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◮
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Def. A olouring c of a graph G breaks an automorphism ϕ of G if

ϕ does not preserve olours of c .

Def. A olouring c of G is distinguishing if it breaks all non-trivial

automorphisms of G .
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Def. (K. & Pil±niak 2015) The distinguishing index D ′(G ) of a
graph G is the least number of olours in a distinguishing edge

olouring of G .

admissible graph is without more than one isolated vertex and

without K
2

as a omponent.
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◮ D ′(Cn) = 3, n = 3, 4, 5; D ′(Cn) = 2, n ≥ 6

◮ D ′(Kn) = 3, n = 3, 4, 5; D ′(Kn) = 2, n ≥ 6

◮ D ′(Kp,p) = 3, p = 2, 3; D ′(Kp,p) = 2, p ≥ 4

◮ D ′(K
1,m) = m
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Thm. (K. & Pil±niak 2015)

If G is a onneted graph of order n ≥ 3, then

D ′(G ) ≤ ∆(G )

unless G ∈ {C
3

,C
4
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Thm. (Pil±niak 2017) If G is onneted, then D ′(G ) = ∆(G ) if and
only if G is

◮
a symmetri or a bisymmetri tree,

◮
a yle Cn with n ≥ 6,

◮ K
4

or K
3,3.
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If G is a 2-onneted graph, then

D ′(G ) ≤
⌈
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proof:
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◮ c(G ) ≥ 5

.

.
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with

⌈√
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olours suh that for eah r

◮ Sr (a) is �xed pointwise, whenever Sr+1

(a) is �xed so;

◮
if A ⊆ Sr+1

(a) is a set of verties that an be interhanged,

then |A| ≤
⌈√

∆
⌉
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If G is a onneted graph with δ(G ) ≥ 2, then
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Thm. (IKPW 2018+)

If both G and G are admissible graphs of order n ≥ 7 , then

2 ≤ D ′(G ) + D ′(G ) ≤ ∆+ 2,

where ∆ = max{∆(G ),∆(G )}.
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Conjeture

Conj. (IKPW) If G is a onneted graph of order at least 7 and

δ(G ) ≥ 2, then

D ′(G ) ≤
⌈

δ(G)
√

∆(G )
⌉

+ 1.

Moreover, for graphs of order at least 7, the equality holds

only for G = Kδ,rδ .

This would imply:

◮ D ′(G ) ≤ 2 for every regular graph of order at least 7.

|G | ≥ 7 sine D ′(K
3,3) = 3
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