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Terminology: graph decompositions
{H1,H2, . . . ,Ht}-decomposition of G ,

G = H1 ⊕ H2 ⊕ . . .⊕ Ht :

a partition of E (G ) into edge sets of its subgraphs H1,H2, . . . ,Ht

H-decomposition of G :
partition of E (G ) into edge sets of subgraphs isomorphic to H
Cm-decomposition: {Cm,Cm, . . . ,Cm}-decomposition of G

A decomposition of K8 into six 4-cycles and a 1-factor 
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Terminology: 2-factorizations
r -factor in a graph G : spanning r -regular subgraph of G

(Cm1 ,Cm2 , . . . ,Cmt )-factor or 2-factor of type (m1,m2, . . . ,mt):
2-factor consisting of disjoint cycles of lengths m1,m2, . . . ,mt

(Cm1 ,Cm2 , . . . ,Cmt )-factorization:
decomposition into (Cm1 ,Cm2 , . . . ,Cmt )-factors
Cm-factor: 2-factor consisting of disjoint cycles of length m
Cm-factorization or resolvable Cm-decomposition:
decomposition of G into Cm−factors

Figure: A (C3,C4)-factor in K7.
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The Oberwolfach Problem
Ringel, 1967:
At a conference in Oberwolfach, n = 2k + 1 participants are to be
seated at t round tables for k consecutive nights so that each
participant sits next to each other participant exactly once. Can this
be achieved with tables of sizes m1,m2, . . . ,mt assuming
m1 + m2 + . . . + mt = n?

Figure: Oberwolfach Problem with n = 7, m1 = 3, and m2 = 4.
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The Spouse-Avoiding Variant — maximum packing
Huang, Kotzig, and Rosa, 1979:
The n = 2k participants, consisting of k couples, are to be seated at
t round tables for k − 1 consecutive nights so that each person sits
next to each other person exactly once, except they never sit next
to their spouse. Can this be achieved with tables of sizes
m1,m2, . . . ,mt assuming m1 + m2 + . . . + mt = n?

Figure: K8
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OP(m1,m2, . . . ,mt)

OP(m1,m2, . . . ,mt):
assuming n = m1 + m2 + . . . + mt , where each mi ∈ {3, 4, . . . , n},
does there exist a (Cm1 ,Cm2 , . . . ,Cmt )-factorization of Kn (n odd)
or Kn − I (n even)?

Figure: A solution to OP(3, 5)
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Oberwolfach Problem with uniform cycle length
OP(n;m):
assuming 3 ≤ m ≤ n and m|n,
does there exist a Cm-factorization of Kn (n odd) or Kn − I (n even)?

Figure: Solution to OP(15; 3): a C3-factorization of K15 or KTS(15)
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OP(15;3): The Kirkman Schoolgirl Problem

Kirkman (1850):
“15 young ladies in a school walk 3 abreast for 7 days in succession:
it is required to arrange them daily, so that no two shall walk twice
abreast.”

That is, find a collection of triples from a set of 15 elements so that
every pair of elements lie together in exactly one triple, and the
collection of triples partitions into subsets of 5 pairwise disjoint triples.

First solution by Cayley (1850), followed by Kirkman (1850).

Woolhouse (1863) collects 7 non-isomorphic solutions.

Cole (1922) proves there are precisely 7 non-isomorphic solutions.
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Oberwolfach Problem — most important results to date

No solution: OP(3, 3), OP(3, 3, 3, 3), OP(4, 5), OP(3, 3, 5)
Apart from these widely believed to be the only exceptions,

OP(n;m) has a solution for...
I m = 3 and n odd — Jiaxi, 1961-65; Ray-Chaudhuri and Wilson, 1973
I m = 3 and n even — Kotzig and Rosa, 1974; Baker and Wilson, 1977;

Brouwer, 1978; Rees and Stinson, 1987
I m even — Alspach and Häggkvist, 1985
I m odd, m ≥ 5, and n 6= 4m

— Alspach, Schellenberg, Stinson, Wagner, 1989
I m odd, m ≥ 5, and n = 4m — Hoffman and Schellenberg, 1991

... and OP(m1,m2, . . . ,mt) has a solution for
I infinitely many n — Bryant and Scharaschkin, 2009
I n ≤ 40 — Adams, Bolstad, Bryant, Deza, Franek, Holub, Hua, Huang,

Kotzig, Meszka, Rosa, 1979-2010
I m1,m2, . . . ,mt all even — Bryant and Danziger, 2011
I t = 2 — Traetta, 2013
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Some related results

Oberwolfach Problem for complete multigraphs, with uniform cycle
length — Gvozdjak, 1997

Oberwolfach Problem for complete equipartite graphs and complete
equipartite multigraphs, with uniform cycle length — Liu, Lick, 2003

Oberwolfach Problem for complete equipartite graphs, with bipartite
2-factors — Bryant, Danziger, Patterson, 2015
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Directed Oberwolfach Problem
— resolvable directed cycle decompositions

The Directed Oberwolfach Problem: n participants are to be
seated at t round tables for n − 1 consecutive nights so that each
participant sits to the right of each other participant exactly once.
Can this be achieved with tables of sizes m1,m2, . . . ,mt assuming
m1 + m2 + . . . + mt = n?

OP∗(n;m): assuming 2 ≤ m ≤ n and m|n,
does there exist a resolvable decomposition of K ∗

n into directed
m-cycles?
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Results on OP∗(n;m)

OP∗(3t; 3) has a solution if and only if t 6= 2
— Bermond, Germa, and Sotteau, 1979

OP∗(4t; 4) has a solution for all t — Bennett and Zhang, 1990

Theorem (Burgess and Šajna, 2014)

For m ≥ 5: OP∗(tm;m) has a solution if m is even, or t and m are both
odd.

Theorem (Burgess and Šajna, 2014)

For odd m ≥ 5: if OP∗(2m;m) has a solution, then OP∗(tm;m) has a
solution for all even t.

Theorem (Burgess, Francetić, Šajna, 2018)

OP∗(2m;m) has a solution for all odd m, 5 ≤ m ≤ 49.
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The Spouse-Loving Variant of the Oberwolfach Problem

The Spouse-Loving Variant: n = 2k participants, consisting of k
couples, are to be seated at t round tables for k consecutive nights so
that each person sits next to each other person exactly once, except
they sit next to their spouse exactly twice. Is this possible for tables
of sizes m1,m2, . . . ,mt if m1 + m2 + . . . + mt = n?

Spouse-Avoiding Variant: (Cm1 ,Cm2 , . . . ,Cmt )-factorization of Kn − I
= maximum packing of Kn with (Cm1 ,Cm2 , . . . ,Cmt )-factors

Spouse-Loving Variant: (Cm1 ,Cm2 , . . . ,Cmt )-factorization of Kn + I
= minimum covering of Kn with (Cm1 ,Cm2 , . . . ,Cmt )-factors
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Results on OP+(m1,m2, . . . ,mt)

OP+(m1,m2, . . . ,mt):
assuming n = m1 + m2 + . . . + mt ,
does there exist a (Cm1 ,Cm2 , . . . ,Cmt )-factorization of Kn + I?

OP+(n;m):
assuming 3 ≤ m ≤ n and m|n,
does there exist a Cm-factorization of Kn + I?

Resolvable minimum coverings by triples:
OP+(3t; 3) has a solution if and only if t is even and t ≥ 6
— Assaf, Mendelsohn, and Stinson, 1987; Lamken and Mills, 1993

Theorem (Bolohan, Buchanan, Burgess, Šajna, 2018+)

If m1,m2, . . . ,mt are all even, then OP+(m1,m2, . . . ,mt) has a
solution.

If m is odd, m ≥ 5, then OP+(tm;m) has a solution for every even t,
except possibly for t = 4.
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The Honeymoon Oberwolfach Problem
The Honeymoon Oberwolfach Problem: 2n participants,
consisting of n newly-wed couples, are to be seated at t round tables
for 2n − 2 consecutive nights so that each person sits next to each
other person exactly once, except they sit next to their spouse every
time. Can this be achieved with tables of sizes m1,m2, . . . ,mt

assuming m1 + m2 + . . . + mt = 2n?
A

B

C

a

b

c

Figure: HOP with n = 3 and m1 = 6

Mateja Šajna (U of Ottawa) Variations on the Oberwolfach Theme 17 / 35



The Honeymoon Oberwolfach Problem
The Honeymoon Oberwolfach Problem: 2n participants,
consisting of n newly-wed couples, are to be seated at t round tables
for 2n − 2 consecutive nights so that each person sits next to each
other person exactly once, except they sit next to their spouse every
time. Can this be achieved with tables of sizes m1,m2, . . . ,mt

assuming m1 + m2 + . . . + mt = 2n?
A

B

C

a

b

c

Figure: HOP with n = 3 and m1 = 6
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HOP(m1,m2, . . . ,mt)

HOP(m1,m2, . . . ,mt):
assuming 2n = m1 + m2 + . . . + mt with m1,m2, . . . ,mt all even,
does there exist an I -alternating (Cm1 ,Cm2 , . . . ,Cmt )-factorization of
K2n + (2n − 3)I?

HOP(2n; 2m):
assuming 2 ≤ m ≤ n and m|n,
does there exist an I -alternating C2m-factorization of K2n + (2n− 3)I?

A solution to HOP(m1,m2, . . . ,mt) is equivalent to a
semi-uniform 1-factorization of K2n of type (m1,m2, . . . ,mt)

Semi-uniform 1-factorization of type (m1,m2, . . . ,mt):
1-factorization {F0,F1, . . . ,Fr−1} such that for all i 6= 1,
F0 ∪ Fi is a (Cm1 ,Cm2 , . . . ,Cmt )-factor
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Special 1-factorizations

A 1-factorization {F0,F1, . . . ,Fr−1} is called...

Semi-uniform of type (m1,m2, . . . ,mt) if
F0 ∪ Fi is a (Cm1 ,Cm2 , . . . ,Cmt )-factor for all i 6= 0

Semi-perfect :
F0 ∪ Fi is a Hamilton cycle for all i 6= 0

Uniform of type (m1,m2, . . . ,mt) if
Fi ∪ Fj is a (Cm1 ,Cm2 , . . . ,Cmt )-factor for all i 6= j

Perfect if
Fi ∪ Fj is a Hamilton cycle for all i 6= j

Sequentially uniform if
it admits a cyclic ordering (F0,F1, . . . ,Fr−1) such that the 2-factors
Fi ∪ Fi+1 are pairwise isomorphic for all i ∈ Zr

Sequentially perfect if
it admits a cyclic ordering (F0,F1, . . . ,Fr−1) such that the 2-factors
Fi ∪ Fi+1 is a Hamilton cycle for all i ∈ Zr
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Known results on special 1-factorizations

Kotzig’s Conjecture (1964):
K2n admits a perfect 1-factorization for all n

I Confirmed for many n, open in general

Královič and Královič, 2005:
K2n admits a semi-perfect 1-factorization for all n

Dinitz, Dukes, Stinson, 2005:
K2n admits a sequentially perfect 1-factorization for all n
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Results on HOP(m1,m2, . . . ,mt)

Theorem (Burgess, Lepine, Šajna, 2018+)

Assume 2 ≤ m1 ≤ m2 ≤ . . . ≤ mt and n = m1 + m2 + . . . + mt .
Then HOP(2m1, 2m2, . . . , 2mt) has a solution if

1 n is odd and OP(m1,m2, . . . ,mt) has a solution; or

2 mi ≡ 0 (mod 4) for all i ; or

3 n is odd and t = 2; or

4 n is odd, n < 40, and m1 ≥ 3; or

5 n ≤ 9.

Theorem (BLŠ, 2018+)

Assume 2 ≤ m ≤ n.
Then HOP(2n; 2m) has a solution if and only if n ≡ 0 (mod m).

Mateja Šajna (U of Ottawa) Variations on the Oberwolfach Theme 21 / 35



Modelling a table
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From K2n + (2n − 3)I to a colour-oriented 4Kn
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From K2n + (2n − 3)I to a colour-oriented 4Kn
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Admissible cycles in a colour-oriented 4Kn
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General approach: HOP colouring-orientation

HOP colouring-orientation of 4G :
a 3-edge colouring of 4G (with colours pink, blue, and black), and an
orientation of the black edges such that each 4-set of parallel edges
contains one pink edge, one blue edge, and two opposite black arcs

4G •: 4G with a given HOP-colouring-orientation

HOP 2-factorization of 4G :
in each cycle, any two adjacent edges satisfy one of:

I one is blue, one pink; or
I both are black and directed in the same way;
I one is blue, one black, directed towards the blue edge; or
I one is pink, one black, directed away from the pink edge.

Theorem (BLŠ, 2018+)

Let n = m1 + m2 + . . . + mt . HOP(2m1, 2m2, . . . , 2mt) has a solution if
and only if 4K •

n admits an HOP (Cm1 ,Cm2 , . . . ,Cmt )-factorization.
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Solution to HOP(6; 6)
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Lemma 1

Lemma

Let G = H1 ⊕ . . .⊕ Hs .

1 If H1, . . . ,Hs are spanning, and each 4H•
i admits an HOP

(Cm1 , . . . ,Cmt )-factorization, then 4G • admits an HOP
(Cm1 , . . . ,Cmt )-factorization.

2 If H1, . . . ,Hs are r -regular, pairwise vertex-disjoint, and each 4H•
i

admits an HOP Cm-factorization, then 4G • admits an HOP
Cm-factorization
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Lemma 2

Lemma

If G admits a (Cm1 , . . . ,Cmt )-factorization, then 4G • admits an HOP
(Cm1 , . . . ,Cmt )-factorization.

Proof. By Lemma 1, it suffices to prove that if C is an m-cycle, then
4C • admits an HOP Cm-factorization.
Case 1: m is even.

... ...... ...
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Lemma 2

Lemma

If G admits a (Cm1 , . . . ,Cmt )-factorization, then 4G • admits an HOP
(Cm1 , . . . ,Cmt )-factorization.

Proof. By Lemma 1, it suffices to prove that if C is an m-cycle, then
4C • admits an HOP Cm-factorization.
Case 2: m is odd.

......... ...
Mateja Šajna (U of Ottawa) Variations on the Oberwolfach Theme 28 / 35



From OP to HOP

Corollary

Assume 2 ≤ m1 ≤ m2 ≤ . . . ≤ mt , n = m1 + m2 + . . . + mt is odd, and
OP(m1,m2, . . . ,mt) has a solution.
Then HOP(2m1, 2m2, . . . , 2mt) has a solution.

Proof.

Since n is odd and OP(m1, . . . ,mt) has a solution, Kn admits a
(Cm1 , . . . ,Cmt )-factorization.

Hence 4K •
n admits an HOP (Cm1 , . . . ,Cmt )-factorization by Lemma 2.

Hence HOP(2m1, 2m2, . . . , 2mt) has a solution.
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HOP with uniform cycle lengths

Theorem (BLŠ, 2018+)

Assume 2 ≤ m ≤ n.
Then HOP(2n; 2m) has a solution if and only if n ≡ 0 (mod m).

Proof. Necessity is clear. We prove sufficiency for odd m ≥ 5 only.

Assume n ≡ 0 (mod m).

If n is odd, then OP(n;m) has a solution, so HOP(2n; 2m) has a solution.

Hence assume n is even.

Suppose first that 4K•
2m and 4K•

4m both admit HOP Cm-factorizations.

Let t = n
2m , and assume t ≥ 3.

Decompose Kn = t · K2m ⊕ Kt[2m].

4K•
2m admits an HOP Cm-factorization by supposition.

Kt[2m] admits a Cm-factorization by [Liu, 2003].

Hence 4K•
t[2m] admits an HOP Cm-factorization by Lemma 2.

Thus 4K•
n admits an HOP Cm-factorization by Lemma 1.
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HOP Cm-factorization of 4K •2m for odd m ≥ 5
Starter Cm-factors for m = 2k + 1 with k even:
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HOP Cm-factorization of 4K •2m for odd m ≥ 5
Starter Cm-factors for m = 2k + 1 with k odd:
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HOP Cm-factorization of 4K •4m for odd m ≥ 5
From the Cm-factorization of 2K4m by [Gvozdjak, 1997], we obtain an
HOP Cm-factorization of 4K •

4m.
Example: m = 5

0 1
2

3

4

5

6

7

8
91011

12

13

14

15

16

17

18

Figure: Starter Cm-factor for 2K4m
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HOP Cm-factorization of 4K •4m for odd m ≥ 5
From the Cm-factorization of 2K4m by [Gvozdjak, 1997], we obtain an
HOP Cm-factorization of 4K •

4m.
Example: m = 5
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Figure: Colour one edge of each difference pink so that each cycle has an even
number of pink edges
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HOP Cm-factorization of 4K •4m for odd m ≥ 5
From the Cm-factorization of 2K4m by [Gvozdjak, 1997], we obtain an
HOP Cm-factorization of 4K •

4m.
Example: m = 5

0 1
2

3

4

5

6

7

8
91011

12

13

14

15

16

17

18
0 1

2

3

4

5

6

7

8
91011

12

13

14

15

16

17

18

Figure: Re-colour every other pink edge blue in two different ways
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HOP Cm-factorization of 4K •4m for odd m ≥ 5
From the Cm-factorization of 2K4m by [Gvozdjak, 1997], we obtain an
HOP Cm-factorization of 4K •

4m.
Example: m = 5
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Figure: Black edges can now be oriented appropriately to yield starter Cm-factors
for an HOP Cm-factorization of 4K•

4m
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HOP with uniform cycle lengths — conclusion

Theorem (BLŠ, 2018+)

Assume 2 ≤ m ≤ n.
Then HOP(2n; 2m) has a solution if and only if n ≡ 0 (mod m).

Proof. (continued — for odd m ≥ 5)

So 4K •
2m and 4K •

4m both admit an HOP Cm-factorization.

Hence 4K •
n admits an HOP Cm-factorization for all n ≡ 0 (mod m).

Therefore HOP(2n; 2m) has a solution.
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HOP conclusion

Theorem (BLŠ, 2018+)

Assume 2 ≤ m1 ≤ m2 ≤ . . . ≤ mt and n = m1 + m2 + . . . + mt .
Then HOP(2m1, 2m2, . . . , 2mt) has a solution if

1 n is odd and OP(m1,m2, . . . ,mt) has a solution; or

2 mi ≡ 0 (mod 4) for all i ; or

3 n is odd and t = 2; or

4 n is odd, n < 40, and m1 ≥ 3; or

5 n ≤ 9.

Conjecture

The obvious necessary conditions for HOP(2m1, . . . , 2mt) to have a
solution — or equivalently,
for K2n to admit a semi-uniform 1-factorization of type (2m1, . . . , 2mt) —
are also sufficient.
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Thank you!
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