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The first city: Algebraic Topology

? Generalized Cohomology Theories (55N20)

? Classifying Spaces of Groups (55R35)

? Steenrod Algebra & Cohomology Operations (55S10)
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The second city: Graph Theory

The irresistible beauty of (signed) graphs
and their spectra
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Graphs, groups, and more

Koper, May 28-June 1, 2018

Thank you!
(End of biographical sub-talk)

Edge perturbations on signed graphs with clusters Maurizio Brunetti



Frontpage A Tale of Two (mathematical) Cities Signed Graphs Clusters The End

Signed Graphs

A signed graph Γ is an ordered pair (G , σ), where

G = (V (G ),E (G )) is a simple graph: no loops, multiple
edges, half-edges are allowed;

σ : E (G )→ {+,−} is the signature function (or sign
mapping) on the edges of G .
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Example of a signed graph.

positive edges = solid lines;
negative edges = dotted lines.
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More on Signed Graphs

If C is a cycle in Γ, the sign of C , denoted by σ(C ), is the product
of its edges signs.
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An unbalanced butterfly

Definition

A signed graph is said to be balanced if and only if all its cycles are
positive.
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Adjacency matrix of Signed Graphs

The adjacency matrix is defined as A(Γ) = (aij), where

aij =

{
σ(vivj), if vi ∼ vj ;
0, if vi 6∼ vj .
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v1

v2 v5

v3
v4

t
t t

t t
 A(Γ) =


0 −1 1 0 0
−1 0 1 0 1

1 1 0 1 0
0 0 1 0 −1
0 1 0 −1 0



A(Γ) =


0 −1 1 0 0
−1 0 1 0 1

1 1 0 1 0
0 0 1 0 −1
0 1 0 −1 0

A(Γ) =


0 −1 1 0 0
−1 0 1 0 1

1 1 0 1 0
0 0 1 0 −1
0 1 0 −1 0

A(Γ) =


0 −1 1 0 0
−1 0 1 0 1

1 1 0 1 0
0 0 1 0 −1
0 1 0 −1 0


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Laplacian of Signed Graphs

The Laplacian matrix of Γ = (G , σ) is defined as
L(Γ) = D(G )− A(Γ) = (lij)

lij =

{
deg(vi ), if i = j ;
−σ(vivj), if i 6= j .
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Adjacency and Laplacian eigenvalues

Proposition

Adjacency eigenvectors are all real. Laplacian eigenvectors are all
real and non-negative

λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ) Adjacency eigenvalues

µ1(Γ) ≥ µ2(Γ) ≥ · · · ≥ µn(Γ) ≥ 0 Laplacian eigenvalues
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λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ) ≥ 0 Adjacency eigenvalues

µ1(Γ) ≥ µ2(Γ) ≥ · · · ≥ µn(Γ) ≥ 0 Laplacian eigenvalues

D.M. Cardoso, D. Cvetković, P. Rowlinson, S.K. Simić, A sharp
lower bound for the least eigenvalue of the signless Laplacian of a
non-bipartite graph, Linear Algebra Appl. 429 (2008) 2770–2780.

F. Belardo, Balancedness and the least eigenvalue of Laplacian of
Signed Graphs, Linear Algebra Appl. 446 (2014) 133–147.
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The least eigenvalue

A celebrated result by T. Zaslavsky:

Theorem

Let Γ = (G , σ) be a connected signed graph and µn(Γ) be its least
Laplacian eigenvalue.
Then Γ is balanced if and only if µn(Γ) = 0.
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Graphs with clusters

What is a cluster?

Definition

Let G a simple undirected graph. A (c , s)-cluster is a couple of
vertex subsets (C ,S) with the following property. The c ≥ 2
vertices of C all have the same set S of neighbors. The set S has
cardinality s.

Edge perturbations on signed graphs with clusters Maurizio Brunetti
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Edge perturbation = Adding edges

Given a graph G with a (c , s)-cluster (C ,S)

and any graph H of order c

,

we can build G (H).
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Graphs with clusters

Is there any predictable relation among the A-spectra, the
L-spectra, and the Q-spectra of G , H, and G (H)?
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Graphs with clusters

A Theorem by D. Cardoso & O. Rojo (2017):

Let M be the adjacency matrix A, the Laplacian matrix L or the
signless Laplacian matrix Q.

according that M(H)1c = µc(M(H))1c .

det(λI −M(G (H))) = g H
M

c−1∏
i=1

(λ− (sδ + µi (M(H)))).

where
gH
M = pM(G)(λ)− (µc(M(H)) + sδ)qM(G)(λ).
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Main Condition/Restriction

M(H)1c = µc(M(H))1c .

1c is an L-eigenvector for all graphs H (of order c)

1c is an A-eigenvector and a Q-eigenvector for the graph H if
and only if H is k-regular.

Edge perturbations on signed graphs with clusters Maurizio Brunetti
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Signed Regularities

Let Λ = (H, τ) be a signed graph.

When M(Λ)1c = µc(M(Λ))1c ?

For M being the adjacency matrix, this happens when Λ is
net-regular.

For M being the Laplacian matrix, this happens when Λ is
negatively-regular

Edge perturbations on signed graphs with clusters Maurizio Brunetti
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Net-regular Signed Graphs

Definition

Given any signed graph Γ, the signed degree of a vertex v in a
signed graph is

sdeg(v) = d+(v)− d−(v).

where d+(v) (resp. d−(v)) is the number of incident positive
(resp. negative) edges.

Definition

A signed graph is said to be net-regular if the vertices all have the
same signed-degree.

Edge perturbations on signed graphs with clusters Maurizio Brunetti
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Examples of Net-regular Signed Graphs

Λ′′Λ Λ′

sdeg(v) = 1 sdeg(v) = 0 sdeg(v) = 2
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Signed Regularities

Let Λ = (H, τ) be a signed graph.

When M(Λ)1c = µc(M(Λ))1c ?

For M being the Laplacian matrix, this happens when Λ is
negatively-regular.

d−(v) is the same for all v ∈ V (Λ)
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Examples of Negatively-regular Signed Graphs

(C3,−)Λ Λ̂′ Λ̂′′

d−(v) = 1 d−(v) = 1 d−(v) = 2 d−(v) = 0
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Restrictions on signed graph

The (c , s)-cluster on the signed graph Γ must be homogeneous

9 8

6
7

4

5

1

2

3

G

All edges connecting a fixed
vertex of S to its neighbors in C
are equally signed
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Main result
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Λ

M(Λ)1c = µc(M(Λ))1c
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det(λI −M(Γ(Λ))) = g Λ
M

c−1∏
i=1

(λ− (sδ + µi (M(Λ)))).

where
gΛ
M = pM(Γ)(λ)− (µc(M(Λ)) + sδ)qM(Γ)(λ).
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Applications

Let Hc,k
A (resp. Hc,k

L ) be the set of all signed graphs of order c
which are net-regular (resp. negatively regular) and

sdeg(v) = k (resp. d−(v) = k)

Theorem

Let Γ be a signed graph of order n having a homogeneous
(c , s)-cluster (C , S).

Whatever Λ and Λ′ we choose in Hc,k
A (resp. Hc,k

L ),

the graphs Γ(Λ) and Γ(Λ′) share a same set of n− c + 1 adjacency
(resp. Laplacian) eigenvalues.
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Graphs, groups, and more

Koper, May 28–June 1, 2018

Thank you!
(This is really THE END)
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Applications

Theorem

Let Γ be a graph of order n with h ≥ 1 pairwise disjoint
homogeneous clusters (C1, S1), . . . , (Ch,Sh) such that

|Ci | = ci and |S1| = · · · = |Sh| = s.

Then the multiplicity of the L-eigenvalue s satisfies

mL(s) ≥

 h∑
j=1

cj

− h.

Proof: Use our theorem for Λ being the empty graph cK1 ...
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Example
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Γ(Λ)

µ1(A(C−3 )) = µ2(A(C−3 )) = 1, µ3(A(C−3 )) = −2

mA(Γ(C−
3 ))(1) ≥ 2
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