2 = x^s = (ax)^3 = 1, \ldots \rangle$:

 A method similar to the method used in $s \equiv 0 \pmod{4}$ case gives us a Hamilton cycle as a boundary of a Hamilton tree of faces consisting of hexagons and two s-gons.

- $\langle x \rangle$ is not corefree in $G = \langle a, x \mid a^2 = x^s = (ax)^3 = 1, \ldots \rangle$:

 Results about lifts of Hamilton cycles in covers of graphs are needed.
Hamiltonicity of (2, s, 3)-Cayley graphs, s odd
Hamiltonicity of (2, s, t)-Cayley graphs

X ... $(2, s, t)$-Cayley graph

X_{2t} ... $2t$-gonal graph (arc-transitive graph admitting a 1-regular subgroup with cyclic vertex-stabilizer)

If the vertex set V of X_{2t} decomposes into $(I, V - I)$ with I independent set and $V - I$ induces a tree then X contains a Hamiltonian cycle.

Question: Characterize (tetravalent) arc-transitive graphs admitting a 1-regular subgroup via their decomposition properties.

In particular, characterize non-near-bipartite graphs amongst them.
8th PhD Summer School in Discrete Mathematics
Rogla, July 1 - 7, 2018

Minicourse Lecturers:
Gabriel Verret, The University of Auckland, NZ
Colva Roney-Dougal, University of St Andrews, UK

We have limited financial support for PhD-students. This includes half-board in one of the bungalows and the exemption from conference fee payment. For details see our webpage.
Thanks!