Hamilton Paths and Cycles in Vertex-transitive Graphs

Klavdija Kutnar

University of Primorska, Slovenia

Koper, June 1, 2018

klavdija.kutnar@upr.si

Lovász question

Lovász, 1969

Does every connected vertex-transitive graph have a Hamilton path?

Klavdija Kutnar University of Primorska, Slovenia

イロト イヨト イヨト イヨト

Hamiltonicity of vertex - transitive graphs

All known VTG have Hamilton path. Only 4 CVTG (having at least three vertices) not having a Hamilton cycle are known to exist. None of them is a Cayley graph.

Folklore conjecture

Every connected Cayley graph contains a Hamilton cycle.

・ロト ・回ト ・ヨト

The current situation

Hamilton cycles (paths) are known to exist in these cases:

- VTG of order p, 2p, 3p, 4p, 5p, 6p, $2p^2$, p^k (for $k \le 4$), 10p (p > 7) (Alspach, Chen, Du, Marušič, Parsons, Šparl, Zhang, KK, etc.);
- CG of *p*-groups (Witte);
- VTG having groups with a cyclic commutator subgroup of order p^k (Durenberger, Gavlas, Keating, Marušič, Morris, Morris-Witte, etc.).
- CG Cay(G, {a, b, a^b }), where a is an involution (Pak, Radoičić).
- Cubic CG Cay(G, S), where S = {a, b, c} and a² = b² = c² = 1 and ab = ba (Cherkassoff, Sjerve).
- Cubic CG Cay(G, S), where $S = \{a, x, x^{-1}\}$ and $a^2 = 1$, $x^s = 1$ and $(ax)^3 = 1$ (Glover, Marušič).
- CG on groups whose orders have small prime factorization (Morris-Witte, ...).
- and in some other cases.

In short: the problem is still open.

< □ > < @ > < 注 > < 注 > ... 注

Hamiltonicity of vertex-transitive graphs

Available online at www.sciencedirect.com

European Journal of Combinatorics 29 (2008) 423-438

Hamiltonicity of vertex-transitive graphs of order 4p

Klavdija Kutnar^a, Dragan Marušič^{a,b}

^a University of Primorska, Titov trg 4, 6000 Koper, Slovenia ^b University of Ljubljana, IMFM, Jadranska 19, 1000 Ljubljana, Slovenia

> Received 26 September 2006; accepted 15 February 2007 Available online 1 March 2007

J Algebr Comb DOI 10.1007/s10801-009-0172-5

Hamiltonian cycles in cubic Cayley graphs: the (2, 4k, 3) case

イロト イヨト イヨト イヨト

Henry H. Glover · Klavdija Kutnar · Dragan Marušič

Received: 22 May 2008 / Accepted: 16 February 2009 © Springer Science+Business Media, LLC 2009

Discrete Mathematics 309 (2009) 5444-5460

Hamilton paths and cycles in vertex-transitive graphs of order 6p

Klavdija Kutnar^a, Primož Šparl^{b,*}

¹ University of Primorska, FAMNIT, Glagoljažka 8, 6000 Koper, Slovenia ⁵ IMFM, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Hamiltonicity of vertex-transitive graphs

Also available at http://amc.imfm.si ISSN 1855-3966 (primed edu.), ISSN 1855-3974 (electronic edu.) ARS MATHEMATICA CONTEMPORANEA 5 (2012) 27–71

Hamiltonian cycles in Cayley graphs whose order has few prime factors

K. Kutnar University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia

D. Marušič

University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia University of Ljubljana, PEF, Kardeljeva pl. 16, 1000 Ljubljana, Slovenia

D. W. Morris

Department of Mathematics and Computer Science, University of Lethbridge Lethbridge, Alberta, TIK 3M4, Canada

J. Morris

Department of Mathematics and Computer Science, University of Lethbridge Lethbridge, Alberta, T1K 3M4, Canada

P. Šparl University of Liubliana, PEF. Kardelieva pl. 16, 1000 Liubliana, Slovenia

Received 3 October 2010, accepted 4 April 2011, published online xx October 2011

European Journal of Combinatorics 33 (2012) 1043-1077

Hamilton paths in vertex-transitive graphs of order 10p

Klavdija Kutnar^{a,b}, Dragan Marušič^{a,b,c}, Cui Zhang^{a,b}

⁴ University of Primorsku, FMMNIT, Glagoljušku 8, 6000 Koper, Slovenia ^b University of Primorsku, PINT, Muzejski trg 2, 6000 Koper, Slovenia ^c University of Ljubljanu, PEF, Kardeljeva pl. 16, 1000 Ljubljanu, Slovenia

Proceedings of the London Mathematical Society Advance Access published January 29, 2012

Proc. London Math. Soc. Page 1 of 27 © 2012 London Mathematical Society doi:10.1112/plms/pdr042

イロン イヨン イヨン イヨン

Hamilton cycles in (2, odd, 3)-Cayley graphs

Henry H. Glover, Klavdija Kutnar, Aleksander Malnič and Dragan Marušič

Hamiltonicity of vertex-transitive graphs

Discrete Mathematics 78 (1989) 25-36 North-Holland 25

(ロ) (同) (E) (E) (E)

LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS

Brian ALSPACH*

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada

Dedicated to the memory of Tory Parsons

Received 19 November 1987 Revised 20 August 1988

Using a standard not'n of a quotient graph of certain vertex-transitive graphs, methods for lifting a Hamilton cycle in the quotient graph to a Hamilton cycle in the original graph are discussed.

Cubic Cayley graphs

If Cay(G, S) is a cubic Cayley graph then |S| = 3, and either

•
$$S = \{a, b, c \mid a^2 = b^2 = c^2 = 1\}$$
, or
• $S = \{a, x, x^{-1} \mid a^2 = x^s = 1\}$ where $s \ge 3$.

イロン イ部ン イヨン イヨン 三日

(2, s, t)-Cayley graphs

Definition

Let $G = \langle a, x \mid a^2 = x^s = (ax)^t = 1, ... \rangle$ be a group. Then the Cayley graph X = Cay(G, S) of G with respect to the generating set $S = \{a, x, x^{-1}\}$ is called (2, s, t)-Cayley graph.

A (2, s, t)-Cayley graph is a Cayley graph of a quotient group of the triangle group T(2, s, t).

A (2, s, 3)-Cayley graph is a Cayley graph of a quotient group of the modular group $\langle a, x \mid a^2 = (ax)^3 = 1 \rangle$.

(ロ) (同) (E) (E) (E)

Hamiltonicity of (2, s, 3)-Cayley graphs

Glover, Marušič, J. Eur. Math. Soc., 2007

Let $s \ge 3$ be an integer and let X = Cay(G, S) be a (2, s, 3)-Cayley graph of a group G. Then X has

- a Hamilton cycle when |G| is congruent to 2 modulo 4, and
- a cycle of length |G| − 2, and also a Hamilton path, when |G| is congruent to 0 modulo 4.

・ロト ・回ト ・ヨト ・ヨト

Essential ingredients in the proof

A (2, s, 3)-Cayley graph X can be embedded in the closed orientable surface of genus

$$1 + (s - 6)|G|/12s$$

with faces |G|/s disjoint *s*-gons and |G|/3 hexagons.

Soccer ball

(2,5,3)-Cayley graph of
$$A_5=\langle a,x\mid a^2=x^5=(ax)^3=1
angle.$$

<ロ> (四) (四) (三) (三) (三)

Example: $|G| \equiv 2 \pmod{4}$

$$G = S_3 \times \mathbb{Z}_3$$
 with a (2,6,3)-presentation
 $(a, x \mid a^2 = x^6 = (ax)^3 = 1, ...)$, where $a = ((12), 0)$ and $x = ((13), 1)$.

・ロン ・回と ・ヨン・

Example: $|G| \equiv 0 \pmod{4}$

 $G = S_4$ with a (2, 4, 3)-presentation $\langle a, x | a^2 = x^4 = (ax)^3 = 1 \rangle$, where a = (12) and x = (1234).

イロン イヨン イヨン イヨン

Cyclically stable subsets

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Payan, Sakarovitch, 1975

Payan, Sakarovitch, 1975

Let X be a cyclically 4-edge-connected cubic graph of order n, and let S be a maximum cyclically stable subset of V(X). Then $|S| = \lfloor (3n-2)/2 \rfloor$ and more precisely, the following hold.

- If $n \equiv 2 \pmod{4}$ then |S| = (3n 2)/4, and X[S] is a tree and $V(X) \setminus S$ is an independent set of vertices;
- If n ≡ 0 (mod 4) then |S| = (3n 4)/4, and either X[S] is a tree and V(X) \ S induces a graph with a single edge, or X[S] has two components and V(X) \ S is an independent set of vertices.

・ロン ・回と ・ヨン ・ヨン

Nedela, Škoviera, 1995

Nedela, Škoviera, 1995

The edge cyclic connectivity of a cubic vertex-transitive graph X equals its girth g(X).

< 🗇 🕨

(2, s, 3)-Cayley graphs of order 0 (mod 4)

For a (2, s, 3)-Cayley graph of order 0 (mod 4) three cases can occur:

- $s \equiv 0 \pmod{4}$.
- $s \equiv 2 \pmod{4}$.
- *s* odd.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Hamiltonicity of (2, s, 3)-Cayley graphs, $s \equiv 0 \pmod{4}$

Glover, KK, Marušič, 2009

Let $s \equiv 0 \pmod{4} \ge 4$ be an integer. Then a (2, s, 3)-Cayley graph X has a Hamilton cycle.

Essential ingredients in the proof

- Glover-Marušič method.
- Classification of cubic ATG of girth 6.
- Results on cubic ATG admitting a 1-regular subgroup.

<ロ> (日) (日) (日) (日) (日)

Modification process in (2, 4k, 3) case

We consider the graph of hexagons HexX.

The graph of hexagons HexX is modified so as to get a graph ModX with $2 \equiv (mod \ 4)$ vertices and cyclically 4-edge-connected, so to be able to get by [Payan, Sakarovitch, 1975] a tree whose complement is an independent set of vertices giving rise to a Hamilton cycle in X.

Example

Modified Hex surface for $S_4 < 2,4,3 >$

Hamilton tree of faces for $S_4 < 2,4,3 >$

イロン イヨン イヨン イヨン

Э

Hamiltonicity of (2, s, 3)-Cayley graphs, s odd

Glover, KK, Malnič, Marušič, 2012

Let s be an odd integer. Then a (2, s, 3)-Cayley graph X has a Hamilton cycle.

• $\langle x \rangle$ is corefree in $G = \langle a, x \mid a^2 = x^s = (ax)^3 = 1, \ldots \rangle$:

A method similar to the method used in $s \equiv 0 \pmod{4}$ case gives us a Hamilton cycle as a boundary of a Hamilton tree of faces consisting of hexagons and two *s*-gons.

• $\langle x \rangle$ is not corefree in $G = \langle a, x \mid a^2 = x^s = (ax)^3 = 1, \ldots \rangle$:

Results about lifts of Hamilton cycles in covers of graphs are needed.

(ロ) (同) (E) (E) (E)

Hamiltonicity of vertex - transitive graphs

Lovász question

Hamiltonicity of (2, s, 3)-Cayley graphs, s odd

Э

Hamiltonicity of (2, s, t)-Cayley graphs

$X \dots (2, s, t)$ -Cayley graph

 X_{2t} ... 2t-gonal graph (arc-transitive graph admitting a 1-regular subgroup with cyclic vertex-stabilizer)

If the vertex set V of X_{2t} decomposes into (I, V - I) with I independent set and V - I induces a tree then X contains a Hamiltonian cycle.

Question: Characterize (tetravalent) arc-transitive graphs admitting a 1-regular subgroup via their decomposition properties.

In particular, characterize non-near-bipartite graphs amongst them.

・ロン ・回 と ・ ヨ と ・ ヨ と

8th PhD Summer School in Discrete Mathematics Rogla, July 1 - 7, 2018

Minicourse Lecturers: Gabriel Verret, The University of Auckland, NZ Colva Roney-Dougal, University of St Andrews, UK

We have limited financial support for Phd-students. This includes half-board in one of the bungalows and the exemption from conference fee payment. For details see our webpage.

Thanks!

Klavdija Kutnar University of Primorska, Slovenia

◆□ > ◆□ > ◆臣 > ◆臣 > ○