Orientable
 quadrilateral embeddings of cartesian products

Mark Ellingham
Vanderbilt University

Wenzhong Liu
Nanjing University of Aeronautics and Astronautics, China

Dong Ye and Xiaoya Zha
Middle Tennessee State University

Quadrilateral embeddings and cartesian products

Orientable surfaces:

Embedding $\Phi: G \rightarrow \Sigma$: draw G in Σ without edge crossings.
Quadrilateral: open disk face bounded by 4-cycle.
Quadrilateral embedding (QE): every face quadrilateral. So cellular.
Why quadrilateral embeddings? Minimum genus if graph has girth 4 or more.

Cartesian product (CP) $G \square H$:
G-edges inside $G \square v, H$-edges inside $u \square H$.

Why cartesian products? Many 4-cycles, improves chances of finding quadrilateral embedding.

Pisanski's three questions, 1992

Question 1: If G, H are arbitrary 1-factorable t-regular graphs, does $G \square H$ always have an orientable quadrilateral embedding?
True if G, H bipartite (Pisanski, 1980).
Question 2: For t-regular $G, t \geq 2$, does
$G \square C_{2 n_{1}} \square C_{2 n_{2}} \square \ldots \square C_{2 n_{t}}$
have an orientable quadrilateral embedding?
More general than $G \square Q_{2 t}=G \square\left(\square^{t} C_{4}\right)$.
True if G bipartite (Pisanski, 1980).
Question 3: For an arbitrary graph G, does $G \square Q_{n}$ have an orientable quadrilateral embedding for all sufficiently large n ? ($Q_{n}=\square^{n} K_{2}$, hypercube.)
True if G bipartite, for $n \geq \Delta(G)$ (Pisanski, 1980).
True for regular G if $n \geq 2 \Delta(G)+3$ (Pisanksi, 1992).
Also true for all G if we drop 'orientable' (Pisanski, 1982 and also Hunter and Kainen, 2007).

Here we discuss Questions 2 and 3 ...

Our construction

Generalizes Pisanski's +/- construction, 1992.
Pisanski showed that for every t-regular G, there is an orientable QE of $G \square Q_{n}$ for all $n \geq 2 t+3$.

- Begin with orientable emb. Φ of any graph G.

Add semiedges coloured by $D,|D|=r: \Phi^{+}$where
(0) each colour appears once at each vertex,
(1) edge/semiedge adjacency condition ($\rightarrow G H$-faces),
(2) faces without semiedges are quadrilaterals ($\rightarrow G$-faces).

- Colour edges of r-regular bipartite H with D so
(3) consecutive colours d_{1}, d_{2} in Φ^{+}mean $H\left(d_{1}, d_{2}\right)$ is a 4 -cycle 2 -factor $(\rightarrow H$-faces $)$.
- Use to derive orientable QE of $G \square H$.

Example: $K_{4} \square\left(C_{10} \square K_{2}\right)$

Φ^{+}

Construction details I

Example: $K_{4} \square\left(C_{10} \square K_{2}\right)$

(1) Get $G H$-faces from corners between edges and semiedges, using edge/semiedge adjacency condition.

Construction details II

Example: $K_{4} \square\left(C_{10} \square K_{2}\right)$

(2) Get G-faces from corners between pairs of edges, using fact that faces without semiedges are quadrilaterals.

Construction details III

Example: $K_{4} \square\left(C_{10} \square K_{2}\right)$

(3) Get H-faces from corners between pairs of semiedges, using fact that consecutive colours d_{1}, d_{2} in Φ^{+}mean $H\left(d_{1}, d_{2}\right)$ is a 4 -cycle 2 -factor.

Conflict graphs

Hardest part is satisfying (3). Think of Φ^{+}and H as generating conflicts between pairs of colours:

- conflict in Φ^{+}if d_{1}, d_{2} consecutive somewhere,
- conflict in H if $H\left(d_{1}, d_{2}\right)$ not a 4-cycle 2-factor.

Want conflict graphs $\Gamma\left(\Phi^{+}\right), \Gamma(H)$ to be edge-disjoint. For example:

$\Gamma(H)$

- Can weaken this. Enough if $\Gamma\left(\Phi^{+}\right)$and $\Gamma(H)$ pack: one isomorphic to subgraph of complement of other. Can also use different colours for Φ^{+}, H.
- If H is itself a cartesian product of regular graphs all of the same degree (e.g., H is a cube) then we can use equitable colourings of $\Gamma\left(\Phi^{+}\right)$to show that $\Gamma\left(\Phi^{+}\right)$and $\Gamma(H)$ pack: Hajnal-Szemerédi Theorem or special construction.

Solving Questions 2 and 3

From equitable colourings we get:
Theorem: Suppose that G is k-edge-colourable, $k \geq 3$, and $H_{1}, H_{2}, \ldots, H_{m}$ are all s-regular bipartite graphs, where $m \geq 3$ and $s m \geq\lceil 3 k / 2\rceil$. Then $G \square\left(H_{1} \square H_{2} \square \ldots \square H_{m}\right)$ has an orientable quadrilateral embedding.

Question 2: For t-regular $G, t \geq 2$, does

$$
G \square C_{2 n_{1}} \square C_{2 n_{2}} \square \ldots \square C_{2 n_{t}}
$$

have an orientable quadrilateral embedding?
Answer: Yes, for $t \geq 3$. In fact, works for

$$
G \square C_{2 n_{1}} \square C_{2 n_{2}} \square \ldots \square C_{2 n_{m}}
$$

provided $t \geq 2$ and $m \geq \max (3,\lceil 3(t+1) / 4\rceil)$.
Question 3: For an arbitrary graph G, does $G \square Q_{n}$ have an orientable quadrilateral embedding for all sufficiently large n ?

Answer: Yes. Just take all $H_{i}=K_{2}$, then $n \geq \max \left(3,\left\lceil 3 \chi^{\prime}(G) / 2\right\rceil\right)$ works. $\left(\chi^{\prime}(G)\right.$, chromatic index, is $\Delta(G)$ or $\Delta(G)+1$.)

Future directions

- Extend our construction for $G \square H$:
- Nonorientable embeddings: start with nonorientable embedding of G, or use nonbipartite H.
- Nonregular graphs H, using partial 4-cycle patchworks, or directly.
- What about orientable quadrilateral embeddings of $G \square H$ when neither G nor H is bipartite? Nothing much known.
- We have 3-regular counterexamples to Question 1: no orientable QE of $G \square H$ for G, H both t-regular, 1-factorable. Find counterexamples for Question 1 that are t-regular for $t \geq 4$. Should be doable.
- What about Question 2 for 2-regular G ? Does $C_{\text {odd }} \square C_{\text {even }} \square C_{\text {even }}$ have an orientable quadrilateral embedding? Our technique does not work.

Thank you!
And congratulations to Brian and Dragan!

