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Hoffman (1994) answered this question in the case my = - - - = m;.
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Theorem Cameron, Horsley

A decomposition of a multigraph G into stars of sizes [m, ..., m;] where each star has a
specified centre exists if and only if my + - - - + m; = |E(G)| and no multiset of sizes is overfull.

Example
[37 27 1]
» Consider the red star sizes.

» The corresponding stars must fit inside
the blue subgraph.

(1] (2]
» The red sizes sum to 7.

» The blue graph has only 6 edges.

» Because 7 > 6 the multiset of red sizes is
(1] overfull.

Hoffman’s result is similar but only requires checking every set of vertices.

Both results are proved using max-flow min-cut arguments.
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Question 2
When is there a decomposition of AKj, into stars of sizes [my, ..., m:]?

Example A decomposition of 2K5 into stars of sizes [4,4,3,3,3,2,1].

Tarsi (1979) completely answered this question in the case my = - -- = m;.
Lin and Shyu (1996) completely answered this question in the case A = 1.

Both results give simple numerical necessary and sufficient conditions for the existence of a
decomposition.
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For any X > 2, the problem of being given n and [my, .. ., m;] and determining whether AKj, has
a decomposition into stars of sizes [my, ..., m;] is NP-complete.

Proof sketch: Consider trying to decompose 2K, (n odd) into stars of sizes
[(n—1)"2,4ay,...,4as], where 4ay + - - - + 4as = 2(n — 1).

> No two (n — 1)-stars can be centred at the same
vertex.

> So n — 2 vertices each have one (n — 1)-star
centred at them.

» This leaves the graph shown to be decomposed
into stars of sizes [4ay, ..., 4a;].

> All the remaining stars must be centred on the red
vertices.

» The sizes centred on each red vertex must sum to
n—1(n—2andn are odd).

> This can be done if and only if [4aq, ..., 4a;]
(equivalently, [a4, . .., a:]) can be partitioned into
equal halves.

This allows us to reduce PARTITION to our problem.
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Decompositions of complete multigraphs

What about if we limit the maximum star size?

(A, &)-STAR DECOMP

Instance: Positive integers n and [my, ..., m;] such that max(my,...,m;) < a(n—1) and
my + - +mp = X(3).
Question: Does AKj, have a decomposition into stars of sizes [my, ..., m;]?

Theorem wannabe Cameron, Horsley
Let A > 2 be an integer. Then (), a)-STAR bECOMP is NP-complete if and only if o > o/, where

, { ﬁ, if A is odd;

1 —4(/ A\ +2)+2)"2, if \iseven.

Furthermore, if o < o/ then, for all sufficiently large n, the answer to (), «)-STAR DECOMP is
affirmative.
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Take a list [m(A+1)1/2=2 small stuff], where m = (o’ + ¢)(n — 1).

We can show the [Jflfs must be arranged as follows (otherwise the set of [Jifils will be overfull):
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Each marked vertex must have almost half the small stuff on it (otherwise the set star sizes on
vertices other than it will be overfull).

So we can set up a similar NP-completeness argument to before.
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will be overfull):
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Threshold configuration for A even
Take a list [mA\n=9)/2=2 ¢(A+2)s/2+2 gmal| stuff], where m, ¢ and s are carefully selected so
that
=(a +e)(n—-1)

> c obeys m<ec<m

>\+2
> s is very roughly equal to mn

We can show the [ills and [E]s must be arranged as follows (otherwise some set of star sizes
will be overfull):

~———

s

Each marked vertex must have almost half the small stuff on it (otherwise the set star sizes on
vertices other than it will be overfull).

So we can set up a similar NP-completeness argument to before.



The end.




