THE DISTINGUISHING INDEX OF 2-CONNECTED GRAPHS

Wilfried Imrich, Rafał Kalinowski,
Monika Pilśniak, Mariusz Woźniak
Dept. Discrete Math. AGH University, Cracow, Poland

Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

Koper, 29 May 2018

Distinguishing colouring

- general colouring, i.e. not necessarily proper

Distinguishing colouring

- general colouring, i.e. not necessarily proper

Def. A colouring c of a graph G breaks an automorphism φ of G if φ does not preserve colours of c.

Distinguishing colouring

- general colouring, i.e. not necessarily proper

Def. A colouring c of a graph G breaks an automorphism φ of G if φ does not preserve colours of c.

Def. A colouring c of G is distinguishing if it breaks all non-trivial automorphisms of G.

Distinguishing index

- concept introduced by Albertson \& Collins in 1996 for vertex colourings

Distinguishing index

- concept introduced by Albertson \& Collins in 1996 for vertex colourings

Def. (K. \& Pilśniak 2015) The distinguishing index $D^{\prime}(G)$ of a graph G is the least number of colours in a distinguishing edge colouring of G.

Distinguishing index

- concept introduced by Albertson \& Collins in 1996 for vertex colourings

Def. (K. \& Pilśniak 2015) The distinguishing index $D^{\prime}(G)$ of a graph G is the least number of colours in a distinguishing edge colouring of G.
admissible graph is without more than one isolated vertex and without K_{2} as a component.

The distinguishing index - examples

$$
\text { - } D^{\prime}\left(C_{n}\right)=3, n=3,4,5 ; \quad D^{\prime}\left(C_{n}\right)=2, n \geq 6
$$

The distinguishing index - examples

- $D^{\prime}\left(C_{n}\right)=3, n=3,4,5 ; \quad D^{\prime}\left(C_{n}\right)=2, n \geq 6$
- $D^{\prime}\left(K_{n}\right)=3, n=3,4,5 ; \quad D^{\prime}\left(K_{n}\right)=2, n \geq 6$

The distinguishing index - examples

- $D^{\prime}\left(C_{n}\right)=3, n=3,4,5$;
$D^{\prime}\left(C_{n}\right)=2, n \geq 6$
- $D^{\prime}\left(K_{n}\right)=3, n=3,4,5$;
$D^{\prime}\left(K_{n}\right)=2, n \geq 6$
- $D^{\prime}\left(K_{p, p}\right)=3, p=2,3 ;$
$D^{\prime}\left(K_{p, p}\right)=2, p \geq 4$

The distinguishing index - examples

- $D^{\prime}\left(C_{n}\right)=3, n=3,4,5$;
$D^{\prime}\left(C_{n}\right)=2, n \geq 6$
- $D^{\prime}\left(K_{n}\right)=3, n=3,4,5$;
$D^{\prime}\left(K_{n}\right)=2, n \geq 6$
- $D^{\prime}\left(K_{p, p}\right)=3, p=2,3 ;$
$D^{\prime}\left(K_{p, p}\right)=2, p \geq 4$
- $D^{\prime}\left(K_{1, m}\right)=m$

Upper bound for $D^{\prime}(G)$

Thm. (K. \& Pilśniak 2015)
If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

unless $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$.

Upper bound for $D^{\prime}(G)$

Thm. (K. \& Pilśniak 2015)
If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

unless $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$.

Thm. (Pilśniak 2017) If G is connected, then $D^{\prime}(G)=\Delta(G)$ if and only if G is

Upper bound for $D^{\prime}(G)$

Thm. (K. \& Pilśniak 2015)
If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

unless $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$.

Thm. (Pilśniak 2017) If G is connected, then $D^{\prime}(G)=\Delta(G)$ if and only if G is

- a symmetric or a bisymmetric tree,

Upper bound for $D^{\prime}(G)$

Thm. (K. \& Pilśniak 2015)
If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

unless $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$.

Thm. (Pilśniak 2017) If G is connected, then $D^{\prime}(G)=\Delta(G)$ if and only if G is

- a symmetric or a bisymmetric tree,
- a cycle C_{n} with $n \geq 6$,

Upper bound for $D^{\prime}(G)$

Thm. (K. \& Pilśniak 2015)
If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

unless $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$.

Thm. (Pilśniak 2017) If G is connected, then $D^{\prime}(G)=\Delta(G)$ if and only if G is

- a symmetric or a bisymmetric tree,
- a cycle C_{n} with $n \geq 6$,
- K_{4} or $K_{3,3}$.

Conjecture of Pilśniak

- If G has a pendant star $K_{1, m}$, then $D^{\prime}(G) \geq m$.

Conjecture of Pilśniak

- If G has a pendant star $K_{1, m}$, then $D^{\prime}(G) \geq m$.

Conj. (Pilśniak 2017) If G is a 2-connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1
$$

Conjecture of Pilśniak

- If G has a pendant star $K_{1, m}$, then $D^{\prime}(G) \geq m$.

Conj. (Pilśniak 2017) If G is a 2-connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1
$$

- sharp: $D^{\prime}\left(K_{2, r^{2}}\right)=r+1$

Conjecture of Pilśniak

- If G has a pendant star $K_{1, m}$, then $D^{\prime}(G) \geq m$.

Conj. (Pilśniak 2017) If G is a 2-connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1 .
$$

- sharp: $D^{\prime}\left(K_{2, r^{2}}\right)=r+1$

D^{\prime} for 2-connected graphs

Thm. (Imrich, K., Pilśniak, Woźniak 2018+)
If G is a 2 -connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1 .
$$

D^{\prime} for 2-connected graphs

Thm. (Imrich, K., Pilśniak, Woźniak 2018+)
If G is a 2 -connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1
$$

proof:

D^{\prime} for 2-connected graphs

Thm. (Imrich, K., Pilśniak, Woźniak 2018+)
If G is a 2 -connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1 .
$$

proof:

- $K=\lceil\sqrt{\Delta(G)}\rceil$

D^{\prime} for 2-connected graphs

Thm. (Imrich, K., Pilśniak, Woźniak 2018+)
If G is a 2 -connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1 .
$$

proof:

- $K=\lceil\sqrt{\Delta(G)}\rceil$
- $c(G) \geq 5$

D^{\prime} for 2-connected graphs

Thm. (Imrich, K., Pilśniak, Woźniak 2018+)
If G is a 2 -connected graph, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1 .
$$

proof:

- $K=\lceil\sqrt{\Delta(G)}\rceil$
- $c(G) \geq 5$

Outline of proof

- $c(G)=4$

Outline of proof

- $c(G)=4$

Outline of proof

Outline of proof - cont.

We recursively colour the edges between $S_{r}(a)$ and $S_{r+1}(a)$ with $\lceil\sqrt{\Delta}\rceil$ colours such that for each r

Outline of proof - cont.

We recursively colour the edges between $S_{r}(a)$ and $S_{r+1}(a)$ with $\lceil\sqrt{\Delta}\rceil$ colours such that for each r

- $S_{r}(a)$ is fixed pointwise, whenever $S_{r+1}(a)$ is fixed so;

Outline of proof - cont.

We recursively colour the edges between $S_{r}(a)$ and $S_{r+1}(a)$ with $\lceil\sqrt{\Delta}\rceil$ colours such that for each r

- $S_{r}(a)$ is fixed pointwise, whenever $S_{r+1}(a)$ is fixed so;
- if $A \subseteq S_{r+1}(a)$ is a set of vertices that can be interchanged, then $|A| \leq\lceil\sqrt{\Delta}\rceil$.

Outline of proof - cont.

D^{\prime} for $\delta \geq 2$

Thm. (IKPW 2018+)
If G is a connected graph with $\delta(G) \geq 2$, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1 .
$$

D^{\prime} for $\delta \geq 2$

Thm. (IKPW 2018+)
If G is a connected graph with $\delta(G) \geq 2$, then

$$
D^{\prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil+1
$$

Thm. (IKPW 2018+)
If both G and \bar{G} are admissible graphs of order $n \geq 7$, then

$$
2 \leq D^{\prime}(G)+D^{\prime}(\bar{G}) \leq \Delta+2
$$

where $\Delta=\max \{\Delta(G), \Delta(\bar{G})\}$.

Conjecture

Conj. (IKPW) If G is a connected graph of order at least 7 and $\delta(G) \geq 2$, then

$$
D^{\prime}(G) \leq\lceil\sqrt[\delta(G)]{\Delta(G)}\rceil+1
$$

Conjecture

Conj. (IKPW) If G is a connected graph of order at least 7 and $\delta(G) \geq 2$, then

$$
D^{\prime}(G) \leq\lceil\sqrt[\delta(G)]{\Delta(G)}\rceil+1
$$

Moreover, for graphs of order at least 7, the equality holds only for $G=K_{\delta, r^{\delta}}$.

Conjecture

Conj. (IKPW) If G is a connected graph of order at least 7 and $\delta(G) \geq 2$, then

$$
D^{\prime}(G) \leq\lceil\sqrt[\delta(G)]{\Delta(G)}\rceil+1
$$

Moreover, for graphs of order at least 7, the equality holds only for $G=K_{\delta, r^{\delta}}$.

This would imply:

- $D^{\prime}(G) \leq 2$ for every regular graph of order at least 7 .

Conjecture

Conj. (IKPW) If G is a connected graph of order at least 7 and $\delta(G) \geq 2$, then

$$
D^{\prime}(G) \leq\lceil\sqrt[\delta(G)]{\Delta(G)}\rceil+1
$$

Moreover, for graphs of order at least 7, the equality holds only for $G=K_{\delta, r^{\delta}}$.

This would imply:

- $D^{\prime}(G) \leq 2$ for every regular graph of order at least 7 .
$|G| \geq 7$ since $D^{\prime}\left(K_{3,3}\right)=3$

THANK YOU !!

