Recent results and open problems on unitals

Gábor Korchmáros

Università degli Studi della Basilicata, Italy

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

28 May - 1 Jun 2018 UP FHS Koper

æ

<> E ► < E</p>

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t.

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$;

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$; (ii) for $\forall P, Q \in \mathcal{U} \exists$ a unique $f \in \mathcal{F}$ with $P, Q \in f$.

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$; (ii) for $\forall P, Q \in \mathcal{U} \exists$ a unique $f \in \mathcal{F}$ with $P, Q \in f$.

Remark

Abstract unital of order q = block-designs $2 - (q^3 + 1, q + 1, 1)$.

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$; (ii) for $\forall P, Q \in \mathcal{U} \exists$ a unique $f \in \mathcal{F}$ with $P, Q \in f$.

Remark

Abstract unital of order q = block-designs $2 - (q^3 + 1, q + 1, 1)$.

Embedding of an abstract unital \mathcal{U} of order q in a projective plane Π of order q^2 := incidence preserving injective map $\mathcal{U} \mapsto \Pi$, i.e.

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$; (ii) for $\forall P, Q \in \mathcal{U} \exists$ a unique $f \in \mathcal{F}$ with $P, Q \in f$.

Remark

Abstract unital of order q = block-designs $2 - (q^3 + 1, q + 1, 1)$.

Embedding of an abstract unital \mathcal{U} of order q in a projective plane Π of order q^2 := incidence preserving injective map $\mathcal{U} \mapsto \Pi$, i.e.

 three points of U are in the same block if and only if they are mapped to three collinear points in Π.

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$; (ii) for $\forall P, Q \in \mathcal{U} \exists$ a unique $f \in \mathcal{F}$ with $P, Q \in f$.

Remark

Abstract unital of order q = block-designs $2 - (q^3 + 1, q + 1, 1)$.

Embedding of an abstract unital \mathcal{U} of order q in a projective plane Π of order q^2 := incidence preserving injective map $\mathcal{U} \mapsto \Pi$, i.e.

• three points of \mathcal{U} are in the same block if and only if they are mapped to three collinear points in Π .

Non-exhaustive computer search \Rightarrow over 900 (mutually nonisomorphic) unitals of order n = 3, only 17 embeddadble in Π .

伺 ト イヨト イヨト

Abstract unital of order q:=pointset \mathcal{U} of size $q^3 + 1$ with a family \mathcal{F} of subsets (called blocks), where $|\mathcal{F}| = q^2(q^2 - q + 1)$ s.t. (i) |f| = q + 1 for $\forall f \in \mathcal{F}$; (ii) for $\forall P, Q \in \mathcal{U} \exists$ a unique $f \in \mathcal{F}$ with $P, Q \in f$.

Remark

Abstract unital of order q = block-designs $2 - (q^3 + 1, q + 1, 1)$.

Embedding of an abstract unital \mathcal{U} of order q in a projective plane Π of order q^2 := incidence preserving injective map $\mathcal{U} \mapsto \Pi$, i.e.

• three points of \mathcal{U} are in the same block if and only if they are mapped to three collinear points in Π .

Non-exhaustive computer search \Rightarrow over 900 (mutually nonisomorphic) unitals of order n = 3, only 17 embeddadble in Π .

Remark

It seems that there are many abstract unitals, but only a few embeddable in projective planes.

∃ >

æ

Unital in a Projective Plane Π of order q^2 := pointset \mathcal{U} of size $q^3 + 1$ s.t. for lines ℓ of Π

Unital in a Projective Plane Π of order q^2 := pointset \mathcal{U} of size $q^3 + 1$ s.t. for lines ℓ of Π

$$|\ell \cap \mathcal{U}| = \begin{cases} q+1, \ \ell \text{ is a chord of } \mathcal{U}, \\ 1, \ \ell \text{ is a tangent to } \mathcal{U}. \end{cases}$$

Unital in a Projective Plane Π of order q^2 := pointset \mathcal{U} of size $q^3 + 1$ s.t. for lines ℓ of Π

$$|\ell \cap \mathcal{U}| = egin{cases} q+1, \ \ell \ ext{is a } \textit{chord of } \mathcal{U}, \ 1, \ \ell \ ext{is a } \textit{tangent to } \mathcal{U}. \end{cases}$$

At each point of \mathcal{U} there \exists unique tangent to \mathcal{U} ,

Unital in a Projective Plane Π of order q^2 := pointset \mathcal{U} of size $q^3 + 1$ s.t. for lines ℓ of Π

$$|\ell \cap \mathcal{U}| = egin{cases} q+1, \ \ell \ ext{is a } chord \ ext{of} \ \mathcal{U}, \ 1, \ \ell \ ext{is a } tangent \ ext{to} \ \mathcal{U}. \end{cases}$$

At each point of \mathcal{U} there \exists unique tangent to \mathcal{U} ,

Definition

Set of all isotropic points of a unitary polarity of $\Pi = PG(2, q^2)$ is a unital, called the *classical unital*.

Unital in a Projective Plane Π of order q^2 := pointset \mathcal{U} of size $q^3 + 1$ s.t. for lines ℓ of Π

$$|\ell \cap \mathcal{U}| = egin{cases} q+1, \ \ell \ ext{is a } chord \ ext{of} \ \mathcal{U}, \ 1, \ \ell \ ext{is a } tangent \ ext{to} \ \mathcal{U}. \end{cases}$$

At each point of \mathcal{U} there \exists unique tangent to \mathcal{U} ,

Definition

Set of all isotropic points of a unitary polarity of $\Pi = PG(2, q^2)$ is a unital, called the *classical unital*.

Remark

If Π admits a unitary polarity then the set of all isotropic points is a unital.

4 3 b

Unital in a Projective Plane Π of order q^2 := pointset \mathcal{U} of size $q^3 + 1$ s.t. for lines ℓ of Π

$$|\ell \cap \mathcal{U}| = egin{cases} q+1, \ \ell \ ext{is a } chord \ ext{of} \ \mathcal{U}, \ 1, \ \ell \ ext{is a } tangent \ ext{to} \ \mathcal{U}. \end{cases}$$

At each point of \mathcal{U} there \exists unique tangent to \mathcal{U} ,

Definition

Set of all isotropic points of a unitary polarity of $\Pi = PG(2, q^2)$ is a unital, called the *classical unital*.

Remark

If Π admits a unitary polarity then the set of all isotropic points is a unital.

There are known several examples.

< A >

- A - B - M

Unitals in $PG(2, q^2)$

æ

< ≝ ► < ≣

P.

Unitals in $PG(2, q^2)$

Remark

Canonical Equation of classical unital:

→ 3 → < 3</p>

э

Unitals in $PG(2, q^2)$

Remark

Canonical Equation of classical unital: $\mathcal{U} = \{P(x, y) | y^q + y = x^{q+1}; x, y \in GF(q^2)\} \cup \{Y_{\infty}\}.$

伺 ト く ヨ ト く ヨ ト

э

Remark

Canonical Equation of classical unital: $\mathcal{U} = \{ P(x, y) | y^q + y = x^{q+1}; x, y \in GF(q^2) \} \cup \{ Y_{\infty} \}.$

Definition

BM-unitals in $PG(2, q^2)$:=Unitals in $PG(2, q^2)$ which were constructed by Buekenhout (1974) using the four-dimensional Bruck-Barlotti representation of $AG(2, q^2)$.

Remark

Canonical Equation of classical unital: $\mathcal{U} = \{P(x, y) | y^q + y = x^{q+1}; x, y \in GF(q^2)\} \cup \{Y_{\infty}\}.$

Definition

BM-unitals in $PG(2, q^2)$:=Unitals in $PG(2, q^2)$ which were constructed by Buekenhout (1974) using the four-dimensional Bruck-Barlotti representation of $AG(2, q^2)$.

Remark

Equations of BM-unitals are more complicated.

同 ト イ ヨ ト イ ヨ ト

Remark

Canonical Equation of classical unital: $\mathcal{U} = \{ P(x, y) | y^q + y = x^{q+1}; x, y \in GF(q^2) \} \cup \{ Y_{\infty} \}.$

Definition

BM-unitals in $PG(2, q^2)$:=Unitals in $PG(2, q^2)$ which were constructed by Buekenhout (1974) using the four-dimensional Bruck-Barlotti representation of $AG(2, q^2)$.

Remark

Equations of BM-unitals are more complicated.

Open question: Are there other unitals in $PG(2, q^2)$?

伺 ト く ヨ ト く ヨ ト

э

By definition, the classical abstract unital, as well as the BM-unitals, are embedded in $PG(2, q^2)$

By definition, the classical abstract unital, as well as the BM-unitals, are embedded in $PG(2, q^2) \Rightarrow$ in a natural way.

By definition, the classical abstract unital, as well as the BM-unitals, are embedded in $PG(2, q^2) \Rightarrow$ in a natural way. Problem: Is the "natural" one the unique embedding of these unitals of order q in $PG(2, q^2)$?

By definition, the classical abstract unital, as well as the BM-unitals, are embedded in $PG(2, q^2) \Rightarrow$ in a natural way. Problem: Is the "natural" one the unique embedding of these unitals of order q in $PG(2, q^2)$?

Definition

Two embeddings of an abstract unital \mathcal{U} of order q into $PG(2, q^2)$, say Φ and Ψ , are considered equivalent when $\Phi(\mathcal{U})$ can be transformed in $\Psi(\mathcal{U})$ by a collineation of $PG(2, q^2)$. By definition, the classical abstract unital, as well as the BM-unitals, are embedded in $PG(2, q^2) \Rightarrow$ in a natural way. Problem: Is the "natural" one the unique embedding of these unitals of order q in $PG(2, q^2)$?

Definition

Two embeddings of an abstract unital \mathcal{U} of order q into $PG(2, q^2)$, say Φ and Ψ , are considered equivalent when $\Phi(\mathcal{U})$ can be transformed in $\Psi(\mathcal{U})$ by a collineation of $PG(2, q^2)$.

Theorem

(G.K., A. Siciliano, T. Szőnyi, J. Comb. Theory, A 2018) For the classical unital, the answer to the above Problem is yes.

By definition, the classical abstract unital, as well as the BM-unitals, are embedded in $PG(2, q^2) \Rightarrow$ in a natural way. Problem: Is the "natural" one the unique embedding of these unitals of order q in $PG(2, q^2)$?

Definition

Two embeddings of an abstract unital \mathcal{U} of order q into $PG(2, q^2)$, say Φ and Ψ , are considered equivalent when $\Phi(\mathcal{U})$ can be transformed in $\Psi(\mathcal{U})$ by a collineation of $PG(2, q^2)$.

Theorem

(G.K., A. Siciliano, T. Szőnyi, J. Comb. Theory, A 2018) For the classical unital, the answer to the above Problem is yes.

Conjecture: This holds true for BM-unitals

 \mathcal{U} :=unital in a projective plane Π of order $q^2 > 4$;

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

 $\mathcal{U}:=$ unital in a projective plane Π of order $q^2 > 4$; $\mathcal{G}:=$ collineation group Π preserving \mathcal{U} ;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986)

 $\mathcal{U}:=$ unital in a projective plane Π of order $q^2 > 4$; $\mathcal{G}:=$ collineation group Π preserving \mathcal{U} ;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple

 $\Rightarrow G \cong PSU(3, n), PSL(2, n), n \geq 5, Sz(2^r), Alt_7, PSL(2, 8).$

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple

 $\Rightarrow G \cong PSU(3, n), PSL(2, n), n \ge 5, Sz(2^r), Alt_7, PSL(2, 8).$

(ii) If G is transitive on U and Soc(G) has even order,

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple $\Rightarrow G \cong PSU(3, n), PSL(2, n), n \ge 5, Sz(2^r), Alt_7, PSL(2, 8).$

(ii) If G is transitive on U and Soc(G) has even order, $\Rightarrow \Pi = PG(2, q^2)$ and U a classical unital,

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple

$$\Rightarrow G \cong PSU(3, n), PSL(2, n), n \ge 5, Sz(2^r), Alt_7, PSL(2, 8).$$

- (ii) If G is transitive on U and Soc(G) has even order, $\Rightarrow \Pi = PG(2, q^2)$ and U a classical unital,
- (iii) and, either $Soc(G) \cong PSU(3, q^2)$, or q = 5 and $Soc(G) \cong Alt_7$, or q = 3 and $Soc(G) \cong PSL(2,7)$.

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple

$$\Rightarrow G \cong PSU(3, n), PSL(2, n), n \ge 5, Sz(2^r), Alt_7, PSL(2, 8).$$

(ii) If G is transitive on U and Soc(G) has even order, $\Rightarrow \Pi = PG(2, q^2)$ and U a classical unital,

(iii) and, either
$$Soc(G) \cong PSU(3, q^2)$$
, or $q = 5$ and $Soc(G) \cong Alt_7$, or $q = 3$ and $Soc(G) \cong PSL(2,7)$.

Remark

(ii) holds true for $q \ge 4$ even. (M. Biliotti, G.K., Geom. Dedicata 1989, W.M. Kantor Can. J. Math 1971).

U:=unital in a projective plane Π of order $q^2 > 4$; G:= collineation group Π preserving U;

Theorem

(M. Biliotti, G.K., J. Lond. Math. Soc. 1986) Let q odd.

(i) If G is (non-abelian) simple

$$\Rightarrow G \cong PSU(3, n), PSL(2, n), n \ge 5, Sz(2^r), Alt_7, PSL(2, 8).$$

(ii) If G is transitive on U and Soc(G) has even order, $\Rightarrow \Pi = PG(2, q^2)$ and U a classical unital,

(iii) and, either
$$Soc(G) \cong PSU(3, q^2)$$
, or $q = 5$ and $Soc(G) \cong Alt_7$, or $q = 3$ and $Soc(G) \cong PSL(2,7)$.

Remark

(ii) holds true for $q \ge 4$ even. (M. Biliotti, G.K., Geom. Dedicata 1989, W.M. Kantor Can. J. Math 1971).

Open Problem: Condition on Soc(G) is necessary?

э

 $\mathcal{U}:=$ abstract unital of order q;

э

 \mathcal{U} :=abstract unital of order *q*; G:=group of automorphisms of \mathcal{U} ;

 $\begin{array}{l} \mathcal{U}:=& \text{abstract unital of order } q; \\ \mathcal{G}:=& \text{group of automorphisms of } \mathcal{U}; \\ \hline \textit{Translation } \tau:=& \text{automorphism of } \mathcal{U} \text{ such that} \end{array}$

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

• τ fixes a unique point T, called the center of τ ;

- \mathcal{U} :=abstract unital of order q;
- G:=group of automorphisms of U;
- *Translation* τ :=automorphism of \mathcal{U} such that
 - τ fixes a unique point T, called the center of τ ;
 - τ preserves each block through T;

- \mathcal{U} :=abstract unital of order q;
- G:=group of automorphisms of \mathcal{U} ;
- *Translation* τ :=automorphism of \mathcal{U} such that
 - τ fixes a unique point T, called the center of τ ;
 - τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

- τ fixes a unique point T, called the center of τ ;
- τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

Translation point P of $U:=T_P$ acts (faithfully) as a sharply

transitive permutation group on each block through P (minus the point P);

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

- τ fixes a unique point T, called the center of τ ;
- τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

Translation point P of $U:=T_P$ acts (faithfully) as a sharply

transitive permutation group on each block through P (minus the point P);

P is translation point \Leftrightarrow *T*_{*P*} of *U* has (maximal) order *q*.

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

- τ fixes a unique point T, called the center of τ ;
- τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

Translation point P of $U:=T_P$ acts (faithfully) as a sharply

transitive permutation group on each block through P (minus the point P);

P is translation point \Leftrightarrow *T*_{*P*} of *U* has (maximal) order *q*.

Remark

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

- τ fixes a unique point T, called the center of τ ;
- τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

Translation point P of $U:=T_P$ acts (faithfully) as a sharply

transitive permutation group on each block through P (minus the point P);

P is translation point \Leftrightarrow *T*_{*P*} of *U* has (maximal) order *q*.

Remark

The set of translation points is either empty, or just one point, or one block, or \mathcal{U} .

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

- τ fixes a unique point T, called the center of τ ;
- τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

Translation point P of $U:=T_P$ acts (faithfully) as a sharply

transitive permutation group on each block through P (minus the point P);

P is translation point \Leftrightarrow *T*_{*P*} of *U* has (maximal) order *q*.

Remark

The set of translation points is either empty, or just one point, or one block, or U. The Grundhoefer-Stoppel unital (Discr. Math. 2016) of order 4 is (the only known) abstract unital whose set of translation points is a single block.

 \mathcal{U} :=abstract unital of order q;

G:=group of automorphisms of \mathcal{U} ;

Translation τ :=automorphism of \mathcal{U} such that

- τ fixes a unique point T, called the center of τ ;
- τ preserves each block through T;

Translation group T_P with center P:=subgroup of all translations with center P;

Translation point P of $U:=T_P$ acts (faithfully) as a sharply

transitive permutation group on each block through P (minus the point P);

P is translation point \Leftrightarrow *T*_{*P*} of *U* has (maximal) order *q*.

Remark

The set of translation points is either empty, or just one point, or one block, or U. The Grundhoefer-Stoppel unital (Discr. Math. 2016) of order 4 is (the only known) abstract unital whose set of translation points is a single block.

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If \forall points are translation points \Rightarrow the classical case.

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If \forall points are translation points \Rightarrow the classical case.

Remark

Classification of abstract unitals whose set of translation points is a block seems to be out of reach.

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If \forall points are translation points \Rightarrow the classical case.

Remark

Classification of abstract unitals whose set of translation points is a block seems to be out of reach.

Work in progress: Classification of the automorphism groups G of abstract unitals generated by all translations.

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If \forall points are translation points \Rightarrow the classical case.

Remark

Classification of abstract unitals whose set of translation points is a block seems to be out of reach.

Work in progress: Classification of the automorphism groups G of abstract unitals generated by all translations. Main tool:

Hering's classification of 2-transitive permutation groups whose 1-point stabilizer contains a normal subgroup that acts sharply transitively on the remaining points

(Grundhoefer, Stoppel, van Maldeghem, J. Comb. Desing, 2012) If \forall points are translation points \Rightarrow the classical case.

Remark

Classification of abstract unitals whose set of translation points is a block seems to be out of reach.

Work in progress: Classification of the automorphism groups G of abstract unitals generated by all translations. Main tool:

Hering's classification of 2-transitive permutation groups whose 1-point stabilizer contains a normal subgroup that acts sharply transitively on the remaining points

 \Rightarrow $G \cong PSU(3, q), SU(3, q), Ree(q), PSL(2, q), SL(2, q)$, or G is sharply 2-transitive on ℓ .

Graph Γ arising from $\mathcal{U} \setminus \ell$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let ℓ be a block of an abstract unital \mathcal{U} ;

伺 ト く ヨ ト く ヨ ト

э

Let ℓ be a block of an abstract unital \mathcal{U} ; Vertices of Γ :=points of \mathcal{U} not on ℓ ; Let ℓ be a block of an abstract unital \mathcal{U} ; *Vertices* of Γ :=points of \mathcal{U} not on ℓ ; *Adjacency* of Γ := two vertices are adjacent if the block through them meets ℓ . Let ℓ be a block of an abstract unital \mathcal{U} ; *Vertices* of Γ :=points of \mathcal{U} not on ℓ ; *Adjacency* of Γ := two vertices are adjacent if the block through them meets ℓ . Open problem: Find the number of connected components of Γ . Let ℓ be a block of an abstract unital \mathcal{U} ; *Vertices* of Γ :=points of \mathcal{U} not on ℓ ; *Adjacency* of Γ := two vertices are adjacent if the block through them meets ℓ . Open problem: Find the number of connected components of Γ . Conjecture If Γ is connected then \mathcal{U} is isomorphic to the classical, or to a BM-unital