Graphs, groups, and more: celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays

CONFIGURATIONS OF POINTS AND CONICS

Gábor Gévay

University of Szeged Hungary

Tomaž Pisanski

University of Primorska Slovenia

May 28 – June 1, 2018, Koper

By a configuration of points and conics of type (p_q, n_k) we mean a set consisting of *p* points and *n* conics such that each point is incident with precisely *q* conics, and precisely *k* points are sitting on each conic.

By a configuration of points and conics of type (p_q, n_k) we mean a set consisting of *p* points and *n* conics such that each point is incident with precisely *q* conics, and precisely *k* points are sitting on each conic.

If p = n, then q = k; in this case we say that the configuration is balanced, and we use the notation (n_k) .

By a configuration of points and conics of type (p_q, n_k) we mean a set consisting of *p* points and *n* conics such that each point is incident with precisely *q* conics, and precisely *k* points are sitting on each conic.

If p = n, then q = k; in this case we say that the configuration is balanced, and we use the notation (n_k) .

We consider these configurations as embedded in the real projective plane.

The Levi graph of a (p_q, n_k) configuration C is a bipartite (q, k)-regular graph L(C) whose set of vertices is in bijective correspondence with the elements of C such that two vertices in L(C) are adjacent if and only if the corresponding elements in C are incident.

Example: PE-(32₆)

(GG 2009)

It is based on the regular map of type {6,6|3,4} introduced by Coxeter (1937) (= the map C17.3 in Marston Conder's list).

The ellipses are circumscribed around the hexagonal faces of the map.

The map can be represented within a 4-dimensional cube; hence the configuration can be derived directly from this cube, too.

An analogous case: PE-(96₆)

(96 points, 96 ellipses)

It is constructed from the regular 24-cell (besides the 4-cube, another 4-dimensional regular polytope).

A generalization of the $PE-(32_6)$ example:

Doubly infinite family of point-conic configurations $PCo-((2mn)_6)$

- type: $((2mn)_6)$ (for even numbers $m, n \ge 4$);
- start from the Cartesian product of a regular *m*-gon and a regular *n*-gon (a 4-dimensional convex polytope called prismotope; it has *n* copies of *m*-sided prisms and *m* copies of *n*-sided prisms as facets);
- inscribe (mirror-symmetric) hexagons in these prismatic facets (generically, these hexagons form an equivelar {6,6} map);
- circumscribe ellipses around these hexagons;
- project the system of vertices and ellipses onto a suitable plane.

A generalization of the $PE-(32_6)$ example:

Doubly infinite family of point-conic configurations $PCo-((2mn)_6)$

The Cartesian product of two hexagons

Hexagon inscribed in a prismatic facet

Two examples of type (217)

EEH-(217)

EHH-(217)

Two examples of type (217) (constructed from KGR-(214))

An observation by Luis Montejano and personal communication of Leah Berman. Proof of existence: GG (2018)

G. Gévay & T. Pisanski

A non-balanced example of type $(15_4, 10_6)$

Derived from a point-line Z_1 -(16₃, 12₄). (Movable!)

Z₁-(16₃, 12₄) (Zacharias, 1941)

PCo-(15₄, 10₆)

THEOREM (Lazare Carnot 1806)

Consider a triangle with exactly two (distinct) edge points per edge. We assume that the edge points are labeled $1, \ldots, 6$ and that the corresponding length ratios are a_i/b_i . Then the six points lie on a common conic if and only if the following relation holds:

$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} \cdot \frac{a_3}{b_3} \cdot \frac{a_4}{b_4} \cdot \frac{a_5}{b_5} \cdot \frac{a_6}{b_6} = 1.$$

Jürgen Richter-Gebert (2011)

G. Gévay & T. Pisanski

THEOREM (Richter-Gebert 2011)

The incidence theorem for the tetrahedron above can be extended to an arbitrary triangulated compact 2-manifold: if the sixtuples of points for all but one triangle are coconical, then the last sixtuple is coconical as well.

THEOREM (Richter-Gebert 2011)

The incidence theorem for the tetrahedron above can be extended to an arbitrary triangulated compact 2-manifold: if the sixtuples of points for all but one triangle are coconical, then the last sixtuple is coconical as well.

Applications:

 An infinite sequence of type ((6n)₂, (2n)₆): for each integer n ≥ 3, there is a point-conic configuration of type ((6n)₂, (2n)₆) derived from an *n*-gonal dipyramid. Non-balanced...

THEOREM (Richter-Gebert 2011)

The incidence theorem for the tetrahedron above can be extended to an arbitrary triangulated compact 2-manifold: if the sixtuples of points for all but one triangle are coconical, then the last sixtuple is coconical as well.

Applications:

- An infinite sequence of type $((6n)_2, (2n)_6)$: for each integer $n \ge 3$, there is a point-conic configuration of type $((6n)_2, (2n)_6)$ derived from an *n*-gonal dipyramid. Non-balanced...
- A balanced example derived from 7-dimensional simplex: PCo-(56₆).

Definition (Pisanski and Servatius 2013, GG 2014)

Let C be configuration of type (v_r, b_k) and C' a configuration of type $(v'_{r'}, b'_k)$. Observe that these two configurations have the same number k of points in each block. The Cartesian product of C and C' is a configuration of type

$$\big((\mathbf{v}\mathbf{v}')_{(\mathbf{r}+\mathbf{r}')},(\mathbf{v}\mathbf{b}'+\mathbf{v}'\mathbf{b})_k\big),$$

whose point set is the Cartesian product of the point sets of C and C' and where there is a block incident to two points (x, x') and (y, y') if and only if either x = y and there is a block incident to x' and y' in C', or x' = y' and there is a block incident to x and y in C.

Non-balanced \longrightarrow balanced configuration

• PCo- $(12_2, 4_6) \longrightarrow$ PCo- (1728_6) (the tetrahedral case)

Non-balanced \longrightarrow balanced configuration

- PCo- $(12_2, 4_6) \longrightarrow$ PCo- (1728_6) (the tetrahedral case)
- $PCo-((6n)_2, (2n)_6) \longrightarrow PCo-((216n^3)_6)$ (the dipyramidal case)

Non-balanced \longrightarrow balanced configuration

• PCo- $(12_2, 4_6) \longrightarrow$ PCo- (1728_6) (the tetrahedral case)

• $PCo-((6n)_2, (2n)_6) \longrightarrow PCo-((216n^3)_6)$ (the dipyramidal case)

• $PCo-(12_2, 4_6) \otimes PCo-(15_4, 10_6) \longrightarrow PCo-(180_6)$

Non-balanced \longrightarrow balanced configuration

• PCo- $(12_2, 4_6) \longrightarrow$ PCo- (1728_6) (the tetrahedral case)

• $PCo-((6n)_2, (2n)_6) \longrightarrow PCo-((216n^3)_6)$ (the dipyramidal case)

• $PCo-(12_2, 4_6) \otimes PCo-(15_4, 10_6) \longrightarrow PCo-(180_6)$

The point set of the product configuration is the Minkowski sum of the point sets of the component configurations:

$$P = \{x + y \mid x \in P_1, y \in P_2\}.$$

A configuration $\ensuremath{\mathcal{C}}$ is called

- lineal if any two blocks are incident with at most one point;
- circular if any two blocks are incident with at most two points;
- conical if any two blocks are incident with at most four points.

In terms of Levi graphs:

$$\mathcal{C} \text{ is } \left\{ \begin{array}{c} \text{lineal} \\ \text{circular} \\ \text{conical} \end{array} \right\} \text{ if } L(\mathcal{C}) \text{ contains no } \left\{ \begin{array}{c} K_{2,2} \\ K_{3,2} \\ K_{5,2} \end{array} \right\} \text{ subgraph.}$$

Not every lineal configuration can be realized by points and lines! Example: the (7_3) Fano configuration

It can be realized by circles (trivial), but not with lines.

QUESTION.

Does there exist a circular point-ellipse configuration which cannot be realized by circles?

QUESTION.

Does there exist a circular point-ellipse configuration which cannot be realized by circles?

Yes!

Example:

PE-(16₃, 12₄)

QUESTION.

Does there exist a circular point-ellipse configuration which cannot be realized by circles?

Yes!

Example:

PE-(16₃, 12₄)

Realization problems

PROBLEM.

Can this configuration be realized by circles?

Open...

PE-(32₆)

G. Gévay & T. Pisanski

PROBLEM.

Is there a point-conic configuration which can <u>only</u> be realized by ellipses? (**Open..**)

PROBLEM.

Is there a point-conic configuration which can <u>only</u> be realized by ellipses? (**Open..**)

PCo1-(206)

End

G. Gévay & T. Pisanski

Thank you for your attention.

