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Definitions

A (v , k, λ)-BIBD consists of a v -set V of elements (called points)
together with a collection B of k-subsets (called blocks) of V such
that each pair of points from V occurs in exactly λ blocks.

• A (v , 3, 1)-BIBD is a STS(v).

• A (v , 3, 2)-BIBD is a TTS(v).

Example: TTS(7) (i.e. (7, 3, 2)-BIBD)
V = {1, 2, . . . , 7}

{1, 2, 4} {1, 2, 6}
{2, 3, 5} {2, 3, 7}
{3, 4, 6} {3, 4, 1}
{4, 5, 7} {4, 5, 2}
{5, 6, 1} {5, 6, 3}
{6, 7, 2} {6, 7, 4}
{7, 1, 3} {7, 1, 4}
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The block intersection graph (BIG) of a design D is the graph
whose vertices are the blocks of D and two blocks B1, B2 in D are
adjacent if |B1 ∩ B2| > 0.
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Definitions

The i-block intersection graph (i-BIG) of a design D is the graph
whose vertices are the blocks of D and two blocks B1, B2 in D are
adjacent if |B1 ∩ B2| = i .
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Background: BIGs and 1-BIGs

BIGs of (v , k, λ)-BIBDs:

• Hamiltonian (Horák and Rosa, 1988)

• For λ = 1, k ≥ 3: edge pancyclic (Alspach and Hare, 1991)

• Pancyclic (Mamut, Pike and Raines, 2004)

• Cycle extendable (Abueida and Pike, 2013)

Hamiltonian 1-BIGs

• (v , k, 1)-BIBD (Horák and Rosa, 1988)

• (v , 3, λ)-BIBD with v ≥ 12 (Horák, Pike and Raines, 1999)

• (v , 4, λ)-BIBD with v ≥ 136 (Jesso, Pike and Shalaby, 2011)

• (v , 5, λ)-BIBD with v ≥ 305 (Jesso, 2011)
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Hamilton cycle in 1-BIG of a STS is a minimal change ordering of
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Background: 2-BIGs

Some results for 2-BIGs of TTS(v).

• v ≥ 4 such that v ≡ 0, 1 mod 3 and v ̸= 6, there exists a
TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens;
Erzurumluoğlu and Pike)

• v = 6 or v > 12 and v ≡ 0, 1 mod 3, there exists a TTS(v)
whose 2-BIG is non-Hamiltonian. (Erzurumluoğlu and Pike)

Can we find sufficient conditions for Hamiltonian 2-BIG of TTS?
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• 3-connected (M. Colbourn and Johnstone, 1984)

• cycle double cover (2-BIG labelling)
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Background: 2-BIGs of TTS(7)

013

015

045

046026

023

235

245

124

126

156 356

346

134

• cubic
• 3-connected (M. Colbourn and Johnstone, 1984)
• cycle double cover (2-BIG labelling)
• bipartite



Background: 2-BIGs

Lemma

The 2-BIG of (partial) TTS is bipartite if and only if it can be
partitioned into two (partial) STS.

Proof.

{x , y , z}

{x , y , α}

{x , z, β}

{y , z, γ}

{x , α, δ}

{y , α, ϵ}

{x , δ, ζ}

{α, δ, η}
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Background: 2-BIGs

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

• Tait (1884): every planar 3-connected cubic graph is
Hamiltonian.

• disproved by Tutte (1946).

• Tutte (1971): every bipartite 3-connected cubic graph is
Hamiltonian.

• Disproved by Horton (1970s).

• Barnette (1969): every bipartite planar 3-connected cubic
graph is Hamiltonian.

• Still open.
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Preliminary results

Some observations:

• Counter-examples to Tutte’s conjecture are not 2-BIGs of
TTS.

• For v ≤ 13: bipartite and connected =⇒ Hamiltonian 2-BIG.

• Constructions for non-Hamiltonian 2-BIG =⇒ not bipartite.

But...
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Main result

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible v ⩾ N, there
is a TTS(v) whose 2-BIG is bipartite connected and
non-Hamiltonian. Furthermore, 13 < N ⩽ 663.

Proof.

• Construct a TTS(331).

• Embed TTS(u) in TTS(v) where v > 2u.
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Configuration F forbids Hamilton cycles
Labelled by partial TTS(55)



Main result: tts(331)

Configuration F: (X ≍ P) ≍ (P ≍ P)

X ≍ P P ≍ P

†

†

†

†

† in no HC

Configuration F forbids Hamilton cycles
Labelled by partial TTS(55)



Main result: tts(331)

Configuration F: (X ≍ P) ≍ (P ≍ P)

X ≍ P P ≍ P

†

†

†

†

† in no HC

Configuration F forbids Hamilton cycles
Labelled by partial TTS(55)



Main result: tts(331)

Configuration F: (X ≍ P) ≍ (P ≍ P)

X ≍ P P ≍ P

†

†

†

†

† in no HC

Configuration F forbids Hamilton cycles

Labelled by partial TTS(55)



Main result: tts(331)

Configuration F: (X ≍ P) ≍ (P ≍ P)

X ≍ P P ≍ P

†

†

†

†

† in no HC

Configuration F forbids Hamilton cycles
Labelled by partial TTS(55)



Main result: tts(331)

Theorem (Lindner (1980))

Let (U,P1) and (U,P2) be partial STS(u). Then for every
admissible v ≥ 6u + 1, there exists a pair of STS(v) (V , S1) and
(V , S2) such that (U,P1) is embedded in (V , S1), (U,P2) is
embedded in (V , S2) and P1 ∩ P2 = S1 ∩ S2.

Configuration F: partial TTS(55).

Embed F in TTS(331).
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Main result: embedding tts

Theorem (RC, Pike (2018+))

Suppose u and v are admissible integers such that v > 2u. If there
exists a TTS(u) whose 2-BIG is bipartite connected and
non-Hamiltonian, then there exists a TTS(v) whose 2-BIG is
bipartite connected and non-Hamiltonian.

• partial STS(v) from difference triples

• 1-factorisations of circulant graphs

• Stern and Lenz (1980)
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Open problems

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible v ⩾ N, there
is a TTS(v) whose 2-BIG is bipartite connected and
non-Hamiltonian. Furthermore, 13 < N ⩽ 663.

• What is the smallest admissible v such that there exists a
TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?

• 13 < v < 331

• What is the smallest integer N such that for all admissible
v > N there exists a TTS(v) with a connected bipartite
non-Hamiltonian 2-BIG?

• For v > 12, find sufficient conditions for a TTS(v) to have a
Hamiltonian 2-BIG.
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