Graphs, groups, and more Koper, May 28-June 1, 2018

Maurizio Brunetti

University of Naples "Federico II"

Edge perturbations on signed graphs with clusters

(Joint research with Francesco Belardo & Adriana Ciampella)

The End

Graphs, groups, and more Koper, May 28-June 1, 2018

Maurizio Brunetti

University of Naples "Federico II"

A Tale of Two (mathematical) Cities

Edge perturbations on signed graphs with clusters

Maurizio Brunetti

Frontpage

Signed Graphs

Clusters

The End

A Tale of Two (mathematical) Cities

Frontpage

A Tale of Two (mathematical) Cities

Signed Graphs

Clusters

The End

A Tale of Two (mathematical) Cities

₫ ▶

The first city: Algebraic Topology

Edge perturbations on signed graphs with clusters

Maurizio Brunetti

Э

・ロト ・回ト ・ヨト

★ Generalized Cohomology Theories (55N20)

Edge perturbations on signed graphs with clusters

Maurizio Brunetti

< D > < B >

- ★ Generalized Cohomology Theories (55N20)
- ★ Classifying Spaces of Groups (55R35)

- ★ Generalized Cohomology Theories (55N20)
- ★ Classifying Spaces of Groups (55R35)
- * Steenrod Algebra & Cohomology Operations (55S10)

Clusters

The End

Topography

Clusters

The End

Topography

Edge perturbations on signed graphs with clusters

Maurizio Brunetti

Clusters

The End

The second city: Graph Theory

Image: A math the second se

Frontpage

Signed Graphs

Clusters

The End

The second city: Graph Theory

The irresistible beauty of (signed) graphs and their spectra

A ■

Graphs, groups, and more Koper, May 28-June 1, 2018

Thank you!

(End of biographical sub-talk)

Maurizio Brunetti

Edge perturbations on signed graphs with clusters

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed	Graphs			

A signed graph Γ is an ordered pair (G, σ) , where

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed	Graphs			

- A signed graph Γ is an ordered pair (G, σ) , where
 - G = (V(G), E(G)) is a simple graph: no loops, multiple edges, half-edges are allowed;

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed (Graphs			

A signed graph Γ is an ordered pair (G, σ) , where

- G = (V(G), E(G)) is a simple graph: no loops, multiple edges, half-edges are allowed;
- σ : E(G) → {+, −} is the signature function (or sign mapping) on the edges of G.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed G	raphs			

A signed graph Γ is an ordered pair (G, σ) , where

- G = (V(G), E(G)) is a simple graph: no loops, multiple edges, half-edges are allowed;
- σ : E(G) → {+, −} is the signature function (or sign mapping) on the edges of G.

Example of a signed graph.

positive edges = solid lines; negative edges = dotted lines.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
More o	n Signed Graphs			

If C is a cycle in Γ , the sign of C, denoted by $\sigma(C)$, is the product of its edges signs.

Definition

A signed graph is said to be **balanced** if and only if all its cycles are positive.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
More or	Signed Graphs			

If C is a cycle in Γ , the sign of C, denoted by $\sigma(C)$, is the product of its edges signs.

Definition

A signed graph is said to be **balanced** if and only if all its cycles are positive.

$$a_{ij} = \begin{cases} \sigma(v_i v_j), & \text{if } v_i \sim v_j; \\ 0, & \text{if } v_i \not\sim v_j. \end{cases}$$

$$a_{ij} = \begin{cases} \sigma(v_i v_j), & \text{if } v_i \sim v_j; \\ 0, & \text{if } v_i \not\sim v_j. \end{cases}$$

$$a_{ij} = \begin{cases} \sigma(v_i v_j), & \text{if } v_i \sim v_j; \\ 0, & \text{if } v_i \not\sim v_j. \end{cases}$$

$$a_{ij} = \begin{cases} \sigma(v_i v_j), & \text{if } v_i \sim v_j; \\ 0, & \text{if } v_i \not\sim v_j. \end{cases}$$

E.,	<u> </u>	4.0	20	
	υII	ւբ	Jag	,e

Clusters The End

Laplacian of Signed Graphs

The Laplacian matrix of $\Gamma = (G, \sigma)$ is defined as $L(\Gamma) = D(G) - A(\Gamma) = (l_{ij})$

$$I_{ij} = \begin{cases} \deg(v_i), & \text{if } i = j; \\ -\sigma(v_i v_j), & \text{if } i \neq j. \end{cases}$$

E.,	<u> </u>	4.0	20	
	υII	ւբ	Jag	,e

Clusters The End

Laplacian of Signed Graphs

The Laplacian matrix of $\Gamma = (G, \sigma)$ is defined as $L(\Gamma) = D(G) - A(\Gamma) = (l_{ij})$

$$I_{ij} = \begin{cases} \deg(v_i), & \text{if } i = j; \\ -\sigma(v_i v_j), & \text{if } i \neq j. \end{cases}$$

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Adiace	ncv and Laplacian eiger	nvalues		

Proposition

Adjacency eigenvectors are all real. Laplacian eigenvectors are all real and non-negative

 $\lambda_1(\Gamma) \ge \lambda_2(\Gamma) \ge \cdots \ge \lambda_n(\Gamma)$ Adjacency eigenvalues $\mu_1(\Gamma) \ge \mu_2(\Gamma) \ge \cdots \ge \mu_n(\Gamma) \ge 0$ Laplacian eigenvalues

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Adiace	ncy and Laplacian eiger	nvalues		

Proposition

Adjacency and Laplacian eigenvectors are all real and non-negative

$$\lambda_1(\Gamma) \geq \lambda_2(\Gamma) \geq \cdots \geq \lambda_n(\Gamma) \geq 0$$
 Adjacency eigenvalues

 $\mu_1(\Gamma) \ge \mu_2(\Gamma) \ge \cdots \ge \mu_n(\Gamma) \ge 0$ Laplacian eigenvalues

D.M. Cardoso, D. Cvetković, P. Rowlinson, S.K. Simić, *A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph*, Linear Algebra Appl. 429 (2008) 2770–2780.

F. Belardo, *Balancedness and the least eigenvalue of Laplacian of Signed Graphs*, Linear Algebra Appl. 446 (2014) 133–147.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
The least	eigenvalue			

A celebrated result by T. Zaslavsky:

Theorem

Let $\Gamma = (G, \sigma)$ be a connected signed graph and $\mu_n(\Gamma)$ be its least Laplacian eigenvalue. Then Γ is balanced if and only if $\mu_n(\Gamma) = 0$.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Graphs	with clusters			
What	; is a cluster?			

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Graphs	s with clusters			
What	t is a cluster?			

Definition

Let G a simple undirected graph. A (c, s)-cluster is a couple of vertex subsets (C, S) with the following property. The $c \ge 2$ vertices of C all have the same set S of neighbors. The set S has cardinality s.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Graphs	s with clusters			

What is a cluster?

Definition

Let G a simple undirected graph. A (c, s)-cluster is a couple of vertex subsets (C, S) with the following property. The $c \ge 2$ vertices of C all have the same set S of neighbors. The set S has cardinality s.

Given a graph G with a (c, s)-cluster (C, S)

,

Given a graph G with a (c, s)-cluster (C, S)and any graph H of order c,

Given a graph G with a (c, s)-cluster (C, S)and any graph H of order c, we can build G(H).

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Graphs	with clusters			

Is there any predictable relation among the A-spectra, the L-spectra, and the Q-spectra of G, H, and G(H)?

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Graphs v	vith clusters			

A Theorem by D. Cardoso & O. Rojo (2017):

Let M be the adjacency matrix A, the Laplacian matrix L or the signless Laplacian matrix Q.

according that $M(H)\mathbf{1}_c = \mu_c(M(H))\mathbf{1}_c$.

$$\det(\lambda I - M(G(H))) = g_M^H \prod_{i=1}^{c-1} (\lambda - (s\delta + \mu_i(M(H)))).$$

where

$$g_M^{\boldsymbol{H}} = p_{M(G)}(\lambda) - (\mu_c(M(\boldsymbol{H})) + s\delta)q_{M(G)}(\lambda).$$

 Frontpage
 A Tale of Two (mathematical) Cities
 Signed Graphs
 Clusters
 The End

 Main Condition/Restriction

$M(\mathbf{H})\mathbf{1}_{c} = \mu_{c}(M(\mathbf{H}))\mathbf{1}_{c}.$

- $\mathbf{1}_c$ is an *L*-eigenvector for all graphs *H* (of order *c*)
- **1**_c is an A-eigenvector and a Q-eigenvector for the graph H if and only if H is k-regular.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed	Regularities			

When $M(\Lambda)\mathbf{1}_c = \mu_c(M(\Lambda))\mathbf{1}_c$?

≣ ► ≣ •⁄) २.0 Maurizio Brunetti

イロト イヨト イヨト イヨト

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed	Regularities			

When
$$M(\Lambda)\mathbf{1}_{c} = \mu_{c}(M(\Lambda))\mathbf{1}_{c}$$
?

For *M* being the adjacency matrix, this happens when Λ is *net-regular*.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed R	legularities			

When $M(\Lambda)\mathbf{1}_c = \mu_c(M(\Lambda))\mathbf{1}_c$?

For *M* being the adjacency matrix, this happens when Λ is *net-regular*.

For M being the Laplacian matrix, this happens when Λ is *negatively-regular*

Clusters

The End

Net-regular Signed Graphs

Definition

Given any signed graph Γ , the signed degree of a vertex v in a signed graph is

$$\operatorname{sdeg}(v) = d^+(v) - d^-(v).$$

where $d^+(v)$ (resp. $d^-(v)$) is the number of incident positive (resp. negative) edges.

- ∢ ≣ ▶

<ロ> <同> <同> <三> < 回> < 回> < 三>

Clusters

The End

Net-regular Signed Graphs

Definition

Given any signed graph $\Gamma,$ the signed degree of a vertex v in a signed graph is

$$\operatorname{sdeg}(v) = d^+(v) - d^-(v).$$

where $d^+(v)$ (resp. $d^-(v)$) is the number of incident positive (resp. negative) edges.

Definition

A signed graph is said to be net-regular if the vertices all have the same signed-degree.

<ロ> <同> <同> <三>

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

sdeg(v) = 1

sdeg(v) = 1 sdeg(v) = 0

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへで

< E

<ロ> <同> <同> <同> < 同>

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed F	Regularities			

When
$$M(\Lambda)\mathbf{1}_{c} = \mu_{c}(M(\Lambda))\mathbf{1}_{c}$$
?

For *M* being the Laplacian matrix, this happens when Λ is *negatively-regular*.

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Signed F	Regularities			

When
$$M(\Lambda)\mathbf{1}_{c} = \mu_{c}(M(\Lambda))\mathbf{1}_{c}$$
?

For *M* being the Laplacian matrix, this happens when Λ is *negatively-regular*.

 $d^{-}(v)$ is the same for all $v \in V(\Lambda)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 $d^{-}(v) = 1$

 $d^{-}(v) = 1$ $d^{-}(v) = 1$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへ⊙

 $d^{-}(v) = 1$ $d^{-}(v) = 1$ $d^{-}(v) = 2$

イロト イヨト イヨト イヨト

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Restric	tions on signed graph			

The (c, s)-cluster on the signed graph Γ must be homogeneous

Clusters

The End

Restrictions on signed graph

The (c, s)-cluster on the signed graph Γ must be *homogeneous*

All edges connecting a fixed vertex of S to its neighbors in C are equally signed

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Main re	sult			

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Main re	esult			

Frontpage	A Tale of Two (mathematical)	Cities Signed	I Graphs Clusters	The End
Main re	sult			
	1 2 3	1		

٨

 $M(\Lambda)\mathbf{1}_{c} = \mu_{c}(M(\Lambda))\mathbf{1}_{c}$

・ロン ・四 と ・ 正 と ・ 正

7

5

98

7

6

98

Г

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Main r	esult			

$$\mathsf{f} \qquad \mathsf{M}(\Lambda) \mathbf{1}_{c} = \mu_{c}(\mathsf{M}(\Lambda)) \mathbf{1}_{c} \qquad \mathsf{I}(\Lambda)$$
$$\det(\lambda I - \mathsf{M}(\mathsf{F}(\Lambda))) = g_{M}^{\Lambda} \prod_{i=1}^{c-1} (\lambda - (s\delta + \mu_{i}(\mathsf{M}(\Lambda)))).$$

where

$$g_M^{\wedge} = p_{M(\Gamma)}(\lambda) - (\mu_c(M(\Lambda)) + s\delta)q_{M(\Gamma)}(\lambda).$$

Let $\mathcal{H}_{A}^{c,k}$ (resp. $\mathcal{H}_{L}^{c,k}$) be the set of all signed graphs of order c which are net-regular (resp. negatively regular) and

sdeg(v) = k (resp. $d^-(v) = k$)

Theorem

Let Γ be a signed graph of order *n* having a homogeneous (c, s)-cluster (C, S). Whatever Λ and Λ' we choose in $\mathcal{H}_A^{c,k}$ (resp. $\mathcal{H}_L^{c,k}$), the graphs $\Gamma(\Lambda)$ and $\Gamma(\Lambda')$ share a same set of n - c + 1 adjacency (resp. Laplacian) eigenvalues.

イロト イポト イヨト イヨト 三日

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End

Graphs, groups, and more Koper, May 28–June 1, 2018

Thank you!

(This is really THE END)

Edge perturbations on signed graphs with clusters

Maurizio Brunetti

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Applica	ations			

Theorem

Let Γ be a graph of order n with $h \ge 1$ pairwise disjoint homogeneous clusters $(C_1, S_1), \ldots, (C_h, S_h)$ such that

$$|C_i| = c_i$$
 and $|S_1| = \cdots = |S_h| = s$.

Then the multiplicity of the *L*-eigenvalue *s* satisfies

$$m_L(s) \ge \left(\sum_{j=1}^h c_j\right) - h.$$

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Applica	ations			

Theorem

Let Γ be a graph of order n with $h \ge 1$ pairwise disjoint homogeneous clusters $(C_1, S_1), \ldots, (C_h, S_h)$ such that

$$|C_i| = c_i$$
 and $|S_1| = \cdots = |S_h| = s$.

Then the multiplicity of the *L*-eigenvalue *s* satisfies

$$m_L(s) \geq \left(\sum_{j=1}^h c_j\right) - h.$$

Proof: Use our theorem for Λ being the empty graph cK_1 ...

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Example				

▲ロン ▲御と ▲注と ▲注と

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Example				

$$\mu_1(A(C_3^-)) = \mu_2(A(C_3^-)) = 1, \ \mu_3(A(C_3^-)) = -2$$

Maurizio Brunetti

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Example				

$$\mu_1(A(C_3^-)) = \mu_2(A(C_3^-)) = 1, \ \mu_3(A(C_3^-)) = -2$$

$$m_{\mathcal{A}(\Gamma(C_3^-))}(1) \geq 2$$

Maurizio Brunetti

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Example				

$$\mu_1(L(C_3^-)) = \mu_2(L(C_3^-)) = 1, \ \mu_3(L(C_3^-)) = 4$$

Maurizio Brunetti

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Frontpage	A Tale of Two (mathematical) Cities	Signed Graphs	Clusters	The End
Example				

$$\mu_1(L(C_3^-)) = \mu_2(L(C_3^-)) = 1, \ \mu_3(L(C_3^-)) = 4$$

$$m_{L(\Gamma(C_3^-))}(3) = m_{L(\Gamma(C_3^-))}(s + \mu_1(L(C_3^-))) \ge 2$$

≡ • • • •

・ロト ・回 ト ・ヨト ・ヨト