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Quadrilateral embeddings and cartesian products

Orientable surfaces:

Sh

Embedding Φ : G→ Σ: draw G in Σ without edge crossings.

Quadrilateral: open disk face bounded by 4-cycle.

Quadrilateral embedding (QE): every face quadrilateral. So cellular.

Why quadrilateral embeddings? Minimum genus if graph has girth 4 or more.

Cartesian product (CP) G�H:

G-edges inside G�v, H-edges

inside u�H.

Why cartesian products? Many

4-cycles, improves chances of

finding quadrilateral embedding.

G

H

(u, v)
u ← u�H

v

↑
G�v
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Pisanski’s three questions, 1992

Question 1: If G, H are arbitrary 1-factorable t-regular graphs, does G�H always

have an orientable quadrilateral embedding?

True if G, H bipartite (Pisanski, 1980).

Question 2: For t-regular G, t ≥ 2, does

G�C2n1
�C2n2

� . . . �C2nt

have an orientable quadrilateral embedding?

More general than G�Q2t = G�(�tC4).

True if G bipartite (Pisanski, 1980).

Question 3: For an arbitrary graph G, does G�Qn have an orientable quadrilateral

embedding for all sufficiently large n? (Qn = �
nK2, hypercube.)

True if G bipartite, for n ≥ ∆(G) (Pisanski, 1980).

True for regular G if n ≥ 2∆(G) + 3 (Pisanksi, 1992).

Also true for all G if we drop ‘orientable’ (Pisanski, 1982 and also Hunter and

Kainen, 2007).

Here we discuss Questions 2 and 3 ...
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Our construction

Generalizes Pisanski’s +/- construction, 1992.

Pisanski showed that for every t-regular G, there

is an orientable QE of G�Qn for all n ≥ 2t+ 3.

• Begin with orientable emb. Φ of any graph G.

Add semiedges coloured by D, |D| = r: Φ+ where

(0) each colour appears once at each vertex,

(1) edge/semiedge adjacency condition

(→ GH-faces),

(2) faces without semiedges are quadrilaterals

(→ G-faces).

• Colour edges of r-regular bipartite H with D so

(3) consecutive colours d1, d2 in Φ+ mean

H(d1, d2) is a 4-cycle 2-factor (→ H-faces).

• Use to derive orientable QE of G�H.

Example: K4�(C10�K2)
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Construction details I

Example: K4�(C10�K2)

c b
a
a
c

b

bc
a

a
b

c

Φ+

b

b

c

c

a
a a

v1
v2

v3
v4 H

(1) Get GH-faces from corners between edges

and semiedges, using edge/semiedge adjacency

condition.
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Construction details II

Example: K4�(C10�K2)
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(2) Get G-faces from corners between pairs of

edges, using fact that faces without semiedges

are quadrilaterals.
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Construction details III

Example: K4�(C10�K2)
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(3) Get H-faces from corners between pairs of

semiedges, using fact that consecutive colours

d1, d2 in Φ+ mean H(d1, d2) is a 4-cycle 2-factor.
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Conflict graphs

Hardest part is satisfying (3). Think of Φ+ and H as generating conflicts between

pairs of colours:

◦ conflict in Φ+ if d1, d2 consecutive somewhere,

◦ conflict in H if H(d1, d2) not a 4-cycle 2-factor.

Want conflict graphs Γ(Φ+), Γ(H) to be edge-disjoint. For example:
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• Can weaken this. Enough if Γ(Φ+) and Γ(H) pack: one isomorphic to subgraph of

complement of other. Can also use different colours for Φ+, H.

• If H is itself a cartesian product of regular graphs all of the same degree (e.g., H

is a cube) then we can use equitable colourings of Γ(Φ+) to show that Γ(Φ+) and

Γ(H) pack: Hajnal-Szemerédi Theorem or special construction.
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Solving Questions 2 and 3

From equitable colourings we get:

Theorem: Suppose that G is k-edge-colourable, k ≥ 3, and H1, H2, . . . , Hm

are all s-regular bipartite graphs, where m ≥ 3 and sm ≥ ⌈3k/2⌉. Then

G�(H1�H2� . . . �Hm) has an orientable quadrilateral embedding.

Question 2: For t-regular G, t ≥ 2, does

G�C2n1
�C2n2

� . . . �C2nt

have an orientable quadrilateral embedding?

Answer: Yes, for t ≥ 3. In fact, works for

G�C2n1
�C2n2

� . . . �C2nm

provided t ≥ 2 and m ≥ max(3, ⌈3(t+ 1)/4⌉).

Question 3: For an arbitrary graph G, does G�Qn have an orientable quadrilateral

embedding for all sufficiently large n?

Answer: Yes. Just take all Hi = K2, then n ≥ max(3, ⌈3χ′(G)/2⌉) works. (χ′(G),

chromatic index, is ∆(G) or ∆(G) + 1.)
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Future directions

• Extend our construction for G�H:

◦ Nonorientable embeddings: start with nonorientable embedding of G, or use

nonbipartite H.

◦ Nonregular graphs H, using partial 4-cycle patchworks, or directly.

• What about orientable quadrilateral embeddings of G�H when neither G nor H is

bipartite? Nothing much known.

• We have 3-regular counterexamples to Question 1: no orientable QE of G�H for

G, H both t-regular, 1-factorable. Find counterexamples for Question 1 that are

t-regular for t ≥ 4. Should be doable.

• What about Question 2 for 2-regular G? Does Codd�Ceven�Ceven have an

orientable quadrilateral embedding? Our technique does not work.

Thank you!

And congratulations to Brian and Dragan!


