Graphs, groups, and more: Celebrating Brian Alspach's 80th and Dragan Marušič's 65th BIRTHDAYS

CONFIGURATIONS OF POINTS AND CONICS

Gábor Gévay

University of Szeged Hungary

Tomaž Pisanski
University of Primorska
Slovenia

May 28 - June 1, 2018, Koper

Introduction

Definition

By a configuration of points and conics of type (p_{q}, n_{k}) we mean a set consisting of p points and n conics such that each point is incident with precisely q conics, and precisely k points are sitting on each conic.

Introduction

Definition

By a configuration of points and conics of type $\left(p_{q}, n_{k}\right)$ we mean a set consisting of p points and n conics such that each point is incident with precisely q conics, and precisely k points are sitting on each conic.

If $p=n$, then $q=k$; in this case we say that the configuration is balanced, and we use the notation $\left(n_{k}\right)$.

Introduction

Definition

By a configuration of points and conics of type (p_{q}, n_{k}) we mean a set consisting of p points and n conics such that each point is incident with precisely q conics, and precisely k points are sitting on each conic.

If $p=n$, then $q=k$; in this case we say that the configuration is balanced, and we use the notation $\left(n_{k}\right)$.

We consider these configurations as embedded in the real projective plane.

Introduction

Definition

The Levi graph of a $\left(p_{q}, n_{k}\right)$ configuration \mathcal{C} is a bipartite (q, k)-regular graph $L(\mathcal{C})$ whose set of vertices is in bijective correspondence with the elements of \mathcal{C} such that two vertices in $L(\mathcal{C})$ are adjacent if and only if the corresponding elements in \mathcal{C} are incident.

Starting example

Example: PE-(32 $\left.{ }_{6}\right)$

(GG 2009)

It is based on the regular map of type $\{6,6 \mid 3,4\}$ introduced by Coxeter (1937) (= the map C17.3 in Marston Conder's list).
The ellipses are circumscribed around the hexagonal faces of the map.
The map can be represented within a 4-dimensional cube; hence the configuration can be derived directly from this cube,
 too.

Constructions

An analogous case: PE-(966)
(96 points, 96 ellipses)
It is constructed from the regular 24-cell (besides the 4-cube, another 4-dimensional regular polytope).

Constructions (from maps)

A generalization of the PE- $\left(32_{6}\right)$ example:
Doubly infinite family of point-conic configurations PCo-((2mn)6)

- type: $\left((2 m n)_{6}\right)$ (for even numbers $\left.m, n \geq 4\right)$;
- start from the Cartesian product of a regular m-gon and a regular n-gon (a 4-dimensional convex polytope called prismotope; it has n copies of m-sided prisms and m copies of n-sided prisms as facets);
- inscribe (mirror-symmetric) hexagons in these prismatic facets (generically, these hexagons form an equivelar $\{6,6\}$ map);
- circumscribe ellipses around these hexagons;
- project the system of vertices and ellipses onto a suitable plane.

Constructions (from maps)

A generalization of the PE-(326) example:
$\underline{\text { Doubly infinite family of point-conic configurations } \mathrm{PCo}-\left((2 m n)_{6}\right)}$

The Cartesian product of two hexagons

Hexagon inscribed in a prismatic facet

Constructions (from point-line configurations)

Two examples of type (217)

EEH-(217)

EHH-(217)

Constructions (from point-line configurations)

Two examples of type (217) (constructed from KGR-(214))

An observation by Luis Montejano and personal communication of Leah Berman.

Proof of existence: GG (2018)

Constructions (from point-line configurations)

A non-balanced example of type $\left(15_{4}, 10_{6}\right)$
Derived from a point-line $Z_{1}-\left(16_{3}, 12_{4}\right)$. (Movable!)

$Z_{1}-\left(16_{3}, 12_{4}\right)$ (Zacharias, 1941)

PCo-(154, 10_{6})

Constructions (based on incidence theorems)

THEOREM (Lazare Carnot 1806)

Consider a triangle with exactly two (distinct) edge points per edge. We assume that the edge points are labeled $1, \ldots, 6$ and that the corresponding length ratios are a_{i} / b_{i}. Then the six points lie on a common conic if and only if the following relation holds:

$$
\frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}} \cdot \frac{a_{3}}{b_{3}} \cdot \frac{a_{4}}{b_{4}} \cdot \frac{a_{5}}{b_{5}} \cdot \frac{a_{6}}{b_{6}}=1
$$

Constructions (based on incidence theorems)

Jürgen Richter-Gebert (2011)

Constructions (based on incidence theorems)

Jürgen Richter-Gebert (2011)

Constructions (based on incidence theorems)

Jürgen Richter-Gebert (2011)

Constructions (based on incidence theorems)

Jürgen Richter-Gebert (2011)

Constructions (based on incidence theorems)

Jürgen Richter-Gebert (2011)

Constructions (based on incidence theorems)

PCo-($12_{2}, 46$)

Constructions (based on incidence theorems)

THEOREM (Richter-Gebert 2011)

The incidence theorem for the tetrahedron above can be extended to an arbitrary triangulated compact 2-manifold: if the sixtuples of points for all but one triangle are coconical, then the last sixtuple is coconical as well.

Constructions (based on incidence theorems)

THEOREM (Richter-Gebert 2011)

The incidence theorem for the tetrahedron above can be extended to an arbitrary triangulated compact 2-manifold: if the sixtuples of points for all but one triangle are coconical, then the last sixtuple is coconical as well.

Applications:

- An infinite sequence of type $\left((6 n)_{2},(2 n)_{6}\right)$: for each integer $n \geq 3$, there is a point-conic configuration of type $\left((6 n)_{2},(2 n)_{6}\right)$ derived from an n-gonal dipyramid. Non-balanced...

Constructions (based on incidence theorems)

THEOREM (Richter-Gebert 2011)

The incidence theorem for the tetrahedron above can be extended to an arbitrary triangulated compact 2-manifold: if the sixtuples of points for all but one triangle are coconical, then the last sixtuple is coconical as well.

Applications:

- An infinite sequence of type $\left((6 n)_{2},(2 n)_{6}\right)$: for each integer $n \geq 3$, there is a point-conic configuration of type $\left((6 n)_{2},(2 n)_{6}\right)$ derived from an n-gonal dipyramid. Non-balanced...
- A balanced example derived from 7-dimensional simplex: PCo-(566).

Constructions

Cartesian product of configurations

Definition (Pisanski and Servatius 2013, GG 2014)

Let \mathcal{C} be configuration of type $\left(v_{r}, b_{k}\right)$ and \mathcal{C}^{\prime} a configuration of type $\left(v_{r^{\prime}}^{\prime}, b_{k}^{\prime}\right)$. Observe that these two configurations have the same number k of points in each block. The Cartesian product of \mathcal{C} and \mathcal{C}^{\prime} is a configuration of type

$$
\left(\left(v v^{\prime}\right)_{\left(r+r^{\prime}\right)},\left(v b^{\prime}+v^{\prime} b\right)_{k}\right)
$$

whose point set is the Cartesian product of the point sets of \mathcal{C} and \mathcal{C}^{\prime} and where there is a block incident to two points $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$ if and only if either $x=y$ and there is a block incident to x^{\prime} and y^{\prime} in \mathcal{C}^{\prime}, or $x^{\prime}=y^{\prime}$ and there is a block incident to x and y in \mathcal{C}.

Constructions

Cartesian product of configurations

Non-balanced

- PCo- $\left(12_{2}, 4_{6}\right)$
\longrightarrow
balanced configuration
\longrightarrow PCo-(17286) (the tetrahedral case)

Constructions

Cartesian product of configurations

Non-balanced $\quad \longrightarrow \quad$ balanced configuration

- PCo- $\left(12_{2}, 4_{6}\right) \quad \longrightarrow \quad$ PCo- $\left(1728_{6}\right) \quad$ (the tetrahedral case)
- PCo- $\left((6 n)_{2},(2 n)_{6}\right) \longrightarrow$ PCo- $\left(\left(216 n^{3}\right)_{6}\right)$ (the dipyramidal case)

Constructions

Cartesian product of configurations

Non-balanced $\quad \longrightarrow \quad$ balanced configuration

- PCo- $\left(12_{2}, 4_{6}\right) \quad \longrightarrow \quad$ PCo- $\left(1728_{6}\right) \quad$ (the tetrahedral case)
- PCo- $\left((6 n)_{2},(2 n)_{6}\right) \longrightarrow$ PCo- $\left(\left(216 n^{3}\right)_{6}\right)$ (the dipyramidal case)
- PCo- $\left(12_{2}, 4_{6}\right) \otimes \operatorname{PCo}-\left(15_{4}, 10_{6}\right) \longrightarrow \operatorname{PCo}\left(180_{6}\right)$

Constructions

Cartesian product of configurations

Non-balanced $\quad \longrightarrow \quad$ balanced configuration

- PCo- $\left(12_{2}, 4_{6}\right) \quad \longrightarrow \quad$ PCo- $\left(1728_{6}\right) \quad$ (the tetrahedral case)
- PCo- $\left((6 n)_{2},(2 n)_{6}\right) \longrightarrow$ PCo- $\left(\left(216 n^{3}\right)_{6}\right)$ (the dipyramidal case)
- PCo- $\left(12_{2}, 4_{6}\right) \otimes \operatorname{PCo-}\left(15_{4}, 10_{6}\right) \longrightarrow$ PCo-(1806)

The point set of the product configuration is the Minkowski sum of the point sets of the component configurations:

$$
P=\left\{x+y \mid x \in P_{1}, y \in P_{2}\right\}
$$

Realization problems

Definition

A configuration \mathcal{C} is called

- lineal if any two blocks are incident with at most one point;
- circular if any two blocks are incident with at most two points;
- conical if any two blocks are incident with at most four points.

In terms of Levi graphs:
\mathcal{C} is $\left\{\begin{array}{l}\text { lineal } \\ \text { circular } \\ \text { conical }\end{array}\right\}$ if $L(\mathcal{C})$ contains no $\left\{\begin{array}{l}K_{2,2} \\ K_{3,2} \\ K_{5,2}\end{array}\right\}$ subgraph.

Realization problems

Not every lineal configuration can be realized by points and lines! Example: the $\left(7_{3}\right)$ Fano configuration

It can be realized by circles (trivial), but not with lines.

Realization problems

QUESTION.

Does there exist a circular point-ellipse configuration which cannot be realized by circles?

Realization problems

QUESTION.

Does there exist a circular point-ellipse configuration which cannot be realized by circles?

Yes!

Example:

$$
\text { PE- }\left(16_{3}, 12_{4}\right)
$$

Realization problems

QUESTION.

Does there exist a circular point-ellipse configuration which cannot be realized by circles?

Yes!
Example:

PE-($\left.16_{3}, 12_{4}\right)$

Realization problems

PROBLEM.

Can this configuration be realized by circles?

Open...

PE-(32 ${ }_{6}$)

Realization problems

PROBLEM.

Is there a point-conic configuration which can only be realized by ellipses? (Open...)

Realization problems

PROBLEM.

Is there a point-conic configuration which can only be realized by ellipses? (Open...)

$\mathrm{PCo}_{1-}-\left(\mathrm{2O}_{6}\right)$

End

End

Thank you for your attention.

