Quasi-semiregular automorphisms of cubic and tetravalent arc-transitive graphs

lstván Kovács University of Primorska, Slovenia

Joint work with Y.-Q. Feng, A. Hujdurović, K. Kutnar and D. Marušič

Graphs, groups, and more:

Celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

Koper, May 28 – June 1, 2018

Let Γ be a finite undirected graph and let $G \leq Aut\Gamma$.

 Γ is *G*-vertex-transitive if *G* is transitive on the vertices.

A non-identity $g \in Aut\Gamma$ is **semiregular** if the only power g^i fixing a vertex is the identity.

Polycirculant conjecture (Marušič)

Every vertex-transitive graph has a semiregular automorphism.

<u>Remark:</u> There is a slightly more general conjecture involving 2-cosed permutation groups due to M. Klin.

Remark: The conjecture does not hold for transitive permutation groups.

Theorem (Marušič and Scapellato)

Every cubic vertex-transitive graph has a semiregular automorphism.

Theorem (Dobson, Malnič, Marušič and Nowitz)

Every tetravalent vertex-transitive graph has a semiregular automorphism.

Remark: The fivevalent case is still open.

A transitive non-trivial permutation group *G* of a finite set Ω is a **Frobenius** group if every non-identity $g \in G$ fixes at most one point.

 $G = N \rtimes G_{\omega}$, and N is regular on Ω (Frobenius's theorem).

A graphical Frobenius representation (GFR) of G is a graph Γ such that Aut Γ is permutation isomorphic to G (Doyle, Tucker and Watkins).

Example: The Paley graph P(p) is a GFR for $\mathbb{Z}_p \rtimes \mathbb{Z}_{\frac{p-1}{2}}$.

A permutation group G of a set Ω is **quasi-semiregular** if

- There exsits some $\omega \in \Omega$ fixed by any $g \in G$, and
- G is semiregular on Ω \ {ω} (Kutnar, Malnič, Martínez and Marušič).

Equivalently:

A non-identity $g \in \operatorname{Aut}\Gamma$ is **quasi-semiregular** if

- g is not semiregular, and
- the only power g^i fixing two vertices is the identity.

Figure : The Petersen graph and the Coxeter graph.

E

イロト イヨト イヨト イヨト

Examples

Let *H* be a group and $S \subset H$ such that

•
$$1_H \notin S$$
,

• $S = S^{-1} = \{s^{-1} : s \in S\}.$

The Cayley graph Cay(H, S) = (V, E), where

$$V = H$$
 and $E = \{(h, sh) : h \in H, s \in S\}$.

If H is abelian and |H| is odd, then

$$g: h \mapsto h^{-1} \ (h \in H)$$

is a quasi-semiregular automorpism of Cay(H, S).

★ E ► ★ E ► _ E

Γ is *G*-arc-transitive if *G* is transitive on the arcs (= ordered pairs of adjacent vertices).

An *s*-arc of a graph Γ is a ordered (s + 1)-tuple

$$(v_1, v_2, \ldots, v_{s+1})$$

such that $v_i \sim v_{i+1}$ and $v_i \neq v_{i+2}$.

 Γ is (G, s)-arc-transitive (regular) if G is transitive (regular) on the s-arcs.

|▲ 臣 ▶ | ▲ 臣 ▶ | □ 臣

Theorem (Feng, Hujdurović, K, Kutnar and Marušič)

Let Γ be a connected arc-transitive graph of valency $d \in \{3,4\}$, and suppose that Γ admits a quasi-semiregular automorphism.

- (i) If d = 3, then Γ is isomorphic to K_4 or the Petersen graph or the Coxeter graph.
- (ii) If d = 4 and Γ is 2-arc-transitive, then Γ is isomorphic to K_5 .
- (iii) If d = 4 and Γ is G-arc-transitive, where G is solvable and contains a quasi-semiregular automorphism, then Γ is isomorphic to Cay(A, X), where A is an abelian group of odd order and X is an orbit of a subgroup of Aut(A).

Properties of quasi-semiregular automorphisms

For $N \triangleleft \operatorname{Aut}\Gamma$, **quotient graph** Γ_N has vertices the *N*-orbits, and edges (u^N, v^N) with $u^N \neq v^N$ and $(u, v) \in E\Gamma$.

If the mapping $V\Gamma \rightarrow V\Gamma_N$, $v \mapsto v^N$ is locally bijective, then Γ is called the **normal cover** of Γ_N .

Lemma

Let Γ be a G-vertex-transitive graph, $N \lhd G$ a non-trivial normal semiregular subgroup and $1 < H \le G$ a quasi-semiregular subgroup. Then

- (i) N is nilpotent, and if |H| is even, then N is abelian and $G_v/C_{G_v}(N)$ has a non-trivial center.
- (ii) If N is intransitive and Γ is a normal cover of Γ_N , then $HN/N \neq 1$ is quasi-semiregular on $V\Gamma_N$.

< ロ > < 同 > < 臣 > < 臣 > -

Lemma

Let Γ be a G-vertex-transitive graph, and $H \leq G$ be a non-trivial subgroup which is quasi-semiregular on $V\Gamma$ with the fixed vertex v. Then $C_G(H) \leq N_G(H) \leq G_v$.

Proof.

Let $1 \neq h \in H$ and let $g \in N_G(H)$. Then $h^g \in H$, and thus v is the unique fixed vertex of h^g . On the other hand, h^g fixes v^g , and it follows that $g \in G_v$.

Theorem (Tutte; Djoković and Miller)

If Γ is a cubic G-arc-transitive graph, then it is (G, s)-arc-regular for some $1 \le s \le 5$. Moreover, the structure of G_v is uniquely determined by s and is as in the Table below.

S	1	2	3	4	5
G_v	\mathbb{Z}_3	S_3	$\mathbb{Z}_2 imes S_3$	S_4	$\mathbb{Z}_2 imes S_4$

Table : Vertex-stabilisers in cubic *s*-arc-regular graphs.

Theorem (Feit and Thompson)

Let G be a finite group which contains a self-centralising subgroup of order 3. Then one of the following holds:

- (i) $G \cong PSL(2,7)$,
- (ii) G has a normal nilpotent subgroup N such that $G/N \cong \mathbb{Z}_3$ or S_3 ,

(iii) G has a normal 2-subgroup N such that $G/N \cong A_5$.

Theorem (Morini)

Let G be a finite non-abelian simple group which contains a subgroup of order 3 whose centraliser in G is of order 6. Then $G \cong PSL(2, 11)$ or PSL(2, 13).

 Γ is cubic (G, s)-regular, where

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline s & 1 & 2 & 3 & 4 & 5 \\\hline G_{ν} & \mathbb{Z}_3 & S_3 & $\mathbb{Z}_2 \times S_3$ & S_4 & $\mathbb{Z}_2 \times S_4$ \\\hline \end{array}$$

We prove that, if Γ has a quasi-semiregular automorphism, then it is also (H, s)-regular for some $s \in \{1, 2, 4\}$. Then we apply the Feit and Thomson's theorem:

(i) $H \cong PSL(2,7)$:

In this case Γ is isomorphic to the Coxeter graph.

- (ii) *H* has a normal nilpotent subgroup *N* such that $H/N \cong \mathbb{Z}_3$ or S_3 : In this case Γ is isomorphic to K_4 .
- (iii) *H* has a normal 2-subgroup *N* such that $H/N \cong A_5$: In this case Γ is isomorphic to the Petersen graph.

Observation: If Γ is a tetravalent graph having a quasi-semiregular automorphism, then $|V\Gamma|$ is odd.

If Γ is also *G*-vertex-transitive, then a Sylow 2-subgroup of *G* is contained in G_{v} .

Theorem

Let Γ be a tetravalent (G, s)-transitive graph of odd order. Then $s \leq 3$ and one of the following holds:

- (i) G_v is a 2-group for s = 1.
- (ii) $G_v \cong A_4$ or S_4 for s = 2.
- (iii) $G_v \cong \mathbb{Z}_3 \times A_4$ or $\mathbb{Z}_3 \rtimes S_4$ or $S_3 \times S_4$ for s = 3.

Theorem (Malyushitsky)

Let T be a non-abelian simple group and let S be a Sylow 2-subgroup of G such that $|S| \le 8$. Then, S, T and Out(T) are given in the Table below.

Table : Non-abelian simple groups *T* with a Sylow 2-subgroup *S* of order 4 or 8.

Remark: The result is CFSG-free :)

I. Kovács

イロト イヨト イヨト イヨト

Lemma

Let Γ be a tetravalent (G,2)-arc-transitive graph, and suppose that G has a quasi-semiregular automorphism. If G is quasiprimitive on $V\Gamma$, then $\Gamma \cong K_5$ and $G \cong A_5$ or S_5 .

We show that, if Γ is tetravalent (G, 2)-arc-transitive with a quasi-semiregular automorphism in G, then $G/O_{2'}(G)$ is quasiprimitive on $V\Gamma_{O_{2'}(G)}$. By the lemma $\Gamma_{O_{2'}(G)} \cong K_5$. Then we prove that $O_{2'}(G) = 1$.

Lemma

Let Γ be a tetravalent G-arc-transitive graph such that $|V\Gamma| > 5$. Suppose that G contains a quasi-semiregular automorphism, and $N \triangleleft G$ is an intransitive minimal normal subgroup isomorphic to \mathbb{Z}_p^n for some prime p. Then one of the following holds:

- (i) $N \cong \mathbb{Z}_p$ and G contains a regular normal subgroup L with $N \leq L$.
- (ii) Γ is a normal cover of Γ_N .

<u>Remark:</u> In the proof we use results of Gardiner and Praeger about tetravalent arc-transitive graphs.

Using the lemma, we show that, if Γ is tetravalent *G*-arc-transitive with a quasi-semiregular automorphism in *G*, then $O_{2'}(G)$ is regular and abelian, and by this

$$\Gamma \cong \operatorname{Cay}(\mathcal{O}_{2'}(\mathcal{G}), \mathcal{S})$$
 for some $\mathcal{S} \subset \mathcal{O}_{2'}(\mathcal{G})$.

・ロン ・回 ・ ・ ヨン・

Happy birthday Brian and Dragan!

 \sim

Thank you for attention!