TWOFOLD TRIPLE SYSTEMS THAT DISPROVE TUTTE'S CONJECTURE:

BIPARTITE NON-HAMILTONIAN 2-BLOCK INTERSECTION GRAPHS

Rosalind Cameron and David Pike

Memorial University of Newfoundland

Koper, 2018

A (v, k, λ) -BIBD consists of a *v*-set *V* of elements (called points) together with a collection \mathcal{B} of *k*-subsets (called blocks) of *V* such that each pair of points from *V* occurs in exactly λ blocks.

A (v, k, λ) -BIBD consists of a *v*-set *V* of elements (called points) together with a collection \mathcal{B} of *k*-subsets (called blocks) of *V* such that each pair of points from *V* occurs in exactly λ blocks.

• A (v, 3, 1)-BIBD is a STS(v).

A (v, k, λ) -BIBD consists of a *v*-set *V* of elements (called points) together with a collection \mathcal{B} of *k*-subsets (called blocks) of *V* such that each pair of points from *V* occurs in exactly λ blocks.

- A (v, 3, 1)-BIBD is a STS(v).
- A (v, 3, 2)-BIBD is a TTS(v).

Example: TTS(7) (i.e. (7,3,2)-BIBD)

A (v, k, λ) -BIBD consists of a *v*-set *V* of elements (called points) together with a collection \mathcal{B} of *k*-subsets (called blocks) of *V* such that each pair of points from *V* occurs in exactly λ blocks.

- A (v, 3, 1)-BIBD is a STS(v).
- A (v, 3, 2)-BIBD is a TTS(v).

Example: TTS(7) (i.e. (7, 3, 2)-BIBD) $V = \{1, 2, ..., 7\}$

A (v, k, λ) -BIBD consists of a *v*-set *V* of elements (called points) together with a collection \mathcal{B} of *k*-subsets (called blocks) of *V* such that each pair of points from *V* occurs in exactly λ blocks.

- A (v, 3, 1)-BIBD is a STS(v).
- A (v, 3, 2)-BIBD is a TTS(v).

Example: TTS(7) (i.e. (7, 3, 2)-BIBD) $V = \{1, 2, ..., 7\}$

The block intersection graph (BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_1 , B_2 in \mathcal{D} are adjacent if $|B_1 \cap B_2| > 0$.

The block intersection graph (BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_1 , B_2 in \mathcal{D} are adjacent if $|B_1 \cap B_2| > 0$. Example: BIG of TTS(7)

The *i*-block intersection graph (*i*-BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_1 , B_2 in \mathcal{D} are adjacent if $|B_1 \cap B_2| = i$.

The *i*-block intersection graph (*i*-BIG) of a design \mathcal{D} is the graph whose vertices are the blocks of \mathcal{D} and two blocks B_1 , B_2 in \mathcal{D} are adjacent if $|B_1 \cap B_2| = i$. Example: 2-BIG of TTS(7)

BACKGROUND: BIGS AND 1-BIGS

BIGs of (v, k, λ) -BIBDs:

BACKGROUND: BIGS AND 1-BIGS

BIGs of (v, k, λ) -BIBDs:

• Hamiltonian (Horák and Rosa, 1988)

BIGs of (v, k, λ) -BIBDs:

- Hamiltonian (Horák and Rosa, 1988)
- For $\lambda = 1$, $k \ge 3$: edge pancyclic (Alspach and Hare, 1991)
- Pancyclic (Mamut, Pike and Raines, 2004)
- Cycle extendable (Abueida and Pike, 2013)

BIGs of (v, k, λ) -BIBDs:

- Hamiltonian (Horák and Rosa, 1988)
- For $\lambda = 1$, $k \ge 3$: edge pancyclic (Alspach and Hare, 1991)
- Pancyclic (Mamut, Pike and Raines, 2004)
- Cycle extendable (Abueida and Pike, 2013)

Hamiltonian 1-BIGs

• (v, k, 1)-BIBD (Horák and Rosa, 1988)

BIGs of (v, k, λ) -BIBDs:

- Hamiltonian (Horák and Rosa, 1988)
- For $\lambda = 1$, $k \ge 3$: edge pancyclic (Alspach and Hare, 1991)
- Pancyclic (Mamut, Pike and Raines, 2004)
- Cycle extendable (Abueida and Pike, 2013)

Hamiltonian 1-BIGs

- (v, k, 1)-BIBD (Horák and Rosa, 1988)
- $(v, 3, \lambda)$ -BIBD with $v \ge 12$ (Horák, Pike and Raines, 1999)
- (v, 4, λ)-BIBD with v \geq 136 (Jesso, Pike and Shalaby, 2011)
- $(v, 5, \lambda)$ -BIBD with $v \ge 305$ (Jesso, 2011)

Hamilton cycle in 1-BIG of a STS is a minimal change ordering of the blocks.

Hamilton cycle in 2-BIG of a TTS is a minimal change ordering of the blocks.

BACKGROUND

Hamilton cycle in 2-BIG of a TTS is a minimal change ordering of the blocks.

Example: 2-BIG of TTS(7)

Some results for 2-BIGs of TTS(v).

• $v \ge 4$ such that $v \equiv 0, 1 \mod 3$ and $v \ne 6$, there exists a TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens; Erzurumluoğlu and Pike)

Some results for 2-BIGs of TTS(v).

- $v \ge 4$ such that $v \equiv 0, 1 \mod 3$ and $v \ne 6$, there exists a TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens; Erzurumluoğlu and Pike)
- v = 6 or v > 12 and $v \equiv 0, 1 \mod 3$, there exists a TTS(v) whose 2-BIG is non-Hamiltonian. (Erzurumluoğlu and Pike)

Some results for 2-BIGs of TTS(v).

- $v \ge 4$ such that $v \equiv 0, 1 \mod 3$ and $v \ne 6$, there exists a TTS(v) whose 2-BIG is Hamiltonian. (Dewar and Stevens; Erzurumluoğlu and Pike)
- v = 6 or v > 12 and $v \equiv 0, 1 \mod 3$, there exists a TTS(v) whose 2-BIG is non-Hamiltonian. (Erzurumluoğlu and Pike)

Can we find sufficient conditions for Hamiltonian 2-BIG of TTS?

• cubic

• cubic

• 3-connected (M. Colbourn and Johnstone, 1984)

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)

- cubic
- 3-connected (M. Colbourn and Johnstone, 1984)
- cycle double cover (2-BIG labelling)
- bipartite

LEMMA

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Lemma

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Proof.

 $\{x,y,z\}\bigcirc$

LEMMA

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Proof.

LEMMA

The 2-BIG of (partial) TTS is bipartite if and only if it can be partitioned into two (partial) STS.

Proof.

2-BIG of TTS: 3-connected cubic graph.

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

• Tait (1884): every planar 3-connected cubic graph is Hamiltonian.

2-BIG of TTS: 3-connected cubic graph.

Conjectures:

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
 - disproved by Tutte (1946).

BACKGROUND: 2-BIGS

2-BIG of TTS: 3-connected cubic graph.

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
 - disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.

BACKGROUND: 2-BIGS

2-BIG of TTS: 3-connected cubic graph.

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
 - disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.
 - Disproved by Horton (1970s).

2-BIG of TTS: 3-connected cubic graph.

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
 - disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.
 - Disproved by Horton (1970s).
- Barnette (1969): every bipartite planar 3-connected cubic graph is Hamiltonian.

2-BIG of TTS: 3-connected cubic graph.

- Tait (1884): every planar 3-connected cubic graph is Hamiltonian.
 - disproved by Tutte (1946).
- Tutte (1971): every bipartite 3-connected cubic graph is Hamiltonian.
 - Disproved by Horton (1970s).
- Barnette (1969): every bipartite planar 3-connected cubic graph is Hamiltonian.
 - Still open.

• Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.
- For $v \leq 13$: bipartite and connected \implies Hamiltonian 2-BIG.

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.
- For $v \leq 13$: bipartite and connected \implies Hamiltonian 2-BIG.
- Constructions for non-Hamiltonian 2-BIG \implies not bipartite.

- Counter-examples to Tutte's conjecture are not 2-BIGs of TTS.
- For $v \leq 13$: bipartite and connected \implies Hamiltonian 2-BIG.
- Constructions for non-Hamiltonian 2-BIG \implies not bipartite.

But...

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

Proof.

• Construct a TTS(331).

Theorem (RC, Pike (2018+))

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

Proof.

- Construct a TTS(331).
- Embed TTS(u) in TTS(v) where v > 2u.

$\mathsf{Configuration}\ \mathbb{T}$

Configuration ${\mathbb T}$

 $\mathsf{Configuration}\ \mathbb{P}$

 $\mathsf{Configuration}\ \mathbb{X}$

 $\mathsf{Configuration}\ \mathbb{X}$

 $\mathsf{Configuration}\ \mathbb{X}$

MAIN RESULT: TTS(331)

MAIN RESULT: TTS(331)

Configuration ${\ensuremath{\mathbb F}}$ forbids Hamilton cycles

MAIN RESULT: TTS(331)

Configuration \mathbb{F} forbids Hamilton cycles Labelled by partial TTS(55)

Theorem (Lindner (1980))

Let (U, P_1) and (U, P_2) be partial STS(u). Then for every admissible $v \ge 6u + 1$, there exists a pair of STS(v) (V, S_1) and (V, S_2) such that (U, P_1) is embedded in (V, S_1) , (U, P_2) is embedded in (V, S_2) and $P_1 \cap P_2 = S_1 \cap S_2$.

Theorem (Lindner (1980))

Let (U, P_1) and (U, P_2) be partial STS(u). Then for every admissible $v \ge 6u + 1$, there exists a pair of STS(v) (V, S_1) and (V, S_2) such that (U, P_1) is embedded in (V, S_1) , (U, P_2) is embedded in (V, S_2) and $P_1 \cap P_2 = S_1 \cap S_2$.

Configuration \mathbb{F} : partial TTS(55).

Theorem (Lindner (1980))

Let (U, P_1) and (U, P_2) be partial STS(u). Then for every admissible $v \ge 6u + 1$, there exists a pair of STS(v) (V, S_1) and (V, S_2) such that (U, P_1) is embedded in (V, S_1) , (U, P_2) is embedded in (V, S_2) and $P_1 \cap P_2 = S_1 \cap S_2$.

Configuration \mathbb{F} : partial TTS(55).

Embed \mathbb{F} in TTS(331).

Suppose u and v are admissible integers such that v > 2u. If there exists a TTS(u) whose 2-BIG is bipartite connected and non-Hamiltonian, then there exists a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian.

Suppose u and v are admissible integers such that v > 2u. If there exists a TTS(u) whose 2-BIG is bipartite connected and non-Hamiltonian, then there exists a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian.

- partial STS(v) from difference triples
- 1-factorisations of circulant graphs
- Stern and Lenz (1980)

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

 What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

- What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
 - 13 < v < 331

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

- What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
 13 < v < 331
- What is the smallest integer N such that for all admissible v > N there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?

There exists an integer N such that for all admissible $v \ge N$, there is a TTS(v) whose 2-BIG is bipartite connected and non-Hamiltonian. Furthermore, $13 < N \le 663$.

 What is the smallest admissible v such that there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?

• 13 < v < 331

- What is the smallest integer N such that for all admissible v > N there exists a TTS(v) with a connected bipartite non-Hamiltonian 2-BIG?
- For v > 12, find sufficient conditions for a TTS(v) to have a Hamiltonian 2-BIG.