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DEFINITIONS

A (v, k,\)-BIBD consists of a v-set V of elements (called points)
together with a collection B of k-subsets (called blocks) of V such
that each pair of points from V occurs in exactly A blocks.

e A(v,3,1)-BIBD is a STS(v).
e A(v,3,2)-BIBD isa TTS(v).

Example: TTS(7) (i.e. (7,3,2)-BIBD)
V={12..7}

{1,2,4} {1,2,6}
{2,3,5} {2,3,7}
{3,4,6} {3,4,1}
{4,5,7} {4,5,2}
{5,6,1} {5,6,3}
{6,7,2} {6,7,4}
{7,1,3} {7,1,4}
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The i-block intersection graph (i-BIG) of a design D is the graph
whose vertices are the blocks of D and two blocks Bj, By in D are
adjacent if |[B1 N By| = i.

Example: 2-BIG of TTS(7)

346 356

124 015
126 013
026 023
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BACKGROUND: BIGS AND 1-BIGS

BIGs of (v, k, \)-BIBDs:

e Hamiltonian (Hordk and Rosa, 1988)
e For A =1, k > 3: edge pancyclic (Alspach and Hare, 1991)
e Pancyclic (Mamut, Pike and Raines, 2004)
e Cycle extendable (Abueida and Pike, 2013)
Hamiltonian 1-BlIGs
v, k,1)-BIBD (Hordk and Rosa, 1988)
v,3,\)-BIBD with v > 12 (Horék, Pike and Raines, 1999)
v,4,\)-BIBD with v > 136 (Jesso, Pike and Shalaby, 2011)
v,5,A)-BIBD with v > 305 (Jesso, 2011)
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the blocks.



Hamilton cycle in 2-BIG of a TTS is a minimal change ordering of
the blocks.



BACKGROUND

Hamilton cycle in 2-BIG of a TTS is a minimal change ordering of
the blocks.
Example: 2-BIG of TTS(7)

346 356

124 015
126 013
026 023

045 245



BACKGROUND: 2-BIGS

Some results for 2-BlGs of TTS(v).

e v >4 suchthat v=0,1 mod 3 and v # 6, there exists a
TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens;
Erzurumluoglu and Pike)



BACKGROUND: 2-BIGS

Some results for 2-BlGs of TTS(v).

e v >4 suchthat v=0,1 mod 3 and v # 6, there exists a
TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens;
Erzurumluoglu and Pike)

ev==06orv>12and v=0,1 mod 3, there exists a TTS(v)
whose 2-BIG is non-Hamiltonian. (Erzurumluoglu and Pike)



BACKGROUND: 2-BIGS

Some results for 2-BlGs of TTS(v).

e v >4 suchthat v=0,1 mod 3 and v # 6, there exists a
TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens;
Erzurumluoglu and Pike)

ev==06orv>12and v=0,1 mod 3, there exists a TTS(v)
whose 2-BIG is non-Hamiltonian. (Erzurumluoglu and Pike)

Can we find sufficient conditions for Hamiltonian 2-BIG of TTS?
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BACKGROUND: 2-BIGs orF TTS(7)

026 046

235 015

245 013

124

134

156 356

cubic

3-connected (M. Colbourn and Johnstone, 1984)
cycle double cover (2-BIG labelling)
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BACKGROUND: 2-BIGS

LEMMA

The 2-BIG of (partial) TTS is bipartite if and only if it can be
partitioned into two (partial) STS.

Proof.
{x,0,¢}
{a, 9,1}
{x,y,2}
{x,y,a}
{x,,d} {x,z,8}

{y,a,¢} {y,z,7}
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BACKGROUND: 2-BIGS

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

e Tait (1884): every planar 3-connected cubic graph is
Hamiltonian.

e disproved by Tutte (1946).

e Tutte (1971): every bipartite 3-connected cubic graph is
Hamiltonian.

e Disproved by Horton (1970s).
e Barnette (1969): every bipartite planar 3-connected cubic
graph is Hamiltonian.
e Still open.
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PRELIMINARY RESULTS

Some observations:

e Counter-examples to Tutte's conjecture are not 2-BlGs of
TTS.

e For v < 13: bipartite and connected = Hamiltonian 2-BIG.

e Constructions for non-Hamiltonian 2-BIG = not bipartite.

But...
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THEOREM (RC, PIKE (2018+))

There exists an integer N such that for all admissible v > N, there
is a TTS(v) whose 2-BIG is bipartite connected and
non-Hamiltonian. Furthermore, 13 < N < 663.

Proof.

e Construct a TTS(331).
e Embed TTS(v) in TTS(v) where v > 2u.
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Configuration F forbids Hamilton cycles
Labelled by partial TTS(55)
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THEOREM (LINDNER (1980))

Let (U, P1) and (U, Py) be partial STS(u). Then for every
admissible v > 6u + 1, there exists a pair of STS(v) (V,S1) and
(V, S2) such that (U, P1) is embedded in (V, 51), (U, P2) is
embedded in (V,Sz) and P1 N Py = 51N Ss.

Configuration [F: partial TTS(55).

Embed F in TTS(331).
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MAIN RESULT: EMBEDDING TTS

THEOREM (RC, PIKE (2018+4))

Suppose u and v are admissible integers such that v > 2u. If there
exists a TTS(u) whose 2-BIG is bipartite connected and
non-Hamiltonian, then there exists a TTS(v) whose 2-BIG is
bipartite connected and non-Hamiltonian.

e partial STS(v) from difference triples
e 1-factorisations of circulant graphs
e Stern and Lenz (1980)
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OPEN PROBLEMS

THEOREM (RC, PIKE (2018+4))

There exists an integer N such that for all admissible v > N, there
is a TTS(v) whose 2-BIG is bipartite connected and
non-Hamiltonian. Furthermore, 13 < N < 663.

e What is the smallest admissible v such that there exists a
TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
e 13 < v <331

e What is the smallest integer N such that for all admissible
v > N there exists a TTS(v) with a connected bipartite
non-Hamiltonian 2-BIG?

e For v > 12, find sufficient conditions for a TTS(v) to have a
Hamiltonian 2-BIG.



