Decomposing multigraphs into stars of varying sizes

Rosalind Cameron (Memorial University of Newfoundland, Canada)
Daniel Horsley (Monash University, Australia)

Decomposing multigraphs into stars of varying sizes

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Question

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Question

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

This problem is hard.

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Question

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

This problem is hard. (E.g. it's NP-complete even for $m_{1}=\cdots=m_{t}=3$.)

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Question

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

This problem is hard. (E.g. it's NP-complete even for $m_{1}=\cdots=m_{t}=3$.)
We'll look at two special cases:

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Question

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

This problem is hard. (E.g. it's NP-complete even for $m_{1}=\cdots=m_{t}=3$.)
We'll look at two special cases:

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Decomposing multigraphs into stars of varying sizes

In this talk:

- decompositions are edge decompositions;
- stars are always simple.

Question

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

This problem is hard. (E.g. it's NP-complete even for $m_{1}=\cdots=m_{t}=3$.)
We'll look at two special cases:

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Question 2

When does a complete multigraph λK_{n} admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Question 1: Star decompositions where centres are specified

Decompositions when centres are specified

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

[2]

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Decompositions when centres are specified

Question 1

When does a multigraph G admit a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre?

Example A decomposition of a multigraph into stars of sizes [3, 2, 2, 1, 1, 1] where each star has a specified centre.

Hoffman (1994) answered this question in the case $m_{1}=\cdots=m_{t}$.

Decompositions when centres are specified

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.
- The corresponding stars must fit inside the blue subgraph.

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.
- The corresponding stars must fit inside the blue subgraph.
- The red sizes sum to 7 .

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.
- The corresponding stars must fit inside the blue subgraph.
- The red sizes sum to 7 .
- The blue graph has only 6 edges.

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.
- The corresponding stars must fit inside the blue subgraph.
- The red sizes sum to 7 .
- The blue graph has only 6 edges.
- Because $7>6$ the multiset of red sizes is overfull.

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.
- The corresponding stars must fit inside the blue subgraph.
- The red sizes sum to 7 .
- The blue graph has only 6 edges.
- Because $7>6$ the multiset of red sizes is overfull.

Hoffman's result is similar but only requires checking every set of vertices.

Decompositions when centres are specified

Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ where each star has a specified centre exists if and only if $m_{1}+\cdots+m_{t}=|E(G)|$ and no multiset of sizes is overfull.

Example

- Consider the red star sizes.
- The corresponding stars must fit inside the blue subgraph.
- The red sizes sum to 7 .
- The blue graph has only 6 edges.
- Because $7>6$ the multiset of red sizes is overfull.

Hoffman's result is similar but only requires checking every set of vertices.
Both results are proved using max-flow min-cut arguments.

Question 2: Star decompositions of complete multigraphs

Decompositions of complete multigraphs

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Tarsi (1979) completely answered this question in the case $m_{1}=\cdots=m_{t}$.

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Tarsi (1979) completely answered this question in the case $m_{1}=\cdots=m_{t}$.
Lin and Shyu (1996) completely answered this question in the case $\lambda=1$.

Decompositions of complete multigraphs

Question 2

When is there a decomposition of λK_{n} into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Example A decomposition of $2 K_{5}$ into stars of sizes [4, 4, 3, 3, 3, 2, 1].

Tarsi (1979) completely answered this question in the case $m_{1}=\cdots=m_{t}$.
Lin and Shyu (1996) completely answered this question in the case $\lambda=1$.
Both results give simple numerical necessary and sufficient conditions for the existence of a decomposition.

Decompositions of complete multigraphs

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes
$\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.
- This leaves the graph shown to be decomposed into stars of sizes $\left[4 a_{1}, \ldots, 4 a_{t}\right]$.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.
- This leaves the graph shown to be decomposed into stars of sizes $\left[4 a_{1}, \ldots, 4 a_{t}\right]$.
- All the remaining stars must be centred on the red vertices.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.
- This leaves the graph shown to be decomposed into stars of sizes $\left[4 a_{1}, \ldots, 4 a_{t}\right]$.
- All the remaining stars must be centred on the red vertices.
- The sizes centred on each red vertex must sum to $n-1$ ($n-2$ and n are odd).

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.
- This leaves the graph shown to be decomposed into stars of sizes $\left[4 a_{1}, \ldots, 4 a_{t}\right]$.
- All the remaining stars must be centred on the red vertices.
- The sizes centred on each red vertex must sum to $n-1$ ($n-2$ and n are odd).
- This can be done if and only if [$\left.4 a_{1}, \ldots, 4 a_{t}\right]$ (equivalently, $\left[a_{1}, \ldots, a_{t}\right]$) can be partitioned into equal halves.

Decompositions of complete multigraphs

Theorem Cameron, Horsley
For any $\lambda \geqslant 2$, the problem of being given n and $\left[m_{1}, \ldots, m_{t}\right]$ and determining whether λK_{n} has a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$ is NP-complete.

Proof sketch: Consider trying to decompose $2 K_{n}$ (n odd) into stars of sizes $\left[(n-1)^{n-2}, 4 a_{1}, \ldots, 4 a_{s}\right]$, where $4 a_{1}+\cdots+4 a_{s}=2(n-1)$.

- No two ($n-1$)-stars can be centred at the same vertex.
- So $n-2$ vertices each have one ($n-1$)-star centred at them.
- This leaves the graph shown to be decomposed into stars of sizes $\left[4 a_{1}, \ldots, 4 a_{t}\right]$.
- All the remaining stars must be centred on the red vertices.
- The sizes centred on each red vertex must sum to $n-1$ ($n-2$ and n are odd).
- This can be done if and only if [$\left.4 a_{1}, \ldots, 4 a_{t}\right]$ (equivalently, $\left[a_{1}, \ldots, a_{t}\right]$) can be partitioned into equal halves.

This allows us to reduce partition to our problem.

Decompositions of complete multigraphs

Decompositions of complete multigraphs

What about if we limit the maximum star size?

Decompositions of complete multigraphs

What about if we limit the maximum star size?
($\lambda, \alpha)$-STAR DECOMP
Instance: Positive integers n and $\left[m_{1}, \ldots, m_{t}\right]$ such that $\max \left(m_{1}, \ldots, m_{t}\right) \leqslant \alpha(n-1)$ and $m_{1}+\cdots+m_{t}=\lambda\binom{n}{2}$.
Question: Does λK_{n} have a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Decompositions of complete multigraphs

What about if we limit the maximum star size?
(λ, α)-STAR DECOMP
Instance: Positive integers n and $\left[m_{1}, \ldots, m_{t}\right]$ such that $\max \left(m_{1}, \ldots, m_{t}\right) \leqslant \alpha(n-1)$ and $m_{1}+\cdots+m_{t}=\lambda\binom{n}{2}$.
Question: Does λK_{n} have a decomposition into stars of sizes $\left[m_{1}, \ldots, m_{t}\right]$?

Theorem wannabe Cameron, Horsley
Let $\lambda \geqslant 2$ be an integer. Then (λ, α)-star DECOMP is NP-complete if and only if $\alpha>\alpha^{\prime}$, where

$$
\alpha^{\prime}= \begin{cases}\frac{\lambda}{\lambda+1}, & \text { if } \lambda \text { is odd; } \\ 1-4(\sqrt{\lambda(\lambda+2)}+2)^{-2}, & \text { if } \lambda \text { is even } .\end{cases}
$$

Furthermore, if $\alpha \leqslant \alpha^{\prime}$ then, for all sufficiently large n, the answer to (λ, α)-STAR DECOMP is affirmative.

Threshold configuration for λ odd

Threshold configuration for λ odd

Take a list $\left[m^{(\lambda+1) n / 2-2}\right.$, small stuff $]$, where $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$.

Threshold configuration for λ odd

Take a list $\left[m^{(\lambda+1) n / 2-2}\right.$, small stuff $]$, where $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$.
We can show the m s must be arranged as follows (otherwise the set of m will be overfull):

Threshold configuration for λ odd

Take a list $\left[m^{(\lambda+1) n / 2-2}\right.$, small stuff $]$, where $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$.
We can show the m s must be arranged as follows (otherwise the set of $m s$ will be overfull):

Threshold configuration for λ odd

Take a list $\left[m^{(\lambda+1) n / 2-2}\right.$, small stuff $]$, where $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$.
We can show the m s must be arranged as follows (otherwise the set of $m s$ will be overfull):

Threshold configuration for λ odd

Take a list $\left[m^{(\lambda+1) n / 2-2}\right.$, small stuff $]$, where $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$.
We can show the m must be arranged as follows (otherwise the set of $m s$ will be overfull):

Each marked vertex must have almost half the small stuff on it (otherwise the set star sizes on vertices other than it will be overfull).

Threshold configuration for λ odd

Take a list $\left[m^{(\lambda+1) n / 2-2}\right.$, small stuff $]$, where $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$.
We can show the m s must be arranged as follows (otherwise the set of $m s$ will be overfull):

Each marked vertex must have almost half the small stuff on it (otherwise the set star sizes on vertices other than it will be overfull).

So we can set up a similar NP-completeness argument to before.

Threshold configuration for λ even

Threshold configuration for λ even

Take a list $\left[m^{\lambda(n-s) / 2-2}, c^{(\lambda+2) s / 2+2}\right.$, small stuff], where m, c and s are carefully selected so that

- $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$
- cobeys $\frac{\lambda}{\lambda+2} m<c<m$
- s is very roughly equal to $\frac{2}{\lambda+4} n$.

Threshold configuration for λ even

Take a list $\left[m^{\lambda(n-s) / 2-2}, c^{(\lambda+2) s / 2+2}\right.$, small stuff], where m, c and s are carefully selected so that

- $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$
- cobeys $\frac{\lambda}{\lambda+2} m<c<m$
- s is very roughly equal to $\frac{2}{\lambda+4} n$.

We can show the $\square \mathrm{m}$ and c s must be arranged as follows (otherwise some set of star sizes will be overfull):

Threshold configuration for λ even

Take a list $\left[m^{\lambda(n-s) / 2-2}, c^{(\lambda+2) s / 2+2}\right.$ ，small stuff］，where m, c and s are carefully selected so that
－$m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$
－cobeys $\frac{\lambda}{\lambda+2} m<c<m$
－s is very roughly equal to $\frac{2}{\lambda+4} n$ ．
We can show the $⿴ 囗 ⿰ 丿 ㇄$ will be overfull）：

Threshold configuration for λ even

Take a list $\left[m^{\lambda(n-s) / 2-2}, c^{(\lambda+2) s / 2+2}\right.$ ，small stuff］，where m, c and s are carefully selected so that
－$m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$
－cobeys $\frac{\lambda}{\lambda+2} m<c<m$
－s is very roughly equal to $\frac{2}{\lambda+4} n$ ．
We can show the $⿴ 囗 ⿰ 丿 ㇄$ will be overfull）：

Threshold configuration for λ even

Take a list $\left[m^{\lambda(n-s) / 2-2}, c^{(\lambda+2) s / 2+2}\right.$, small stuff], where m, c and s are carefully selected so that

- $m=\left(\alpha^{\prime}+\epsilon\right)(n-1)$
- cobeys $\frac{\lambda}{\lambda+2} m<c<m$
- s is very roughly equal to $\frac{2}{\lambda+4} n$.

We can show the $\mathrm{Tl}_{\mathrm{T}} \mathrm{s}$ and c s must be arranged as follows (otherwise some set of star sizes will be overfull):

Each marked vertex must have almost half the small stuff on it (otherwise the set star sizes on vertices other than it will be overfull).

So we can set up a similar NP-completeness argument to before.

The end.

