Twofold triple systems that disprove Tutte's conjecture:
 Bipartite non-Hamiltonian 2-block intersection graphs

Rosalind Cameron and David Pike

Memorial University of Newfoundland
Koper, 2018

Definitions

A (v, k, λ)-BIBD consists of a v-set V of elements (called points) together with a collection \mathcal{B} of k-subsets (called blocks) of V such that each pair of points from V occurs in exactly λ blocks.

Definitions

A (v, k, λ)-BIBD consists of a v-set V of elements (called points) together with a collection \mathcal{B} of k-subsets (called blocks) of V such that each pair of points from V occurs in exactly λ blocks.

- $\mathrm{A}(v, 3,1)$-BIBD is a STS (v).

A (v, k, λ)-BIBD consists of a v-set V of elements (called points) together with a collection \mathcal{B} of k-subsets (called blocks) of V such that each pair of points from V occurs in exactly λ blocks.

- $\mathrm{A}(v, 3,1)$-BIBD is a STS (v).
- $\mathrm{A}(v, 3,2)$ - BIBD is a TTS (v).

Example: TTS(7) (i.e. (7, 3, 2)-BIBD)

Definitions

A (v, k, λ)-BIBD consists of a v-set V of elements (called points) together with a collection \mathcal{B} of k-subsets (called blocks) of V such that each pair of points from V occurs in exactly λ blocks.

- $\mathrm{A}(v, 3,1)$-BIBD is a STS (v).
- $\mathrm{A}(v, 3,2)$ - BIBD is a TTS (v).

Example: TTS(7) (i.e. (7, 3, 2)-BIBD)
$V=\{1,2, \ldots, 7\}$

Definitions

A (v, k, λ)-BIBD consists of a v-set V of elements (called points) together with a collection \mathcal{B} of k-subsets (called blocks) of V such that each pair of points from V occurs in exactly λ blocks.

- $\mathrm{A}(v, 3,1)$-BIBD is a STS (v).
- $\mathrm{A}(v, 3,2)$ - BIBD is a TTS (v).

Example: TTS(7) (i.e. (7, 3, 2)-BIBD)
$V=\{1,2, \ldots, 7\}$

$$
\begin{array}{ll}
\{1,2,4\} & \{1,2,6\} \\
\{2,3,5\} & \{2,3,7\} \\
\{3,4,6\} & \{3,4,1\} \\
\{4,5,7\} & \{4,5,2\} \\
\{5,6,1\} & \{5,6,3\} \\
\{6,7,2\} & \{6,7,4\} \\
\{7,1,3\} & \{7,1,4\}
\end{array}
$$

Definitions

The block intersection graph (BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_{1}, B_{2} in \mathcal{D} are adjacent if $\left|B_{1} \cap B_{2}\right|>0$.

Definitions

The block intersection graph (BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_{1}, B_{2} in \mathcal{D} are adjacent if $\left|B_{1} \cap B_{2}\right|>0$.
Example: BIG of TTS(7)

Definitions

The i-block intersection graph (i-BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_{1}, B_{2} in \mathcal{D} are adjacent if $\left|B_{1} \cap B_{2}\right|=i$.

Definitions

The i-block intersection graph (i-BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_{1}, B_{2} in \mathcal{D} are adjacent if $\left|B_{1} \cap B_{2}\right|=i$.
Example: 2-BIG of TTS(7)

Background: BIGs and 1-BIGs

BIGs of (v, k, λ)-BIBDs:

Background: BIGs and 1-BIGs

BIGs of (v, k, λ)-BIBDs:

- Hamiltonian (Horák and Rosa, 1988)

Background: BIGs and 1-BIGs

BIGs of (v, k, λ)-BIBDs:

- Hamiltonian (Horák and Rosa, 1988)
- For $\lambda=1, k \geq 3$: edge pancyclic (Alspach and Hare, 1991)
- Pancyclic (Mamut, Pike and Raines, 2004)
- Cycle extendable (Abueida and Pike, 2013)

Background: BIGs and 1-BIGs

BIGs of (v, k, λ)-BIBDs:

- Hamiltonian (Horák and Rosa, 1988)
- For $\lambda=1, k \geq 3$: edge pancyclic (Alspach and Hare, 1991)
- Pancyclic (Mamut, Pike and Raines, 2004)
- Cycle extendable (Abueida and Pike, 2013)

Hamiltonian 1-BIGs

- ($v, k, 1$)-BIBD (Horák and Rosa, 1988)

BIGs of (v, k, λ)-BIBDs:

- Hamiltonian (Horák and Rosa, 1988)
- For $\lambda=1, k \geq 3$: edge pancyclic (Alspach and Hare, 1991)
- Pancyclic (Mamut, Pike and Raines, 2004)
- Cycle extendable (Abueida and Pike, 2013)

Hamiltonian 1-BIGs

- $(v, k, 1)$-BIBD (Horák and Rosa, 1988)
- ($v, 3, \lambda$)-BIBD with $v \geq 12$ (Horák, Pike and Raines, 1999)
- ($v, 4, \lambda$)-BIBD with $v \geq 136$ (Jesso, Pike and Shalaby, 2011)
- ($v, 5, \lambda$)-BIBD with $v \geq 305$ (Jesso, 2011)

Hamilton cycle in 1-BIG of a STS is a minimal change ordering of the blocks.

Hamilton cycle in 2-BIG of a TTS is a minimal change ordering of the blocks.

Background

Hamilton cycle in 2-BIG of a TTS is a minimal change ordering of the blocks.
Example: 2-BIG of TTS(7)

Background: 2-BIGs

Some results for 2-BIGs of TTS(v).

- $v \geq 4$ such that $v \equiv 0,1 \bmod 3$ and $v \neq 6$, there exists a TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens; Erzurumluoğlu and Pike)

Background: 2-BIGs

Some results for 2-BIGs of TTS(v).

- $v \geq 4$ such that $v \equiv 0,1 \bmod 3$ and $v \neq 6$, there exists a TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens; Erzurumluoğlu and Pike)
- $v=6$ or $v>12$ and $v \equiv 0,1 \bmod 3$, there exists a TTS (v) whose 2-BIG is non-Hamiltonian. (Erzurumluoğlu and Pike)

Some results for 2-BIGs of TTS (v).

- $v \geq 4$ such that $v \equiv 0,1 \bmod 3$ and $v \neq 6$, there exists a TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens; Erzurumluoğlu and Pike)
- $v=6$ or $v>12$ and $v \equiv 0,1 \bmod 3$, there exists a TTS (v) whose 2-BIG is non-Hamiltonian. (Erzurumluoğlu and Pike)

Can we find sufficient conditions for Hamiltonian 2-BIG of TTS?

Background: 2-BIGs of TTS

Background: 2-BIGs of TTS

- cubic

Background: 2-BIGs of TTS

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)

Background: 2-BIGs of TTS

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)

Background: 2-BIGs of TTS

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)

Background: 2-BIGs of TTS

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)

Background: 2-BIGs of TTS(7)

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)
- bipartite

Background: 2-BIGs

Lemma

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Background: 2-BIGs

Lemma

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Proof.

$$
\{x, y, z\} O
$$

Background: 2-BIGs

Lemma

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Proof.

Lemma

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Proof.

Background: 2-BIGs

2-BIG of TTS: 3-connected cubic graph.

Background: 2-BIGs

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
- disproved by Tutte (1946).

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
- disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
- disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.
- Disproved by Horton (1970s).

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
- disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.
- Disproved by Horton (1970s).
- Barnette (1969): every bipartite planar 3-connected cubic graph is Hamiltonian.

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
- disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.
- Disproved by Horton (1970s).
- Barnette (1969): every bipartite planar 3-connected cubic graph is Hamiltonian.
- Still open.

Some observations:

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.

Some observations:

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.
- For $v \leq 13$: bipartite and connected \Longrightarrow Hamiltonian 2-BIG.

Some observations:

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.
- For $v \leq 13$: bipartite and connected \Longrightarrow Hamiltonian 2-BIG.
- Constructions for non-Hamiltonian 2-BIG \Longrightarrow not bipartite.

Some observations:

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.
- For $v \leq 13$: bipartite and connected \Longrightarrow Hamiltonian 2-BIG.
- Constructions for non-Hamiltonian 2-BIG \Longrightarrow not bipartite.

But...

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

Proof.

- Construct a TTS(331).

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

Proof.

- Construct a TTS(331).
- Embed TTS(u) in TTS (v) where $v>2 u$.

Main result: tts(331)

MAin ReSult: $\operatorname{TTS}(331)$

In any HC , these edges are both present or both absent

Main Result: TTS(331)

In any HC, these edges are both present or both absent

In any HC, these edges are both present or both absent

Main Result: tts(331)

In any HC, these edges are both present or both absent

Main result: tts(331)

Main result: tts(331)

Main result: tTS(331)

Configuration \mathbb{T}

Main result: tTS(331)

Configuration \mathbb{T}

Main Result: TTS(331)

Main Result: TTS(331)

Main result: tTS(331)

Main result: tTS(331)

Configuration \mathbb{P}

Main result: tts(331)

Configuration $\mathbb{P} \asymp \mathbb{P}$

Main result: tTS(331)

Configuration \mathbb{X}

Main Result: tTS(331)

Configuration \mathbb{X}

Main Result: tTS(331)

Configuration \mathbb{X}

Main Result: tTS(331)

Configuration $\mathbb{X} \asymp \mathbb{P}$

Main result: tTS(331)

Configuration $\mathbb{F}:(\mathbb{X} \asymp \mathbb{P}) \asymp(\mathbb{P} \asymp \mathbb{P})$

Main Result: TTS(331)

Configuration $\mathbb{F}:(\mathbb{X} \asymp \mathbb{P}) \asymp(\mathbb{P} \asymp \mathbb{P})$

Main Result: tTS(331)

Configuration $\mathbb{F}:(\mathbb{X} \asymp \mathbb{P}) \asymp(\mathbb{P} \asymp \mathbb{P})$

Main Result: tTS(331)

Configuration $\mathbb{F}:(\mathbb{X} \asymp \mathbb{P}) \asymp(\mathbb{P} \asymp \mathbb{P})$

Configuration \mathbb{F} forbids Hamilton cycles

Main Result: TTS(331)

Configuration $\mathbb{F}:(\mathbb{X} \asymp \mathbb{P}) \asymp(\mathbb{P} \asymp \mathbb{P})$

Configuration \mathbb{F} forbids Hamilton cycles
Labelled by partial TTS(55)

Main Result: TTS(331)

Theorem (Lindner (1980))

Let $\left(U, P_{1}\right)$ and $\left(U, P_{2}\right)$ be partial STS(u). Then for every admissible $v \geq 6 u+1$, there exists a pair of $\operatorname{STS}(v)\left(V, S_{1}\right)$ and $\left(V, S_{2}\right)$ such that $\left(U, P_{1}\right)$ is embedded in $\left(V, S_{1}\right),\left(U, P_{2}\right)$ is embedded in $\left(V, S_{2}\right)$ and $P_{1} \cap P_{2}=S_{1} \cap S_{2}$.

Main Result: TTS(331)

Theorem (Lindner (1980))

Let $\left(U, P_{1}\right)$ and $\left(U, P_{2}\right)$ be partial STS(u). Then for every admissible $v \geq 6 u+1$, there exists a pair of $\operatorname{STS}(v)\left(V, S_{1}\right)$ and $\left(V, S_{2}\right)$ such that $\left(U, P_{1}\right)$ is embedded in $\left(V, S_{1}\right),\left(U, P_{2}\right)$ is embedded in $\left(V, S_{2}\right)$ and $P_{1} \cap P_{2}=S_{1} \cap S_{2}$.

Configuration \mathbb{F} : partial TTS(55).

Main Result: TTS(331)

Theorem (Lindner (1980))

Let $\left(U, P_{1}\right)$ and $\left(U, P_{2}\right)$ be partial STS(u). Then for every admissible $v \geq 6 u+1$, there exists a pair of $\operatorname{STS}(v)\left(V, S_{1}\right)$ and $\left(V, S_{2}\right)$ such that $\left(U, P_{1}\right)$ is embedded in $\left(V, S_{1}\right),\left(U, P_{2}\right)$ is embedded in $\left(V, S_{2}\right)$ and $P_{1} \cap P_{2}=S_{1} \cap S_{2}$.

Configuration \mathbb{F} : partial TTS(55).

Embed \mathbb{F} in TTS(331).

Theorem (RC, Pike (2018+))

Suppose u and v are admissible integers such that $v>2 u$. If there exists a TTS(u) whose 2-BIG is bipartite connected and non-Hamiltonian, then there exists a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian.

Theorem (RC, Pike (2018+))

Suppose u and v are admissible integers such that $v>2 u$. If there exists a TTS(u) whose 2-BIG is bipartite connected and non-Hamiltonian, then there exists a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian.

- partial STS(v) from difference triples
- 1-factorisations of circulant graphs
- Stern and Lenz (1980)

Open problems

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

Open problems

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

- What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?

Open problems

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

- What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
- $13<v<331$

Open problems

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

- What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
- $13<v<331$
- What is the smallest integer N such that for all admissible $v>N$ there exists a TTS (v) with a connected bipartite non-Hamiltonian 2-BIG?

Open problems

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \geqslant N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13<N \leqslant 663$.

- What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
- $13<v<331$
- What is the smallest integer N such that for all admissible $v>N$ there exists a TTS (v) with a connected bipartite non-Hamiltonian 2-BIG?
- For $v>12$, find sufficient conditions for a TTS (v) to have a Hamiltonian 2-BIG.

