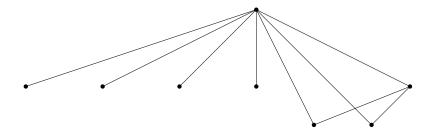
On orders of vertex-stabilizers in arc-transitive graphs

Ademir Hujdurović (University of Primorska, Slovenia)

Joint work with Primož Potočnik and Gabriel Verret

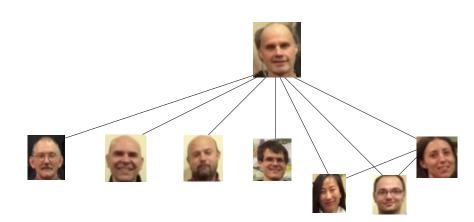
1.6.2018



Ademir Hujdurović On orders of vertex-stabilizers in arc-transitive graphs

《曰》《卽》《言》《言》

5 9 Q C



æ

Dragan Marušič and his PhD students

Ademir Hujdurović On orders of vertex-stabilizers in arc-transitive graphs

Let Γ be a simple, finite and undirected graph. With $V(\Gamma)$, $E(\Gamma)$ and $A(\Gamma)$ we denote respectively the vertex-set, the edge-set and the arc-set of Γ .

Let Γ be a simple, finite and undirected graph. With $V(\Gamma)$, $E(\Gamma)$ and $A(\Gamma)$ we denote respectively the vertex-set, the edge-set and the arc-set of Γ .

Automorphism of Γ is a permutation of $V(\Gamma)$ preserving the adjacency relation. Aut(Γ) denotes the set of all automorphisms of Γ and is called *the automorphism group of* Γ .

Let Γ be a simple, finite and undirected graph. With $V(\Gamma)$, $E(\Gamma)$ and $A(\Gamma)$ we denote respectively the vertex-set, the edge-set and the arc-set of Γ .

Automorphism of Γ is a permutation of $V(\Gamma)$ preserving the adjacency relation. Aut(Γ) denotes the set of all automorphisms of Γ and is called *the automorphism group of* Γ .

A graph Γ is said to be *G*-vertex-transitive, *G*-edge-transitive or *G*-arc-transitive if $G \leq \operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$, $E(\Gamma)$ or $A(\Gamma)$, respectively.

A natural approach is to consider the order of the automorphism group.

< ∃⇒

A natural approach is to consider the order of the automorphism group.

Larger objects have the potential to admit much larger automorphism groups.

A natural approach is to consider the order of the automorphism group.

Larger objects have the potential to admit much larger automorphism groups.

If Γ is *G*-vertex-transitive, then $|G| = |V(\Gamma)| \cdot |G_v|$.

A graph is said to be cubic if each vertex is incident with three edges.

Theorem (Tutte, 1946)

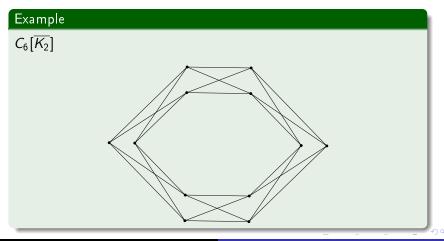
Let Γ be a connected cubic (3-regular) G-arc-transitive graph, and let $v \in V(\Gamma).$ Then

- $|G_v| = 3$ and G acts regularly on the set of arcs of Γ ;
- $|G_v| = 6$ and G acts regularly on the set of 2-arcs of Γ ;
- $|G_v| = 12$ and G acts regularly on the set of 3-arcs of Γ ;
- $|G_v| = 24$ and G acts regularly on the set of 4-arcs of Γ ;
- $|G_v| = 48$ and G acts regularly on the set of 5-arcs of Γ .

For a non-negative integer s, an s-arc in a graph Γ is an (s+1)-tuple of vertices v_0, v_1, \ldots, v_s , such that v_{i-1} is adjacent with v_i (for $1 \le i \le s$) and $v_{i-1} \ne v_{i+1}$.

Lexicographic product of graphs

The *lexicographic product* of two graphs G and H is the graph G[H] with vertex set $V(G) \times V(H)$, where two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $\{x_1, x_2\} \in E(G)$ or $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$.



Let $\Gamma = C_n[\overline{K_2}]$ (lexicographic product of C_n with $\overline{K_2}$). Then Γ is connected 4-valent arc-transitive graph, and Aut $(\Gamma) = \mathbb{Z}_2 \wr D_{2n} \cong \mathbb{Z}_2^n \rtimes D_{2n}$ (for $n \ge 5$).

Let $\Gamma = C_n[\overline{K_2}]$ (lexicographic product of C_n with $\overline{K_2}$). Then Γ is connected 4-valent arc-transitive graph, and $\operatorname{Aut}(\Gamma) = \mathbb{Z}_2 \wr D_{2n} \cong \mathbb{Z}_2^n \rtimes D_{2n}$ (for $n \ge 5$). Hence $|\operatorname{Aut}(\Gamma)| = 2^n \cdot 2n$ and $|\operatorname{Aut}(\Gamma)_v| = 2^n$.

Let $\Gamma = C_n[\overline{K_2}]$ (lexicographic product of C_n with $\overline{K_2}$). Then Γ is connected 4-valent arc-transitive graph, and $\operatorname{Aut}(\Gamma) = \mathbb{Z}_2 \wr D_{2n} \cong \mathbb{Z}_2^n \rtimes D_{2n}$ (for $n \ge 5$). Hence $|\operatorname{Aut}(\Gamma)| = 2^n \cdot 2n$ and $|\operatorname{Aut}(\Gamma)_v| = 2^n$.

This example shows that there is no constant bound on the order of vertex-stabilizers of 4-valent-arc-transitive graphs.

Let $\Gamma = C_n[\overline{K_2}]$ (lexicographic product of C_n with $\overline{K_2}$). Then Γ is connected 4-valent arc-transitive graph, and $\operatorname{Aut}(\Gamma) = \mathbb{Z}_2 \wr D_{2n} \cong \mathbb{Z}_2^n \rtimes D_{2n}$ (for $n \ge 5$). Hence $|\operatorname{Aut}(\Gamma)| = 2^n \cdot 2n$ and $|\operatorname{Aut}(\Gamma)_v| = 2^n$.

This example shows that there is no constant bound on the order of vertex-stabilizers of 4-valent-arc-transitive graphs.

Observe that in the above example, the action induced by the stabilizer of a vertex on its neighbours is isomorphic to the dihedral group of order 8, which we denote by D_8 .

Let $\Gamma = C_n[\overline{K_2}]$ (lexicographic product of C_n with $\overline{K_2}$). Then Γ is connected 4-valent arc-transitive graph, and $\operatorname{Aut}(\Gamma) = \mathbb{Z}_2 \wr D_{2n} \cong \mathbb{Z}_2^n \rtimes D_{2n}$ (for $n \ge 5$). Hence $|\operatorname{Aut}(\Gamma)| = 2^n \cdot 2n$ and $|\operatorname{Aut}(\Gamma)_v| = 2^n$.

This example shows that there is no constant bound on the order of vertex-stabilizers of 4-valent-arc-transitive graphs.

Observe that in the above example, the action induced by the stabilizer of a vertex on its neighbours is isomorphic to the dihedral group of order 8, which we denote by D_8 .

It follows from the work of Gardiner (1973) that for a connected 4-valent, G-arc-transitive graph, $|G_v| \le 2^4 3^6$, unless the action of G_v on the neighbours of v is isomorphic to D_8 .

Let Γ be a connected *G*-vertex-transitive graph and $v \in V(\Gamma)$. Let $\Gamma(v)$ denote the neighbourhood of v in Γ . The *local action* $G_v^{\Gamma(v)}$ of *G* is the permutation group induced by the action of G_v on Γ_v . If Γ is a *G*-arc-transitive graph and *L* is a permutation group which is permutation isomorphic to $G_v^{\Gamma(v)}$, then we say that the pair (Γ, G) is *locally-L*.

Let Γ be a connected *G*-vertex-transitive graph and $v \in V(\Gamma)$. Let $\Gamma(v)$ denote the neighbourhood of v in Γ . The *local action* $G_v^{\Gamma(v)}$ of *G* is the permutation group induced by the action of G_v on Γ_v . If Γ is a *G*-arc-transitive graph and *L* is a permutation group which is permutation isomorphic to $G_v^{\Gamma(v)}$, then we say that the pair (Γ, G) is *locally-L*.

Definition

A transitive permutation group L is called graph-restrictive if there exists a constant c(L) such that, for every locally-L pair (Γ, G) and for every arc $v \in V(\Gamma)$, the inequality $|G_v| \leq c(L)$ holds.

伺 ト イヨ ト イヨト

Tutte's result about cubic arc-transitive graphs implies that groups A_3 and S_3 are graph restrictive.

Tutte's result about cubic arc-transitive graphs implies that groups A_3 and S_3 are graph restrictive.

If (Γ, G) is locally A_3 , then Tutte's result implies that G acts 1-regularly on the set of arcs, hence $|G_v| = 3$.

Tutte's result about cubic arc-transitive graphs implies that groups A_3 and S_3 are graph restrictive.

If (Γ, G) is locally A_3 , then Tutte's result implies that G acts 1-regularly on the set of arcs, hence $|G_v| = 3$.

If (Γ, G) is locally S_3 , then Tutte's result implies that $|G_v| \leq 48$.

Tutte's result about cubic arc-transitive graphs implies that groups A_3 and S_3 are graph restrictive.

If (Γ, G) is locally A_3 , then Tutte's result implies that G acts 1-regularly on the set of arcs, hence $|G_v| = 3$.

If (Γ, G) is locally S_3 , then Tutte's result implies that $|G_v| \leq 48$.

Gardinder's result implies that any transitive subgroup of S_4 other than D_8 is graph restrictive.

Tutte's result about cubic arc-transitive graphs implies that groups A_3 and S_3 are graph restrictive.

If (Γ, G) is locally A_3 , then Tutte's result implies that G acts 1-regularly on the set of arcs, hence $|G_v| = 3$.

If (Γ, G) is locally S_3 , then Tutte's result implies that $|G_v| \leq 48$.

Gardinder's result implies that any transitive subgroup of S_4 other than D_8 is graph restrictive.

Examples of graph restrictive groups

Theorem (Trofimov and Weiss)

2-transitive groups and groups of prime degree are graph-restrictive.

Theorem (Sami, 2006)

Group D_{2k} for k odd is graph-restrictive.

Theorem (Verret, 2009)

Groups L such that $L = \langle L_x, L_y \rangle$ and L_x induces \mathbb{Z}_p on y^{L_x} for some prime p (*p*-subregular).

Theorem (Trofimov and Weiss, 2010)

Primitive groups of linear type (primitive groups admitting a normal subgroup isomorphic to PSL in its natural action) are graph-restrictive.

A permutation group $L \leq Sym(\Omega)$ is said to be primitive, if it is transitive and preserves no non-trivial partition of Ω .

Conjecture (Weiss, 1978)

Primitive groups are graph-restrictive.

Problem

 $S_3 \wr S_2$ in the product action (degree 9)?

Ademir Hujdurović On orders of vertex-stabilizers in arc-transitive graphs

御 ト イヨト イヨト

э

Problem

 $S_3 \wr S_2$ in the product action (degree 9)?

Problem

 S_5 acting on the 10 unordered pairs of a 5-set (degree 10)?

伺 ト イヨト イヨト

Quasiprimitive groups

A transitive permutation group is called quasiprimitive if each of its non-trivial normal subgroups is transitive. It is called biquasiprimitive if it is not quasiprimitive and each of its non-trivial normal subgroups has at most two orbits. A transitive permutation group is called quasiprimitive if each of its non-trivial normal subgroups is transitive. It is called biquasiprimitive if it is not quasiprimitive and each of its non-trivial normal subgroups has at most two orbits.

Theorem (Praeger, 2000)

A quasiprimitive group L is graph-restrictive if and only if there exists a constant c'(L) such that, for every locally-L pair (Γ, G) with G quasiprimitive or biquasiprimitive and the inequality $|G_v| \leq c'(L)$ holds.

A transitive permutation group is called quasiprimitive if each of its non-trivial normal subgroups is transitive. It is called biquasiprimitive if it is not quasiprimitive and each of its non-trivial normal subgroups has at most two orbits.

Theorem (Praeger, 2000)

A quasiprimitive group L is graph-restrictive if and only if there exists a constant c'(L) such that, for every locally-L pair (Γ, G) with G quasiprimitive or biquasiprimitive and the inequality $|G_v| \leq c'(L)$ holds.

Conjecture (Praeger)

Quasiprimitive groups are graph restrictive.

A transitive permutation group is said to be semiprimitive if each of its normal subgroups is either transitive or semiregular.

A transitive permutation group is said to be semiprimitive if each of its normal subgroups is either transitive or semiregular.

Theorem (Potočnik, Spiga, Verret)

Every graph-restrictive group is semiprimitive.

A transitive permutation group is said to be semiprimitive if each of its normal subgroups is either transitive or semiregular.

Theorem (Potočnik, Spiga, Verret)

Every graph-restrictive group is semiprimitive.

Conjecture (Potočnik, Spiga, Verret)

A permutation group is graph-restrictive if and only if it is semiprimitive.

If $L \not\cong D_8$ is transitive group of degree at most 5, then it is graph restrictive

If $L \not\cong D_8$ is transitive group of degree at most 5, then it is graph restrictive

If $L = D_8$, for which we have seen that for every positive integer *n*, there exists a graph Γ of order 2n and a group *G*, such that (Γ, G) is locally D_8 and $|G_v| = 2^n$.

If L is primitive or regular, then it is graph restrictive.

If L is primitive or regular, then it is graph restrictive.

If L is not primitive, then it has blocks of size 2 or 3.

If L is primitive or regular, then it is graph restrictive.

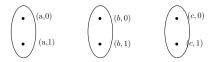
If L is not primitive, then it has blocks of size 2 or 3.

Suppose that L admits a system of imprimitivity consisting of two blocks of size 3 and let A be one of these blocks. If the pointwise stabilizer $L_{(A)}$ is trivial, then L is permutationally isomorphic to D_{12} . Order of vertex-stabilizer in this case cannot be bounded by a constant, but can be bounded by polynomial function of the order of the graph, so it is of polynomial type. In other cases with 2 blocks of size 3 it is of exponential type. There are 5 imprimitive groups of degree 6 with no blocks of size 3, they are all contained in $S_2 \wr S_3$ in its imprimitive action on 6 points, and are denoted by $A_4(6)$, $2A_4(6)$, $S_4(6d)$, $S_4(6c)$ and $2S_4(6)$.

Degree 6: blocks of size 2

There are 5 imprimitive groups of degree 6 with no blocks of size 3, they are all contained in $S_2 \wr S_3$ in its imprimitive action on 6 points, and are denoted by $A_4(6)$, $2A_4(6)$, $S_4(6d)$, $S_4(6c)$ and $2S_4(6)$.

Let's consider $\mathbb{Z}_2 \wr Sym(\{a, b, c\}) \cong S_2 \wr S_3$.



The kernel of this action is isomorphic to \mathbb{Z}_2^3 , and we can identify it with $\mathbb{Z}_2^{\{a,b,c\}}$.

There are 5 imprimitive groups of degree 6 with no blocks of size 3, they are all contained in $S_2 \wr S_3$ in its imprimitive action on 6 points, and are denoted by $A_4(6)$, $2A_4(6)$, $S_4(6d)$, $S_4(6c)$ and $2S_4(6)$.

Let's consider $\mathbb{Z}_2 \wr Sym(\{a, b, c\}) \cong S_2 \wr S_3$.

$$\underbrace{\bullet}_{(\mathbf{a},1)}^{(\mathbf{a},0)} \underbrace{\bullet}_{(\mathbf{b},1)}^{(\mathbf{b},0)} \underbrace{\bullet}_{(\mathbf{b},1)}^{(\mathbf{b},0)} \underbrace{\bullet}_{(\mathbf{c},1)}^{(\mathbf{c},0)} \underbrace{\bullet}_{(\mathbf{c},0)}^{(\mathbf{c},0)} \underbrace{\bullet}_{(\mathbf{c},0)}^{($$

The kernel of this action is isomorphic to \mathbb{Z}_2^3 , and we can identify it with $\mathbb{Z}_2^{\{a,b,c\}}$. Let $K = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$ be an index two subgroup of $\mathbb{Z}_2^{\{a,b,c\}}$. There are 5 imprimitive groups of degree 6 with no blocks of size 3, they are all contained in $S_2 \wr S_3$ in its imprimitive action on 6 points, and are denoted by $A_4(6)$, $2A_4(6)$, $S_4(6d)$, $S_4(6c)$ and $2S_4(6)$.

Let's consider $\mathbb{Z}_2 \wr Sym(\{a, b, c\}) \cong S_2 \wr S_3$.

$$\underbrace{\bullet}_{(\mathbf{a},1)}^{(\mathbf{a},0)} \underbrace{\bullet}_{(\mathbf{b},1)}^{(\mathbf{b},0)} \underbrace{\bullet}_{(\mathbf{b},1)}^{(\mathbf{b},0)} \underbrace{\bullet}_{(\mathbf{c},1)}^{(\mathbf{c},0)} \underbrace{\bullet}_{(\mathbf{c},0)}^{(\mathbf{c},0)} \underbrace{\bullet}_{(\mathbf{c},0)}^{($$

The kernel of this action is isomorphic to \mathbb{Z}_2^3 , and we can identify it with $\mathbb{Z}_2^{\{a,b,c\}}$. Let $K = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$ be an index two subgroup of $\mathbb{Z}_2^{\{a,b,c\}}$. Kernels of $A_4(6)$, $S_4(6d)$ and $S_4(6c)$ are all isomorphic to K. Group $2A_4(6)$ is isomorphic to $S_2 \wr A_3$ and group $2S_4(6)$ is isomorphic to $S_2 \wr S_3$, so they are both of exponential type.

Theorem (H., Potočnik, Verret)

Groups $A_4(6)$, $S_4(6d)$ and $S_4(6c)$ are of exponential type.

Let Γ be a connected cubic arc-transitive graph and let Δ be the lexicographic product $\Gamma[\overline{K_2}]$.

Since Γ is a connected 3-valent graph, Δ is a connected 6-valent graph.

Let Γ be a connected cubic arc-transitive graph and let Δ be the lexicographic product $\Gamma[\overline{K_2}]$. Since Γ is a connected 3-valent graph, Δ is a connected 6-valent graph.

Note that $\operatorname{Aut}(\Gamma)$ has a natural action as a group of automorphisms of Δ (by acting on the first coordinate of vertices of Δ).

Let Γ be a connected cubic arc-transitive graph and let Δ be the lexicographic product $\Gamma[\overline{K_2}]$. Since Γ is a connected 3-valent graph, Δ is a connected 6-valent graph.

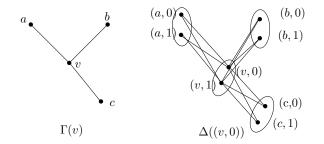
Note that $\operatorname{Aut}(\Gamma)$ has a natural action as a group of automorphisms of Δ (by acting on the first coordinate of vertices of Δ).

Similarly,
$$\mathbb{F}_2^{V(\Gamma)}$$
 also has a natural action as a group of
automorphisms of Δ (given by $(v, i)^{\times} = (v, i + x(v))$, for
 $x \in \mathbb{F}_2^{V(\Gamma)}$ and $(v, i) \in V(\Gamma) \times \mathbb{F}_2$).

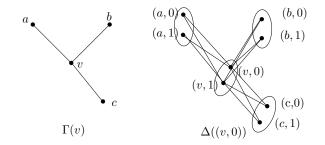
How to obtain the desired local action?

★ ∃ ► < ∃ ►</p>

How to obtain the desired local action?



How to obtain the desired local action?



Recall that the kernel in the local action is \mathbb{Z}_2^2 .

Let E_1 be the 1-eigenspace for Γ over \mathbb{F}_2 , that is

$$E_1 = \{x \in \mathbb{F}_2^{V(\Gamma)} : x(v) + \sum_{a \in \Gamma(v)} x(a) = 0 \ (\forall v \in V(\Gamma)\}.$$

Then $E_1 \trianglelefteq \operatorname{Aut}(\Delta)$.

Let E_1 be the 1-eigenspace for Γ over \mathbb{F}_2 , that is

$$E_1 = \{x \in \mathbb{F}_2^{V(\Gamma)} : x(v) + \sum_{a \in \Gamma(v)} x(a) = 0 \ (\forall v \in V(\Gamma)\}.$$

Then $E_1 \trianglelefteq \operatorname{Aut}(\Delta)$.

Define $G = \langle E_1, A \rangle$ where A is an arc-transitive subgroup of Aut(Γ).

Let E_1 be the 1-eigenspace for Γ over \mathbb{F}_2 , that is

$$E_1 = \{x \in \mathbb{F}_2^{V(\Gamma)} : x(v) + \sum_{a \in \Gamma(v)} x(a) = 0 \ (\forall v \in V(\Gamma)\}.$$

Then $E_1 \trianglelefteq \operatorname{Aut}(\Delta)$.

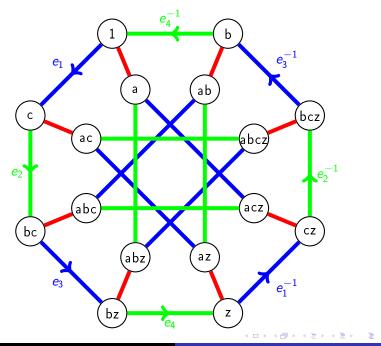
Define $G = \langle E_1, A \rangle$ where A is an arc-transitive subgroup of Aut(Γ).

How to find cubic arc-transitive graphs with large 1-eigenspaces?

$$R = \langle a, b, c, z | 1 = a^2 = b^2 = c^2 = z^2 = [a, z] = [b, z] = [c, z],$$
$$[a, b] = [b, c] = [a, c] = z \rangle.$$

The Cayley graph $\mathcal{M} = Cay(R, \{a, b, c\})$ is called Möbius-Kantor graph.

< E.



It is obvious from the given presentation of R that any permutation of $\{a, b, c\}$ induces an automorphism of R. It follows that \mathcal{M} admits a group of automorphisms B isomorphic to $R \rtimes \text{Sym}(3)$.

- It is obvious from the given presentation of R that any permutation of $\{a, b, c\}$ induces an automorphism of R. It follows that \mathcal{M} admits a group of automorphisms B isomorphic to $R \rtimes \text{Sym}(3)$.
- Note that *B* is 2-arc-regular and contains an arc-regular subgroup *A* of the form $R \rtimes \mathbb{Z}_3$.

Let *n* be a positive integer and let $N = \mathbb{Z}_n^4 = \langle e_1, e_2, e_3, e_4 \rangle$. Let \mathcal{M}_n be the derived covering graph of \mathcal{M} (with respect to the voltage assignment given in the previous figure).

Let *n* be a positive integer and let $N = \mathbb{Z}_n^4 = \langle e_1, e_2, e_3, e_4 \rangle$. Let \mathcal{M}_n be the derived covering graph of \mathcal{M} (with respect to the voltage assignment given in the previous figure).

These graphs were studied by Malnič, Marušič, Miklavič and Potočnik in 2007. It follows from their work that B lifts to \mathcal{M}_n . We will denote its lift by \tilde{B} . Similarly, let \tilde{A} be the lift of A. Note that \tilde{B} is 2-arc-regular on \mathcal{M}_n , and \tilde{A} is 1-arc-regular.

Let $n \geq 3$ be a positive integer and let E_1 be the 1-eigenspace for \mathcal{M}_n over \mathbb{F}_2 . Then $|E_1| \geq 2^{|V(\mathcal{M}_n)|/72}$.

伺 ト イヨ ト イヨト

Let $n \geq 3$ be a positive integer and let E_1 be the 1-eigenspace for \mathcal{M}_n over \mathbb{F}_2 . Then $|E_1| \geq 2^{|V(\mathcal{M}_n)|/72}$.

Remark

Computational data suggests that $|E_1| = 2^{|V(\mathcal{M}_n)|/8+2}$ if n is odd, and $|E_1| = 2^{|V(\mathcal{M}_n)|/8+8}$ if n is even.

何 ト イヨ ト イヨト

Let $n \geq 3$ be a positive integer and let E_1 be the 1-eigenspace for \mathcal{M}_n over \mathbb{F}_2 . Then $|E_1| \geq 2^{|V(\mathcal{M}_n)|/72}$.

Remark

Computational data suggests that $|E_1| = 2^{|V(\mathcal{M}_n)|/8+2}$ if n is odd, and $|E_1| = 2^{|V(\mathcal{M}_n)|/8+8}$ if n is even.

$$egin{aligned} G_1 &:= \langle E_1, ilde{A}
angle = E_1
times ilde{A} \leq \operatorname{Aut}(\Delta) \ G_2 &:= \langle E_1, ilde{B}
angle = E_1
times ilde{B} \leq \operatorname{Aut}(\Delta) \end{aligned}$$

何 ト イヨ ト イヨト

Let $n \ge 3$ be a positive integer and let E_1 be the 1-eigenspace for \mathcal{M}_n over \mathbb{F}_2 . Then $|E_1| \ge 2^{|V(\mathcal{M}_n)|/72}$.

Remark

Computational data suggests that $|E_1| = 2^{|V(\mathcal{M}_n)|/8+2}$ if n is odd, and $|E_1| = 2^{|V(\mathcal{M}_n)|/8+8}$ if n is even.

$$egin{aligned} G_1 &:= \langle E_1, ilde{A}
angle = E_1
times ilde{A} \leq \operatorname{Aut}(\Delta) \ G_2 &:= \langle E_1, ilde{B}
angle = E_1
times ilde{B} \leq \operatorname{Aut}(\Delta) \end{aligned}$$

 (Δ, G_1) is locally $A_4(6)$ and (Δ, G_2) is locally $S_4(6d)$.

伺 ト イ ヨ ト イ ヨ ト

Let $n \geq 3$ be a positive integer and let E_1 be the 1-eigenspace for \mathcal{M}_n over \mathbb{F}_2 . Then $|E_1| \geq 2^{|V(\mathcal{M}_n)|/72}$.

Remark

Computational data suggests that $|E_1| = 2^{|V(\mathcal{M}_n)|/8+2}$ if n is odd, and $|E_1| = 2^{|V(\mathcal{M}_n)|/8+8}$ if n is even.

$$egin{aligned} & \mathcal{G}_1 := \langle \mathcal{E}_1, ilde{\mathcal{A}}
angle = \mathcal{E}_1
times ilde{\mathcal{A}} \leq \operatorname{Aut}(\Delta) \ & \mathcal{G}_2 := \langle \mathcal{E}_1, ilde{\mathcal{B}}
angle = \mathcal{E}_1
times ilde{\mathcal{B}} \leq \operatorname{Aut}(\Delta) \end{aligned}$$

 (Δ, G_1) is locally $A_4(6)$ and (Δ, G_2) is locally $S_4(6d)$.

 $S_4(6c)$ is solved by considering $\langle G_1, \tau \sigma \rangle$ where $\tau \in \tilde{B} \setminus \tilde{A}$ and $\sigma \in \mathbb{F}_2^{V(\Gamma)}$ with some additional properties.

Problem

Determine the growth of vertex-stabilizers in 8-valent arc-transitive graphs.

Problem

Does there a transitive group that is neither graph-restrictive nor of polynomial or exponential type.

Thank you!!!

Ademir Hujdurović On orders of vertex-stabilizers in arc-transitive graphs

< E