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Abstract Unitals

Abstract unital of order q:=pointset U of size q3 + 1 with a family
F of subsets (called blocks), where |F| = q2(q2 − q + 1) s.t.

(i) |f | = q + 1 for ∀f ∈ F ;
(ii) for ∀P,Q ∈ U ∃ a unique f ∈ F with P,Q ∈ f .

Remark

Abstract unital of order q = block-designs 2− (q3 + 1, q + 1, 1).

Embedding of an abstract unital U of order q in a projective plane
Π of order q2:= incidence preserving injective map U 7→ Π, i.e.

three points of U are in the same block if and only if they are
mapped to three collinear points in Π.

Non-exhaustive computer search ⇒ over 900 (mutually
nonisomorphic) unitals of order n = 3, only 17 embeddadble in Π.

Remark

It seems that there are many abstract unitals, but only a few
embeddable in projective planes.

Gábor Korchmáros Recent results and open problems on unitals



Abstract Unitals

Abstract unital of order q:=pointset U of size q3 + 1 with a family
F of subsets (called blocks), where |F| = q2(q2 − q + 1) s.t.

(i) |f | = q + 1 for ∀f ∈ F ;
(ii) for ∀P,Q ∈ U ∃ a unique f ∈ F with P,Q ∈ f .

Remark

Abstract unital of order q = block-designs 2− (q3 + 1, q + 1, 1).

Embedding of an abstract unital U of order q in a projective plane
Π of order q2:= incidence preserving injective map U 7→ Π, i.e.

three points of U are in the same block if and only if they are
mapped to three collinear points in Π.

Non-exhaustive computer search ⇒ over 900 (mutually
nonisomorphic) unitals of order n = 3, only 17 embeddadble in Π.

Remark

It seems that there are many abstract unitals, but only a few
embeddable in projective planes.
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Unitals in Projective Planes

Unital in a Projective Plane Π of order q2:=
pointset U of size q3 + 1 s.t. for lines ` of Π

|` ∩ U| =

{
q + 1, ` is a chord of U ,
1, ` is a tangent to U .

At each point of U there ∃ unique tangent to U ,

Definition

Set of all isotropic points of a unitary polarity of Π = PG (2, q2) is
a unital, called the classical unital.

Remark

If Π admits a unitary polarity then the set of all isotropic points is
a unital.
There are known several examples.
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Unitals in PG (2, q2)

Remark

Canonical Equation of classical unital:
U = {P(x , y)|y q + y = xq+1; x , y ∈ GF (q2)} ∪ {Y∞}.

Definition

BM-unitals in PG (2, q2):=Unitals in PG (2, q2) which were
constructed by Buekenhout (1974) using the four-dimensional
Bruck-Barlotti representation of AG (2, q2).

Remark

Equations of BM-unitals are more complicated.

Open question: Are there other unitals in PG (2, q2)?
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Abstract unitals embeddedable in PG (2, q2)

By definition, the classical abstract unital, as well as the
BM-unitals, are embedded in PG (2, q2) ⇒ in a natural way.
Problem: Is the ”natural” one the unique embedding of these
unitals of order q in PG (2, q2)?

Definition

Two embeddings of an abstract unital U of order q into PG (2, q2),
say Φ and Ψ, are considered equivalent when Φ(U) can be
transformed in Ψ(U) by a collineation of PG (2, q2).

Theorem

(G.K., A. Siciliano, T. Szőnyi, J. Comb. Theory, A 2018) For the
classical unital, the answer to the above Problem is yes.

Conjecture: This holds true for BM-unitals
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(G.K., A. Siciliano, T. Szőnyi, J. Comb. Theory, A 2018) For the
classical unital, the answer to the above Problem is yes.

Conjecture: This holds true for BM-unitals
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Collineation groups of a unital

U :=unital in a projective plane Π of order q2 > 4;
G := collineation group Π preserving U ;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple
⇒ G ∼= PSU(3, n),PSL(2, n), n ≥ 5,Sz(2r ),Alt7,PSL(2, 8).

(ii) If G is transitive on U and Soc(G ) has even order, ⇒
Π = PG (2, q2) and U a classical unital,

(iii) and, either Soc(G ) ∼= PSU(3, q2), or q = 5 and
Soc(G ) ∼= Alt7, or q = 3 and Soc(G ) ∼= PSL(2, 7).

Remark

(ii) holds true for q ≥ 4 even. (M. Biliotti, G.K., Geom. Dedicata
1989, W.M. Kantor Can. J. Math 1971).

Open Problem: Condition on Soc(G ) is necessary?
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Translations of abstract unitals

U :=abstract unital of order q;
G :=group of automorphisms of U ;
Translation τ :=automorphism of U such that

τ fixes a unique point T , called the center of τ ;
τ preserves each block through T ;

Translation group TP with center P:=subgroup of all translations
with center P ;
Translation point P of U :=TP acts (faithfully) as a sharply
transitive permutation group on each block through P (minus the
point P);
P is translation point ⇔ TP of U has (maximal) order q.

Remark

The set of translation points is either empty, or just one point, or
one block, or U . The Grundhoefer-Stoppel unital (Discr. Math.
2016) of order 4 is (the only known) abstract unital whose set of
translation points is a single block.
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Gábor Korchmáros Recent results and open problems on unitals



Translations of abstract unitals

U :=abstract unital of order q;
G :=group of automorphisms of U ;
Translation τ :=automorphism of U such that

τ fixes a unique point T , called the center of τ ;
τ preserves each block through T ;

Translation group TP with center P:=subgroup of all translations
with center P ;
Translation point P of U :=TP acts (faithfully) as a sharply
transitive permutation group on each block through P (minus the
point P);
P is translation point ⇔ TP of U has (maximal) order q.

Remark

The set of translation points is either empty, or just one point, or
one block, or U . The Grundhoefer-Stoppel unital (Discr. Math.
2016) of order 4 is (the only known) abstract unital whose set of
translation points is a single block.
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Group generated by translations of an abstract unitals

Theorem

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If
∀ points are translation points ⇒ the classical case.

Remark

Classification of abstract unitals whose set of translation points is
a block seems to be out of reach.

Work in progress: Classification of the automorphism groups G of
abstract unitals generated by all translations. Main tool:

Hering’s classification of 2-transitive permutation groups
whose 1-point stabilizer contains a normal subgroup that acts
sharply transitively on the remaining points

⇒ G ∼= PSU(3, q), SU(3, q),Ree(q),PSL(2, q),SL(2, q), or G is
sharply 2-transitive on `.
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Gábor Korchmáros Recent results and open problems on unitals



Group generated by translations of an abstract unitals

Theorem

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If
∀ points are translation points ⇒ the classical case.

Remark

Classification of abstract unitals whose set of translation points is
a block seems to be out of reach.

Work in progress: Classification of the automorphism groups G of
abstract unitals generated by all translations. Main tool:

Hering’s classification of 2-transitive permutation groups
whose 1-point stabilizer contains a normal subgroup that acts
sharply transitively on the remaining points

⇒ G ∼= PSU(3, q), SU(3, q),Ree(q),PSL(2, q),SL(2, q), or G is
sharply 2-transitive on `.
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Graph Γ arising from U \ `

Let ` be a block of an abstract unital U ;
Vertices of Γ:=points of U not on `;
Adjacency of Γ:= two vertices are adjacent if the block through
them meets `.
Open problem: Find the number of connected components of Γ.
Conjecture If Γ is connected then U is isomorphic to the classical,
or to a BM-unital.
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