Some Variations on the Oberwolfach Theme

Mateja Šajna
University of Ottawa

Graphs, Groups, and More:
Celebrating Brian Alspach's 80th and Dragan Marušič's 65th birthdays Koper, May 2018

Outline

- Introduction to the Oberwolfach Problem
- Terminology
- The Oberwolfach Problem and the Spouse-Avoiding Variant
- Current status of the Oberwolfach Problem
- Some variations on the Oberwolfach theme
- The directed Oberwolfach Problem
- The Spouse-Loving Variant
- The Honeymoon Oberwolfach Problem

Terminology: graph decompositions

- $\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$-decomposition of G,

$$
G=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{t}:
$$

a partition of $E(G)$ into edge sets of its subgraphs $H_{1}, H_{2}, \ldots, H_{t}$

A decomposition of K_{8} into six 4-cycles and a 1-factor

Terminology: graph decompositions

- $\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$-decomposition of G,

$$
G=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{t}:
$$

a partition of $E(G)$ into edge sets of its subgraphs $H_{1}, H_{2}, \ldots, H_{t}$

- H-decomposition of G :
partition of $E(G)$ into edge sets of subgraphs isomorphic to H

A C ${ }_{3}$-decomposition of K_{7}

Terminology: graph decompositions

- $\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$-decomposition of G,

$$
G=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{t}:
$$

a partition of $E(G)$ into edge sets of its subgraphs $H_{1}, H_{2}, \ldots, H_{t}$

- H-decomposition of G :
partition of $E(G)$ into edge sets of subgraphs isomorphic to H
- C_{m}-decomposition: $\left\{C_{m}, C_{m}, \ldots, C_{m}\right\}$-decomposition of G

A C_{3}-decomposition of K_{7}

Terminology: 2-factorizations

- r-factor in a graph G : spanning r-regular subgraph of G

Figure: $\mathrm{A}\left(C_{3}, C_{4}\right)$-factor in K_{7}.

Terminology: 2-factorizations

- r-factor in a graph G : spanning r-regular subgraph of G
- $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor or 2 -factor of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$: 2-factor consisting of disjoint cycles of lengths $m_{1}, m_{2}, \ldots, m_{t}$

Figure: $\mathrm{A}\left(C_{3}, C_{4}\right)$-factor in K_{7}.

Terminology: 2-factorizations

- r-factor in a graph G : spanning r-regular subgraph of G
- ($\left.C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor or 2 -factor of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$: 2-factor consisting of disjoint cycles of lengths $m_{1}, m_{2}, \ldots, m_{t}$
- $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization: decomposition into ($C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}$)-factors

Figure: $\mathrm{A}\left(C_{3}, C_{4}\right)$-factorization in K_{7}.

Terminology: 2-factorizations

- r-factor in a graph G : spanning r-regular subgraph of G
- $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor or 2 -factor of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$: 2-factor consisting of disjoint cycles of lengths $m_{1}, m_{2}, \ldots, m_{t}$
- $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization: decomposition into ($C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}$)-factors
- C_{m}-factor: 2-factor consisting of disjoint cycles of length m

Figure: $\mathrm{A} C_{3}$-factorization (resolvable C_{3}-decomposition) of K_{15} - a_KTS(15)

Terminology: 2-factorizations

- r-factor in a graph G : spanning r-regular subgraph of G
- ($\left.C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor or 2 -factor of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$: 2-factor consisting of disjoint cycles of lengths $m_{1}, m_{2}, \ldots, m_{t}$
- $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization: decomposition into ($C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}$)-factors
- C_{m}-factor: 2-factor consisting of disjoint cycles of length m
- C_{m}-factorization or resolvable C_{m}-decomposition: decomposition of G into C_{m}-factors

Figure: $\mathrm{A} C_{3}$-factorization (resolvable C_{3}-decomposition) of K_{15} - a_ $\mathrm{KTS}(15)$

The Oberwolfach Problem

- Ringel, 1967:

At a conference in Oberwolfach, $n=2 k+1$ participants are to be seated at t round tables for k consecutive nights so that each participant sits next to each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n ?$

Figure: Oberwolfach Problem with $n=7, m_{1}=3$, and $m_{2}=4$.

The Oberwolfach Problem

- Ringel, 1967:

At a conference in Oberwolfach, $n=2 k+1$ participants are to be seated at t round tables for k consecutive nights so that each participant sits next to each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n ?$

Figure: Oberwolfach Problem with $n=7, m_{1}=3$, and $m_{2}=4$.

The Oberwolfach Problem

- Ringel, 1967:

At a conference in Oberwolfach, $n=2 k+1$ participants are to be seated at t round tables for k consecutive nights so that each participant sits next to each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n ?$

Figure: Oberwolfach Problem with $n=7, m_{1}=3$, and $m_{2}=4$.

The Oberwolfach Problem

- Ringel, 1967:

At a conference in Oberwolfach, $n=2 k+1$ participants are to be seated at t round tables for k consecutive nights so that each participant sits next to each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: Oberwolfach Problem with $n=7, m_{1}=3$, and $m_{2}=4$.

The Spouse-Avoiding Variant - maximum packing

- Huang, Kotzig, and Rosa, 1979:

The $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for $k-1$ consecutive nights so that each person sits next to each other person exactly once, except they never sit next to their spouse. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: K_{8}

The Spouse-Avoiding Variant - maximum packing

- Huang, Kotzig, and Rosa, 1979:

The $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for $k-1$ consecutive nights so that each person sits next to each other person exactly once, except they never sit next to their spouse. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: $K_{8}-I$

The Spouse-Avoiding Variant - maximum packing

- Huang, Kotzig, and Rosa, 1979:

The $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for $k-1$ consecutive nights so that each person sits next to each other person exactly once, except they never sit next to their spouse. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: Spouse-Avoiding Variant with $n=8, m_{1}=3$, and $m_{2}=5$

The Spouse-Avoiding Variant - maximum packing

- Huang, Kotzig, and Rosa, 1979:

The $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for $k-1$ consecutive nights so that each person sits next to each other person exactly once, except they never sit next to their spouse. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: Spouse-Avoiding Variant with $n=8, m_{1}=3$, and $m_{2}=5$

The Spouse-Avoiding Variant - maximum packing

- Huang, Kotzig, and Rosa, 1979:

The $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for $k-1$ consecutive nights so that each person sits next to each other person exactly once, except they never sit next to their spouse. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: Spouse-Avoiding Variant with $n=8, m_{1}=3$, and $m_{2}=5$
$O P\left(m_{1}, m_{2}, \ldots, m_{t}\right)$

- $O P\left(m_{1}, m_{2}, \ldots, m_{t}\right)$:
assuming $n=m_{1}+m_{2}+\ldots+m_{t}$, where each $m_{i} \in\{3,4, \ldots, n\}$, does there exist a $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of $K_{n}(n$ odd) or $K_{n}-I(n$ even)?

Figure: A solution to $\operatorname{OP}(3,5)$

Oberwolfach Problem with uniform cycle length

- $O P(n ; m)$:

$$
\text { assuming } 3 \leq m \leq n \text { and } m \mid n \text {, }
$$ does there exist a C_{m}-factorization of $K_{n}\left(n\right.$ odd) or $K_{n}-I$ (n even)?

Figure: Solution to $O P(15 ; 3)$: a C_{3}-factorization of K_{15} or $\mathrm{KTS}(15)$

OP(15;3): The Kirkman Schoolgirl Problem

- Kirkman (1850):
" 15 young ladies in a school walk 3 abreast for 7 days in succession: it is required to arrange them daily, so that no two shall walk twice abreast."
- That is, find a collection of triples from a set of 15 elements so that every pair of elements lie together in exactly one triple, and the collection of triples partitions into subsets of 5 pairwise disjoint triples.
- First solution by Cayley (1850), followed by Kirkman (1850).
- Woolhouse (1863) collects 7 non-isomorphic solutions.
- Cole (1922) proves there are precisely 7 non-isomorphic solutions.

Oberwolfach Problem - most important results to date

- No solution: $O P(3,3), O P(3,3,3,3), O P(4,5), O P(3,3,5)$ Apart from these widely believed to be the only exceptions,
- $O P(n ; m)$ has a solution for...
- $m=3$ and n odd - Jiaxi, 1961-65; Ray-Chaudhuri and Wilson, 1973
- $m=3$ and n even - Kotzig and Rosa, 1974; Baker and Wilson, 1977; Brouwer, 1978; Rees and Stinson, 1987
- m even - Alspach and Häggkvist, 1985
- m odd, $m \geq 5$, and $n \neq 4 m$
- Alspach, Schellenberg, Stinson, Wagner, 1989
- m odd, $m \geq 5$, and $n=4 m$ - Hoffman and Schellenberg, 1991
- ... and $O P\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution for
- infinitely many n - Bryant and Scharaschkin, 2009
- $n \leq 40$ - Adams, Bolstad, Bryant, Deza, Franek, Holub, Hua, Huang, Kotzig, Meszka, Rosa, 1979-2010
- $m_{1}, m_{2}, \ldots, m_{t}$ all even - Bryant and Danziger, 2011
- $t=2$ - Traetta, 2013

Some related results

- Oberwolfach Problem for complete multigraphs, with uniform cycle length — Gvozdjak, 1997
- Oberwolfach Problem for complete equipartite graphs and complete equipartite multigraphs, with uniform cycle length - Liu, Lick, 2003
- Oberwolfach Problem for complete equipartite graphs, with bipartite 2-factors - Bryant, Danziger, Patterson, 2015

Outline

- Introduction to the Oberwolfach Problem
- Terminology
- The Oberwolfach Problem and the Spouse-Avoiding Variant
- Current status of the Oberwolfach Problem
- Some variations on the Oberwolfach theme
- The directed Oberwolfach Problem
- The Spouse-Loving Variant
- The Honeymoon Oberwolfach Problem

Directed Oberwolfach Problem

- resolvable directed cycle decompositions
- The Directed Oberwolfach Problem: n participants are to be seated at t round tables for $n-1$ consecutive nights so that each participant sits to the right of each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n ?$

Directed Oberwolfach Problem

- resolvable directed cycle decompositions
- The Directed Oberwolfach Problem: n participants are to be seated at t round tables for $n-1$ consecutive nights so that each participant sits to the right of each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?

Figure: Solution to $O P^{*}(10 ; 5)$

Directed Oberwolfach Problem

- resolvable directed cycle decompositions
- The Directed Oberwolfach Problem: n participants are to be seated at t round tables for $n-1$ consecutive nights so that each participant sits to the right of each other participant exactly once. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=n$?
- $O P^{*}(n ; m)$: assuming $2 \leq m \leq n$ and $m \mid n$, does there exist a resolvable decomposition of K_{n}^{*} into directed m-cycles?

Figure: Solution to $O P^{*}(10 ; 5)$

Results on $O P^{*}(n ; m)$

- $O P^{*}(3 t ; 3)$ has a solution if and only if $t \neq 2$
- Bermond, Germa, and Sotteau, 1979
- $O P^{*}(4 t ; 4)$ has a solution for all t - Bennett and Zhang, 1990

Theorem (Burgess and Šajna, 2014)

For $m \geq 5: O P^{*}(t m ; m)$ has a solution if m is even, or t and m are both odd.

Theorem (Burgess and Šajna, 2014)

For odd $m \geq 5$: if $O P^{*}(2 m ; m)$ has a solution, then $O P^{*}(t m ; m)$ has a solution for all even t.

Theorem (Burgess, Francetić, Šajna, 2018)
$O P^{*}(2 m ; m)$ has a solution for all odd $m, 5 \leq m \leq 49$.

The Spouse-Loving Variant of the Oberwolfach Problem

- The Spouse-Loving Variant: $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for k consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse exactly twice. Is this possible for tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ if $m_{1}+m_{2}+\ldots+m_{t}=n$?

The Spouse-Loving Variant of the Oberwolfach Problem

- The Spouse-Loving Variant: $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for k consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse exactly twice. Is this possible for tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ if $m_{1}+m_{2}+\ldots+m_{t}=n$?
- Spouse-Avoiding Variant: $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of K_{n} - I $=$ maximum packing of K_{n} with $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factors

The Spouse-Loving Variant of the Oberwolfach Problem

- The Spouse-Loving Variant: $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for k consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse exactly twice. Is this possible for tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ if $m_{1}+m_{2}+\ldots+m_{t}=n$?
- Spouse-Avoiding Variant: $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of K_{n} - I $=$ maximum packing of K_{n} with $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factors

The Spouse-Loving Variant of the Oberwolfach Problem

- The Spouse-Loving Variant: $n=2 k$ participants, consisting of k couples, are to be seated at t round tables for k consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse exactly twice. Is this possible for tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ if $m_{1}+m_{2}+\ldots+m_{t}=n$?
- Spouse-Avoiding Variant: $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of K_{n} - I = maximum packing of K_{n} with $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factors
- Spouse-Loving Variant: $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of $K_{n}+I$ $=$ minimum covering of K_{n} with $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factors

Results on $\mathrm{OP}^{+}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$

- $\mathrm{OP}^{+}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$:
assuming $n=m_{1}+m_{2}+\ldots+m_{t}$,
does there exist a $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of $K_{n}+I$?
- $\mathrm{OP}^{+}(n ; m)$:
assuming $3 \leq m \leq n$ and $m \mid n$, does there exist a C_{m}-factorization of $K_{n}+I$?
- Resolvable minimum coverings by triples: $\mathrm{OP}^{+}(3 t ; 3)$ has a solution if and only if t is even and $t \geq 6$ - Assaf, Mendelsohn, and Stinson, 1987; Lamken and Mills, 1993

Theorem (Bolohan, Buchanan, Burgess, Šajna, 2018 ${ }^{+}$)

- If $m_{1}, m_{2}, \ldots, m_{t}$ are all even, then $O P^{+}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution.
- If m is odd, $m \geq 5$, then $O P^{+}(t m ; m)$ has a solution for every even t, except possibly for $t=4$.

The Honeymoon Oberwolfach Problem

- The Honeymoon Oberwolfach Problem: $2 n$ participants, consisting of n newly-wed couples, are to be seated at t round tables for $2 n-2$ consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse every time. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=2 n$?

Figure: HOP with $n=3$ and $m_{1}=6$

The Honeymoon Oberwolfach Problem

- The Honeymoon Oberwolfach Problem: $2 n$ participants, consisting of n newly-wed couples, are to be seated at t round tables for $2 n-2$ consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse every time. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=2 n$?

Figure: HOP with $n=3$ and $m_{1}=6$

The Honeymoon Oberwolfach Problem

- The Honeymoon Oberwolfach Problem: $2 n$ participants, consisting of n newly-wed couples, are to be seated at t round tables for $2 n-2$ consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse every time. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=2 n$?

Figure: HOP with $n=3$ and $m_{1}=6$

The Honeymoon Oberwolfach Problem

- The Honeymoon Oberwolfach Problem: $2 n$ participants, consisting of n newly-wed couples, are to be seated at t round tables for $2 n-2$ consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse every time. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=2 n$?

Figure: HOP with $n=3$ and $m_{1}=6$

The Honeymoon Oberwolfach Problem

- The Honeymoon Oberwolfach Problem: $2 n$ participants, consisting of n newly-wed couples, are to be seated at t round tables for $2 n-2$ consecutive nights so that each person sits next to each other person exactly once, except they sit next to their spouse every time. Can this be achieved with tables of sizes $m_{1}, m_{2}, \ldots, m_{t}$ assuming $m_{1}+m_{2}+\ldots+m_{t}=2 n$?

Figure: HOP with $n=3$ and $m_{1}=6$

$\operatorname{HOP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$

- $\operatorname{HOP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$:
assuming $2 n=m_{1}+m_{2}+\ldots+m_{t}$ with $m_{1}, m_{2}, \ldots, m_{t}$ all even, does there exist an I-alternating $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factorization of $K_{2 n}+(2 n-3) I ?$
- $\operatorname{HOP}(2 n ; 2 m)$:
assuming $2 \leq m \leq n$ and $m \mid n$, does there exist an I-alternating $C_{2 m}$-factorization of $K_{2 n}+(2 n-3) I$?
- A solution to $\operatorname{HOP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ is equivalent to a semi-uniform 1-factorization of $K_{2 n}$ of type ($m_{1}, m_{2}, \ldots, m_{t}$)
- Semi-uniform 1-factorization of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$: 1-factorization $\left\{F_{0}, F_{1}, \ldots, F_{r-1}\right\}$ such that for all $i \neq 1$, $F_{0} \cup F_{i}$ is a $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor

Special 1-factorizations

A 1-factorization $\left\{F_{0}, F_{1}, \ldots, F_{r-1}\right\}$ is called...

- Semi-uniform of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ if $F_{0} \cup F_{i}$ is a $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor for all $i \neq 0$
- Semi-perfect:
$F_{0} \cup F_{i}$ is a Hamilton cycle for all $i \neq 0$
- Uniform of type $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ if
$F_{i} \cup F_{j}$ is a $\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right)$-factor for all $i \neq j$
- Perfect if
$F_{i} \cup F_{j}$ is a Hamilton cycle for all $i \neq j$
- Sequentially uniform if
it admits a cyclic ordering $\left(F_{0}, F_{1}, \ldots, F_{r-1}\right)$ such that the 2-factors $F_{i} \cup F_{i+1}$ are pairwise isomorphic for all $i \in \mathbb{Z}_{r}$
- Sequentially perfect if
it admits a cyclic ordering $\left(F_{0}, F_{1}, \ldots, F_{r-1}\right)$ such that the 2-factors $F_{i} \cup F_{i+1}$ is a Hamilton cycle for all $i \in \mathbb{Z}_{r}$

Known results on special 1-factorizations

- Kotzig's Conjecture (1964):
$K_{2 n}$ admits a perfect 1-factorization for all n
- Confirmed for many n, open in general
- Královič and Královič, 2005:
$K_{2 n}$ admits a semi-perfect 1-factorization for all n
- Dinitz, Dukes, Stinson, 2005:
$K_{2 n}$ admits a sequentially perfect 1-factorization for all n

Results on $\operatorname{HOP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$

Theorem (Burgess, Lepine, Šajna, 2018 ${ }^{+}$)
Assume $2 \leq m_{1} \leq m_{2} \leq \ldots \leq m_{t}$ and $n=m_{1}+m_{2}+\ldots+m_{t}$.
Then $\operatorname{HOP}\left(2 m_{1}, 2 m_{2}, \ldots, 2 m_{t}\right)$ has a solution if
(1) n is odd and $O P\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution; or
(2) $m_{i} \equiv 0(\bmod 4)$ for all i; or
(0) n is odd and $t=2$; or

- n is odd, $n<40$, and $m_{1} \geq 3$; or
- $n \leq 9$.

```
Theorem (BLŠ, 2018+)
Assume 2\leqm\leqn.
Then HOP(2n;2m) has a solution if and only if n\equiv0(mod m).
```


Modelling a table

Modelling a table

Modelling a table

From $K_{2 n}+(2 n-3) /$ to a colour-oriented $4 K_{n}$

From $K_{2 n}+(2 n-3) /$ to a colour-oriented $4 K_{n}$

From $K_{2 n}+(2 n-3) /$ to a colour-oriented $4 K_{n}$

From $K_{2 n}+(2 n-3) I$ to a colour-oriented $4 K_{n}$

From $K_{2 n}+(2 n-3) I$ to a colour-oriented $4 K_{n}$

From $K_{2 n}+(2 n-3) I$ to a colour-oriented $4 K_{n}$

Admissible cycles in a colour-oriented $4 K_{n}$

General approach: HOP colouring-orientation

- HOP colouring-orientation of 4G:
a 3-edge colouring of $4 G$ (with colours pink, blue, and black), and an orientation of the black edges such that each 4 -set of parallel edges contains one pink edge, one blue edge, and two opposite black arcs
- $4 G^{\bullet}: 4 G$ with a given HOP-colouring-orientation
- HOP 2-factorization of 4G:
in each cycle, any two adjacent edges satisfy one of:
- one is blue, one pink; or
- both are black and directed in the same way;
- one is blue, one black, directed towards the blue edge; or
- one is pink, one black, directed away from the pink edge.

$$
\begin{aligned}
& \text { Theorem }\left(\mathrm{BLŠ}, 2018^{+}\right) \\
& \text {Let } n=m_{1}+m_{2}+\ldots+m_{t} . \operatorname{HOP}\left(2 m_{1}, 2 m_{2}, \ldots, 2 m_{t}\right) \text { has a solution if } \\
& \text { and only if } 4 K_{n}^{\bullet} \text { admits an } \operatorname{HOP}\left(C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{t}}\right) \text {-factorization. }
\end{aligned}
$$

Solution to $\operatorname{HOP}(6 ; 6)$

Lemma 1

Lemma

Let $G=H_{1} \oplus \ldots \oplus H_{s}$.
(1) If H_{1}, \ldots, H_{s} are spanning, and each $4 H_{i}^{+}$admits an $H O P$ $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization, then $4 G^{\bullet}$ admits an HOP $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization.
(3) If H_{1}, \ldots, H_{s} are r-regular, pairwise vertex-disjoint, and each $4 H_{i}^{+}$ admits an HOP C_{m}-factorization, then $4 G^{\bullet}$ admits an HOP C_{m}-factorization

Lemma 2

Lemma

If G admits a $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization, then $4 G^{\bullet}$ admits an $H O P$ $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization.

Proof. By Lemma 1, it suffices to prove that if C is an m-cycle, then $4 C^{\bullet}$ admits an HOP C_{m}-factorization.
Case 1: m is even.

Lemma 2

Lemma

If G admits a $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization, then $4 G^{\bullet}$ admits an $H O P$ $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization.

Proof. By Lemma 1, it suffices to prove that if C is an m-cycle, then $4 C^{\bullet}$ admits an HOP C_{m}-factorization.
Case 2: m is odd.

From OP to HOP

```
Corollary
Assume 2\leqm
OP(m, m},\mp@code{m},\ldots,\mp@subsup{m}{t}{})\mathrm{ has a solution.
Then HOP(2m},2\mp@subsup{m}{2}{},\ldots,2\mp@subsup{m}{t}{})\mathrm{ has a solution.
```

Proof.

- Since n is odd and $\operatorname{OP}\left(m_{1}, \ldots, m_{t}\right)$ has a solution, K_{n} admits a $\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization.
- Hence $4 K_{n}^{\bullet}$ admits an $\operatorname{HOP}\left(C_{m_{1}}, \ldots, C_{m_{t}}\right)$-factorization by Lemma 2.
- Hence $\operatorname{HOP}\left(2 m_{1}, 2 m_{2}, \ldots, 2 m_{t}\right)$ has a solution.

HOP with uniform cycle lengths

```
Theorem (BLŠ, 2018+)
Assume 2 <m \leqn.
Then HOP(2n;2m) has a solution if and only if n\equiv0(mod m).
```

Proof. Necessity is clear. We prove sufficiency for odd $m \geq 5$ only.

- Assume $n \equiv 0(\bmod m)$.
- If n is odd, then $\operatorname{OP}(n ; m)$ has a solution, so $\operatorname{HOP}(2 n ; 2 m)$ has a solution.
- Hence assume n is even.
- Suppose first that $4 K_{2 m}^{\circ}$ and $4 K_{4 m}^{\bullet}$ both admit HOP C_{m}-factorizations.
- Let $t=\frac{n}{2 m}$, and assume $t \geq 3$.
- Decompose $K_{n}=t \cdot K_{2 m} \oplus K_{t[2 m]}$.
- $4 K_{2 m}^{*}$ admits an HOP C_{m}-factorization by supposition.
- $K_{t[2 m]}$ admits a C_{m}-factorization by [Liu, 2003].
- Hence $4 K_{t[2 m]}^{\bullet}$ admits an HOP C_{m}-factorization by Lemma 2.
- Thus $4 K_{n}^{\bullet}$ admits an HOP C_{m}-factorization by Lemma 1.

HOP C_{m}-factorization of $4 K_{2 m}^{*}$ for odd $m \geq 5$
Starter C_{m}-factors for $m=2 k+1$ with k even:

HOP C_{m}-factorization of $4 K_{2 m}^{*}$ for odd $m \geq 5$

 Starter C_{m}-factors for $m=2 k+1$ with k odd:

HOP C_{m}-factorization of $4 K_{4 m}^{*}$ for odd $m \geq 5$

- From the C_{m}-factorization of $2 K_{4 m}$ by [Gvozdjak, 1997], we obtain an HOP C_{m}-factorization of $4 K_{4 m}^{\bullet}$.
- Example: $m=5$

Figure: Starter C_{m}-factor for $2 K_{4 m}$

HOP C_{m}-factorization of $4 K_{4 m}^{*}$ for odd $m \geq 5$

- From the C_{m}-factorization of $2 K_{4 m}$ by [Gvozdjak, 1997], we obtain an HOP C_{m}-factorization of $4 K_{4 m}^{\bullet}$.
- Example: $m=5$

Figure: Colour one edge of each difference pink so that each cycle has an even number of pink edges

HOP C_{m}-factorization of $4 K_{4 m}^{\bullet}$ for odd $m \geq 5$

- From the C_{m}-factorization of $2 K_{4 m}$ by [Gvozdjak, 1997], we obtain an HOP C_{m}-factorization of $4 K_{4 m}^{*}$.
- Example: $m=5$

Figure: Re-colour every other pink edge blue in two different ways

HOP C_{m}-factorization of $4 K_{4 m}^{\bullet}$ for odd $m \geq 5$

- From the C_{m}-factorization of $2 K_{4 m}$ by [Gvozdjak, 1997], we obtain an HOP C_{m}-factorization of $4 K_{4 m}^{\bullet}$.
- Example: $m=5$

Figure: Black edges can now be oriented appropriately to yield starter C_{m}-factors for an HOP C_{m}-factorization of $4 K_{4 m}^{\bullet}$

HOP with uniform cycle lengths - conclusion

```
Theorem (BLŠ, 2018+)
Assume 2 <m \leqn.
Then HOP(2n;2m) has a solution if and only if n\equiv0(mod m).
```

Proof. (continued - for odd $m \geq 5$)

- So $4 K_{2 m}^{\bullet}$ and $4 K_{4 m}^{*}$ both admit an HOP C_{m}-factorization.
- Hence $4 K_{n}^{\bullet}$ admits an HOP C_{m}-factorization for all $n \equiv 0(\bmod m)$.
- Therefore $\operatorname{HOP}(2 n ; 2 m)$ has a solution.

HOP conclusion

Theorem (BLŠ, 2018 ${ }^{+}$)

Assume $2 \leq m_{1} \leq m_{2} \leq \ldots \leq m_{t}$ and $n=m_{1}+m_{2}+\ldots+m_{t}$.
Then $\operatorname{HOP}\left(2 m_{1}, 2 m_{2}, \ldots, 2 m_{t}\right)$ has a solution if
(1) n is odd and $O P\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution; or
(2) $m_{i} \equiv 0(\bmod 4)$ for all i; or
(3) n is odd and $t=2$; or
(9) n is odd, $n<40$, and $m_{1} \geq 3$; or
(5) $n \leq 9$.

Conjecture

The obvious necessary conditions for $\operatorname{HOP}\left(2 m_{1}, \ldots, 2 m_{t}\right)$ to have a solution - or equivalently, for $K_{2 n}$ to admit a semi-uniform 1-factorization of type $\left(2 m_{1}, \ldots, 2 m_{t}\right)$ are also sufficient.

Thank you!

