Symmetry properties of generalized graph truncations

Primož Šparl

University of Ljubljana and University of Primorska, Slovenia

Graphs, groups and more

Koper, Slovenia June 1, 2018

Joint work with Eduard Eiben and Robert Jajcay

イロト イポト イヨト イヨト

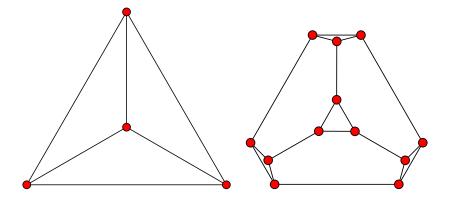
A well-known example

Primož Šparl Symmetry properties of generalized graph truncations

・ロト ・回ト ・ヨト ・ヨト

æ

A well-known example



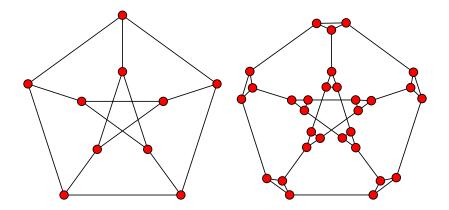
Primož Šparl Symmetry properties of generalized graph truncations

< 🗇

→ E > < E >

æ

Another well-known example



Primož Šparl Symmetry properties of generalized graph truncations

→ E → < E →</p>

э

How to generalize the concept of truncations?

- Very natural for maps (graphs embedded on a surface). Here vertices are replaced by cycles.
- Also very natural to replace vertices by complete graphs. Investigated by Alspach and Dobson (2015).

イロト イ押ト イヨト イヨト

How to generalize the concept of truncations?

- Very natural for maps (graphs embedded on a surface).
 Here vertices are replaced by cycles.
- Also very natural to replace vertices by complete graphs. Investigated by Alspach and Dobson (2015).
- Sachs (1963): replace vertices by cycles.
- Exoo, Jajcay (2012): replace vertices by graphs of the correct order.
- One needs to prescribe (for each vertex) hot to do this.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Γ a finite *k*-regular graph.
- Υ a graph of order *k* with $V(\Upsilon) = \{v_1, v_2, \dots, v_k\}$.

ヘロン 人間 とくほ とくほ とう

3

- Γ a finite *k*-regular graph.
- Υ a graph of order *k* with $V(\Upsilon) = \{v_1, v_2, \dots, v_k\}$.
- $\rho: D(\Gamma) \rightarrow \{1, 2, \dots, k\}$ a vertex-neighborhood labeling:
 - for each u ∈ V(Γ) the restriction of ρ to {(u, w): w ∈ Γ(u)} is a bijection. (D(Γ) is the set of darts (or arcs) of Γ.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Γ a finite *k*-regular graph.
- Υ a graph of order *k* with $V(\Upsilon) = \{v_1, v_2, \dots, v_k\}$.
- $\rho: D(\Gamma) \rightarrow \{1, 2, \dots, k\}$ a vertex-neighborhood labeling:
 - for each u ∈ V(Γ) the restriction of ρ to {(u, w): w ∈ Γ(u)} is a bijection. (D(Γ) is the set of darts (or arcs) of Γ.)
- The generalized graph truncation $T(\Gamma, \rho; \Upsilon)$ has:
 - vertex-set $\{(u, v_i) : u \in V(\Gamma), 1 \le i \le k\};$
 - edge-set is a union of two sets:

 $\begin{array}{l} \{(u,v_i)(u,v_j)\colon u\in V(\Gamma), v_iv_j\in E(\Upsilon)\} \text{ (red edges)} \\ \{(u,v_{\rho(u,w)})(w,v_{\rho(w,u)})\colon uw\in E(\Gamma)\} \text{ (blue edges).} \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- In each of them $\Gamma = K_5$ with $V(\Gamma) = \{a, b, c, d, e\}$.
- In each of them $\Upsilon = C_4$ with $V(\Upsilon) = \{1, 2, 3, 4\}$ and $1 \sim 2, 4$.

- In each of them $\Gamma = K_5$ with $V(\Gamma) = \{a, b, c, d, e\}$.
- In each of them $\Upsilon = C_4$ with $V(\Upsilon) = \{1, 2, 3, 4\}$ and $1 \sim 2, 4$.
- We take two different vertex-neighborhood labellings.
- Simplify notation: for instance (d, 3) is denoted by d_3 .

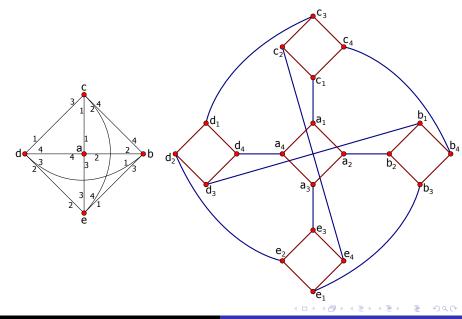
ヘロン 人間 とくほ とくほ とう

э.

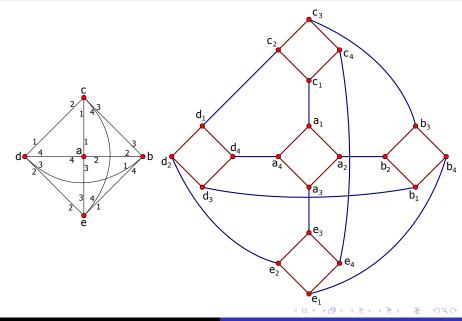
- In each of them $\Gamma = K_5$ with $V(\Gamma) = \{a, b, c, d, e\}$.
- In each of them $\Upsilon = C_4$ with $V(\Upsilon) = \{1, 2, 3, 4\}$ and $1 \sim 2, 4$.
- We take two different vertex-neighborhood labellings.
- Simplify notation: for instance (d, 3) is denoted by d_3 .
- Are the two obtained graphs different?

イロト イ押ト イヨト イヨトー

The first example



The second example



Primož Šparl Symmetry properties of generalized graph truncations

- Each vertex is incident to exactly one blue edge.
- No two blue edges are incident.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Each vertex is incident to exactly one blue edge.
- No two blue edges are incident.
- *T*(Γ, ρ; Υ) is regular if and only if Υ is regular. In this case the valence of *T*(Γ, ρ; Υ) is one more than the valence of Υ.

・聞き ・ヨキ ・ヨト

- Each vertex is incident to exactly one blue edge.
- No two blue edges are incident.
- *T*(Γ, ρ; Υ) is regular if and only if Υ is regular. In this case the valence of *T*(Γ, ρ; Υ) is one more than the valence of Υ.

Lemma (Exoo, Jajcay, 2012)

Let Γ be a *k*-regular graph and Υ a graph of order *k* and girth *g*. Then for any vertex-neighborhood labeling $\rho: D(\Gamma) \rightarrow \{1, 2, ..., k\}$ of Γ the shortest cycle of $T(\Gamma, \rho; \Upsilon)$ containing a blue edge is of length at least 2*g*.

ヘロン 人間 とくほ とくほ とう

Symmetries of the truncation

- Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$.
- Let P_Γ = {{(u, v_i): i ∈ {1, 2, ..., k}}: u ∈ V(Γ)} be the natural partition of V(Γ̃).

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

Symmetries of the truncation

• Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$.

Let P_Γ = {{(u, v_i): i ∈ {1, 2, ..., k}}: u ∈ V(Γ)} be the natural partition of V(Γ̃).

Proposition (Eiben, Jajcay, Š)

Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$ be a generalized truncation and let $\tilde{G} \leq \operatorname{Aut}(\tilde{\Gamma})$ be any subgroup leaving \mathcal{P}_{Γ} invariant. Then \tilde{G} induces a natural faithful action on Γ and is thus isomorphic to a subgroup of $\operatorname{Aut}(\Gamma)$.

• Let
$$\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$$
.

Primož Šparl Symmetry properties of generalized graph truncations

(< ∃) < ∃)</p>

- Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$.
- If $\tilde{g} \in \operatorname{Aut}(\tilde{\Gamma})$ leaves \mathcal{P}_{Γ} invariant, it induces a $g \in \operatorname{Aut}(\Gamma)$.
 - \tilde{g} projects to Aut(Γ).
 - g is a projection of \tilde{g} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$.
- If $\tilde{g} \in \operatorname{Aut}(\tilde{\Gamma})$ leaves \mathcal{P}_{Γ} invariant, it induces a $g \in \operatorname{Aut}(\Gamma)$.
 - \tilde{g} projects to Aut(Γ).
 - g is a projection of \tilde{g} .
- If g ∈ Aut(Γ) is a projection of some ğ̃ ∈ Aut(Γ̃), then ğ̃ is uniquely defined.
 - *g* lifts to Aut($\tilde{\Gamma}$).
 - \tilde{g} is the *lift* of g.

- Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$.
- If $\tilde{g} \in \operatorname{Aut}(\tilde{\Gamma})$ leaves \mathcal{P}_{Γ} invariant, it induces a $g \in \operatorname{Aut}(\Gamma)$.
 - \tilde{g} projects to Aut(Γ).
 - g is a projection of \tilde{g} .
- If g ∈ Aut(Γ) is a projection of some ğ̃ ∈ Aut(Γ̃), then ğ̃ is uniquely defined.
 - *g* lifts to Aut($\tilde{\Gamma}$).
 - \tilde{g} is the *lift* of g.
- There can be *mixers* in $Aut(\tilde{\Gamma})$.
- There can be elements of $Aut(\Gamma)$ without lifts.

Corollary (Eiben, Jajcay, Š)

Let Γ be a k-regular graph of girth g, and $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$ be a generalized truncation with Υ connected and each of its edges lying on at least one cycle of length smaller than 2g. Then the entire automorphism group Aut($\tilde{\Gamma}$) projects injectively onto a subgroup of Aut(Γ).

Corollary (Eiben, Jajcay, Š)

Let Γ be a k-regular graph of girth g, and $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$ be a generalized truncation with Υ connected and each of its edges lying on at least one cycle of length smaller than 2g. Then the entire automorphism group Aut($\tilde{\Gamma}$) projects injectively onto a subgroup of Aut(Γ).

Corollary (Eiben, Jajcay, Š)

Let Υ be a connected Cayley graph Cay(G; S) satisfying the property that S contains at least three elements out of which at least one belongs to the center Z(G), and let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$ be a generalized truncation. Then the entire automorphism group Aut($\tilde{\Gamma}$) projects injectively onto a subgroup of Aut(Γ).

ヘロト ヘアト ヘヨト ヘ

Proposition (Eiben, Jajcay, Š)

Let $\tilde{\Gamma} = T(\Gamma, \rho; \Upsilon)$ be a generalized truncation, and let $g \in \operatorname{Aut}(\Gamma)$. Then g lifts to $\operatorname{Aut}(\tilde{\Gamma})$ if and only if for every $u \in V(\Gamma)$ and each pair of its neighbors w, x we have

 $V_{
ho(u,x)} \sim V_{
ho(u,w)} \iff V_{
ho(u^g,x^g)} \sim V_{
ho(u^g,w^g)}$ in Υ .

As a consequence, the set of all $g \in Aut(\Gamma)$ that lift to $Aut(\tilde{\Gamma})$ is a subgroup of $Aut(\Gamma)$.

ヘロン 人間 とくほ とくほ とう

Γ a graph admitting a vertex-transitive subgroup
 G ≤ Aut(Γ).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Γ a graph admitting a vertex-transitive subgroup G ≤ Aut(Γ).
- Fix v ∈ V(Γ) and take O_v a union of orbits of the action of the stabilizer G_v in its induced action on the 2-element subsets of Γ(v).
- Thus (Γ(ν), O_ν) is a graph with vertex set Γ(ν) and edge set O_ν.

- Γ a graph admitting a vertex-transitive subgroup G ≤ Aut(Γ).
- Fix v ∈ V(Γ) and take O_v a union of orbits of the action of the stabilizer G_v in its induced action on the 2-element subsets of Γ(v).
- Thus (Γ(ν), O_ν) is a graph with vertex set Γ(ν) and edge set O_ν.
- Define $T(\Gamma, G; \mathcal{O}_v)$ to be the graph with:
 - vertex set $\{(u, w) : u \in V(\Gamma), w \in \Gamma(u)\};$
 - each (u, w) is adjacent to the vertex (w, u) and to all the vertices (u, w') for which there exists a g ∈ G with the property u^g = v and {w, w'}^g ∈ O_v.

ヘロト ヘアト ヘビト ヘビト

The first example revisited

- $\Gamma = K_5$ with $V(\Gamma) = \{a, b, c, d, e\}$.
- Take $G = \langle (abced), (bcde) \rangle$. Thus $G_a = \langle (bcde) \rangle$.

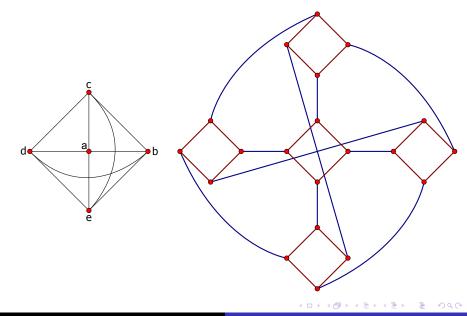
・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The first example revisited

- $\Gamma = K_5$ with $V(\Gamma) = \{a, b, c, d, e\}$.
- Take $G = \langle (abced), (bcde) \rangle$. Thus $G_a = \langle (bcde) \rangle$.
- G_a has two orbits on the 2-sets of Γ(a) = {b, c, d, e}, one of them being O = {{b, c}, {c, d}, {c, d}, {d, e}, {e, b}}.
- It turns out that T(K₅, G; O) is isomorphic to our first example.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The first example revisited



 It is much easier to determine which automorphisms of Γ lift to Aut(T(Γ, G; O_V)).

・ 回 ト ・ ヨ ト ・ ヨ ト

 It is much easier to determine which automorphisms of Γ lift to Aut(T(Γ, G; O_V)).

Proposition (Eiben, Jajcay, Š)

Let Γ , G, \mathcal{O}_{v} and $\tilde{\Gamma} = T(\Gamma, G; \mathcal{O}_{v})$ be as in the above construction. An automorphism h of Γ lifts to $\tilde{\Gamma}$ if and only if \mathcal{O}_{v} is a union of orbits of the action of $\langle G, h \rangle_{v}$ on the 2-sets of elements from $\Gamma(v)$.

Vertex-transitive truncations

• If the group *G* is arc-transitive, the situation is even better.

< □ ト < 三 ト <

ъ

• If the group *G* is arc-transitive, the situation is even better.

Theorem (Eiben, Jajcay, Š)

Let Γ be an arc-transitive graph and let $G \leq \operatorname{Aut}(\Gamma)$ be arc-transitive. Let $v \in V(\Gamma)$, let \mathcal{O}_v be a union of orbits of the action of G_v on the 2-sets of elements from $\Gamma(v)$, and let $\tilde{\Gamma} = T(\Gamma, G; \mathcal{O}_v)$. Then G lifts to $\tilde{G} \leq \operatorname{Aut}(\tilde{\Gamma})$ which acts vertex-transitively on $\tilde{\Gamma}$. Moreover, the natural partition \mathcal{P}_{Γ} is an imprimitivity block system for the action of \tilde{G} . • If the group *G* is arc-transitive, the situation is even better.

Theorem (Eiben, Jajcay, Š)

Let Γ be an arc-transitive graph and let $G \leq \operatorname{Aut}(\Gamma)$ be arc-transitive. Let $v \in V(\Gamma)$, let \mathcal{O}_v be a union of orbits of the action of G_v on the 2-sets of elements from $\Gamma(v)$, and let $\tilde{\Gamma} = T(\Gamma, G; \mathcal{O}_v)$. Then G lifts to $\tilde{G} \leq \operatorname{Aut}(\tilde{\Gamma})$ which acts vertex-transitively on $\tilde{\Gamma}$. Moreover, the natural partition \mathcal{P}_{Γ} is an imprimitivity block system for the action of \tilde{G} .

• For the previous example thus $\operatorname{Aut}(\tilde{\Gamma}) \cong \operatorname{AGL}_1(5)$ holds.

()

Vertex-transitive truncations

• What about the converse?

э

- < ≣ → <

э

Vertex-transitive truncations

What about the converse?

Theorem (Eiben, Jajcay, Š)

Let Γ be a vertex-transitive graph possessing a vertex-transitive group G of automorphisms admitting a nontrivial imprimitivity block system \mathcal{B} on $V(\Gamma)$. If there exists a block $B \in \mathcal{B}$ with the property that each vertex of B has exactly one neighbor outside B and no two vertices of B have a neighbor in the same $B' \in \mathcal{B}$, $B' \neq B$, then Γ is a generalized truncation of an arc-transitive graph by a vertex-transitive graph in the sense of the Proposition.

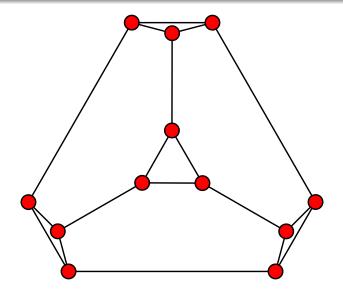
• Truncations of complete graphs by cycles (from AT graphs):

n	order	$girth(\tilde{\Gamma})$	$ Aut(\tilde{\Gamma}) $	$\operatorname{Aut}(\tilde{\Gamma}) = \tilde{G}$
4	12	3	24	true
5	20	4	20	true
6	30	5	60	true
7	42	6	126	false
8	56	7	56	true
9	72	8	72	true
11	110	10	110	true
11	110	10	1320	false
13	156	9	156	true
13	156	9	156	true
17	272	11	272	true
17	272	11	272	true
17	272	12	272	true
17	272	13	272	true

Primož Šparl Symmetry properties of generalized graph truncations

▲ 臣 ▶ ▲ 臣 ▶ 三 ● ∽ Q ()~

The unique VT truncation of K_4 by C_3



Primož Šparl Symmetry properties of generalized graph truncations

★ Ξ → ★ Ξ →

э

• Truncations of complete graphs by cycles (from AT graphs):

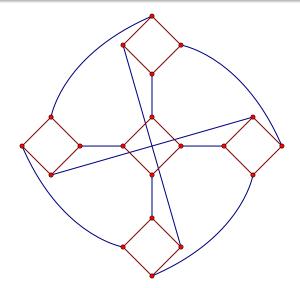
n	order	girth($\tilde{\Gamma}$)	$ \operatorname{Aut}(\tilde{\Gamma}) $	$\operatorname{Aut}(\tilde{\Gamma}) = \tilde{G}$
4	12	3	24	true
5	20	4	20	true
6	30	5	60	true
7	42	6	126	false
8	56	7	56	true
9	72	8	72	true
11	110	10	110	true
11	110	10	1320	false
13	156	9	156	true
13	156	9	156	true
17	272	11	272	true
17	272	11	272	true
17	272	12	272	true
17	272	13	272	true

Primož Šparl Symmetry properties of generalized graph truncations

프 🖌 🛪 프 🕨

æ

The unique VT truncation of K_5 by C_4



★ E → ★ E →

э

• Truncations of complete graphs by cycles (from AT graphs):

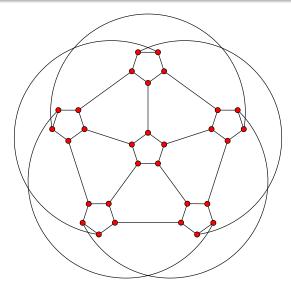
n	order	girth($\tilde{\Gamma}$)	$ \operatorname{Aut}(\tilde{\Gamma}) $	$\operatorname{Aut}(\tilde{\Gamma}) = \tilde{G}$
4	12	3	24	true
5	20	4	20	true
6	30	5	60	true
7	42	6	126	false
8	56	7	56	true
9	72	8	72	true
11	110	10	110	true
11	110	10	1320	false
13	156	9	156	true
13	156	9	156	true
17	272	11	272	true
17	272	11	272	true
17	272	12	272	true
17	272	13	272	true

Primož Šparl Symmetry properties of generalized graph truncations

프 🖌 🛪 프 🕨

æ

The unique VT truncation of K_6 by C_5



▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

ъ

• Truncations of complete graphs by cycles (from AT graphs):

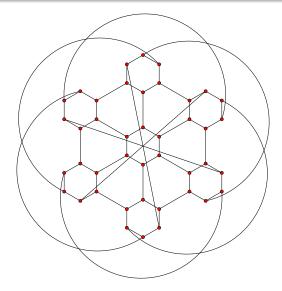
n	order	$girth(\tilde{\Gamma})$	$ Aut(\tilde{\Gamma}) $	$\operatorname{Aut}(\widetilde{\Gamma}) = \widetilde{G}$
4	12	3	24	true
5	20	4	20	true
6	30	5	60	true
7	42	6	126	false
8	56	7	56	true
9	72	8	72	true
11	110	10	110	true
11	110	10	1320	false
13	156	9	156	true
13	156	9	156	true
17	272	11	272	true
17	272	11	272	true
17	272	12	272	true
17	272	13	272	true

Primož Šparl Symmetry properties of generalized graph truncations

프 🖌 🛪 프 🕨

æ

The unique VT truncation of K_7 by C_6



<ロ> (四) (四) (三) (三) (三) (三)

• Similar situation for VT truncations of K_8 by C_7 .

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

- Similar situation for VT truncations of K_8 by C_7 .
- But **not** for VT truncations of K_9 by C_8 .
- One comes from an AT subgroup of S₉.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Similar situation for VT truncations of K₈ by C₇.
- But not for VT truncations of K₉ by C₈.
- One comes from an AT subgroup of S₉.
- The other is the Cayley graph of the group

 $G = \langle a, b, c \mid a^2, b^2, c^2, acabcbcb, abcacbcacb, (ac)^6 \rangle$

with respect to the connection set $S = \{a, b, c\}$.

< 同 > < 回 > < 回 > …

- Similar situation for VT truncations of K₈ by C₇.
- But not for VT truncations of K₉ by C₈.
- One comes from an AT subgroup of S₉.
- The other is the Cayley graph of the group

 $G = \langle a, b, c \mid a^2, b^2, c^2, acabcbcb, abcacbcacb, (ac)^6 \rangle$

with respect to the connection set $S = \{a, b, c\}$.

Problem

For each $n \ge 3$ classify all vertex-transitive generalized truncations of the complete graph K_n by the cycle C_{n-1} .

イロト イポト イヨト イヨト

Let Γ be a connected cubic graph of girth 3. Then Γ is vertex-transitive if and only if it is either the complete graph K_4 , the prism $\Pr(3)$, or a (generalized) truncation of an arc-transitive cubic graph Λ by the 3-cycle C_3 , in which case $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(\Lambda)$.

Let Γ be a connected cubic graph of girth 3. Then Γ is vertex-transitive if and only if it is either the complete graph K_4 , the prism $\Pr(3)$, or a (generalized) truncation of an arc-transitive cubic graph Λ by the 3-cycle C_3 , in which case $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(\Lambda)$.

Theorem (Eiben, Jajcay, Š)

Let Γ be a connected cubic graph of girth 4 and order 2n. Then Γ is vertex-transitive if and only if it is isomorphic to the prism $\Pr(n)$ with $n \ge 4$, the Möbius ladder $\operatorname{Ml}(n)$ with $n \ge 3$, the generalized prism $\operatorname{GPr}(\frac{n}{2})$ (*n* even), or it is isomorphic to a generalized truncation of an arc-transitive tetravalent graph Λ by the 4-cycle C_4 in the sense of "the Theorem", in which case $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(\Lambda)$.

イロト イポト イヨト イヨト

ъ

Let Γ be a connected cubic graph of girth 5. Then Γ is vertex-transitive if and only if it is either isomorphic to the Petersen graph or the Dodecahedron graph, or it is isomorphic to a generalized truncation of an arc-transitive 5-valent graph Λ by the 5-cycle C_5 in the sense of "the Theorem". In the latter case, Aut(Γ) \cong Aut(Λ).

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Γ be a connected cubic graph of girth 5. Then Γ is vertex-transitive if and only if it is either isomorphic to the Petersen graph or the Dodecahedron graph, or it is isomorphic to a generalized truncation of an arc-transitive 5-valent graph Λ by the 5-cycle C_5 in the sense of "the Theorem". In the latter case, $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut}(\Lambda)$.

• Does not work this nicely for girths 6 and more.

Isomorphisms?

What about isomorphisms between such truncations?

・ 回 ト ・ ヨ ト ・ ヨ ト

э

• What about isomorphisms between such truncations?

Theorem (Eiben, Jajcay, Š)

Let Γ be a vertex-transitive graph, let $G \leq \operatorname{Aut}(\Gamma)$ be vertex-transitive, and let $v \in V(\Gamma)$. Furthermore, let $v' \in V(\Gamma)$, let $x \in \operatorname{Aut}(\Gamma)$, and let $H = xGx^{-1}$. Then for any union \mathcal{O}' of orbits of the action of the stabilizer $H_{v'}$ on the 2-sets of $\Gamma(v')$ there exists a union \mathcal{O} of orbits of the action of the stabilizer G_v on the 2-sets of $\Gamma(v)$ such that $T(\Gamma, H; \mathcal{O}') \cong T(\Gamma, G; \mathcal{O})$. In particular, if $x \in (N_{\operatorname{Aut}(\Gamma)}(G))_v$ and \mathcal{O} is a union of orbits of the action of G_v on the 2-sets of $\Gamma(v)$, then $T(\Gamma, G; \mathcal{O}) \cong T(\Gamma, G; \mathcal{O}^x)$.

イロト イ理ト イヨト イヨト

Thank you!!!

Primož Šparl Symmetry properties of generalized graph truncations

< 🗇 ▶

ъ

• = • •