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1st problem

CONTROLLING THE AUTOMORPHISM GROUP

OF A COVERING GRAPH



Motivation, part 1

I Let Γ be a finite connected cubic G -arc-transitive graph.
Then G is of one of 7 “types”:

I G is 1-arc-regular;
I G is 2-arc-regular (two “types”);
I G is 3-arc-regular;
I G is 4-arc-regular (two “types”);
I G is 5-arc-regular.

I It is easy to construct pairs (Γ,G ) for each of the above
possibilities.

I Problem (Djoković and Miller, 1980): Can this be achieved
with G = Aut(Γ)?



Motivation, part 2

I Let Γ be a finite connected tetravalent G -half-arc-transitive
graph. Then (by Marušič and Nedela):

I |Gv | = 2s for some s ≥ 1;
I for every s, there is a finite number of “types” for G ;

I Easy to find pairs (Γ,G ) for each of the above types.

I Marušič, Nedela, 2001: Can this be achieved with
G = Aut(Γ)?

I Yes, for some types, unknown in general!



Possible general approach to such problems

General problem: We are given a pair (Γ,G ) of a given “type”, but
such that G < Aut(Γ). Can we find another pair (Γ̃, G̃ ) of the
same “type”, where G̃ = Aut(Γ̃).



Covering projections, part I

Let Γ̃ and Γ be connected graphs.

A graph morphism ℘ : Γ̃→ Γ is a covering projection provided that

I ℘ is a surjection (epimorphism);

I for every v ∈ VΓ̃ the restriction ℘v : Γ̃(v)→ Γ(℘(v)) is a
bijection. The valence is preserved.



Fibres and induced automorphisms

Let ℘ : Γ̃→ Γ be a covering projection.

I For a vertex v of Γ, the preimage ℘−1(x) is called a fibre of v .

I An automorphism g̃ ∈ Aut(Γ̃) that maps fibres to fibres
induces an automorphism g of Γ.

I In this case we say: g̃ projects, g lifts, and g̃ is a lift of g .

I Let G ≤ Aut(Γ). If every g ∈ G lifts, then G lifts. The set G̃
of all lifts of all g ∈ G is a group, called the lift of G .

I The lift of the trivial group 〈idΓ〉 ≤ Aut(Γ) is called the group
of covering tranformations ... CT(℘).



Regular covers and its nice feature

If CT(℘) is transitive on every fibre, then ℘ is a regular covering
projection.

Let ℘ : Γ̃→ Γ be a regular covering projection. Suppose that
G ≤ Aut(Γ) lifts to G̃ . Then:

I G is vertex-transitive iff G̃ is vertex-transitive;

I G is edge-transitive iff G̃ is edge-transitive;

I G is s-arc–transitive iff G̃ is s-arc-transitive;

In short, regular covering projections preserve “type”.



The problem

Recall our problem: For a (Γ,G ) of a given “type”, find another
pair (Γ̃, G̃ ) of the same “type” satisfying G̃ = Aut(Γ̃).

We can now solve this by:

finding a regular covering projection ℘ : Γ̃→ Γ s.t.:

1. G lifts along ℘, but no larger group does;

2. Every automorphism of Aut(Γ̃) projects to some
automorphism of Γ.

This works since “type” is preserved by ℘.



Main result

Theorem (P. Spiga, PP, 2017)

Let Γ be a finite graph s.t. Aut(Γ) acts faithfully on the integral
cycle space H1(Γ,Z), let G ≤ Aut(Γ) and let p be an odd prime.

Then there exists a regular covering projection ℘ : Γ̃→ Γ s.t.

I G is the maximal group that lifts along ℘;

I CT(℘) is a (finite) p-group.

We are not quite happy with this. We would like to add:

I Every automorphism of Γ̃ projects to an automorphism of Γ.

We conjecture this is true, but we have no proof!



Some consequences: cubic arc-transitive

Nevertheless, in some cases this theorem yields the desired result.

For example:

Theorem
Let Γ be a finite cubic G-arc-transitive graph. Then there exists a
regular covering projection ℘ : Γ̃→ Γ (with Γ̃ finite) such that
Aut(Γ̃) is the lift of G .



Some consequences, 2-arc-transitive

Theorem
Let Γ be a finite (G , 2)-arc-transitive graph (or G-arc-transitive of
prime valence). Then there exists a regular covering projection
℘ : Γ̃→ Γ (with Γ̃ finite) such that Aut(Γ̃) is the lift of G .

... and several other similar theorems...



Alas

Our theorem is not good enough to solve the problem of Marušič
and Nedela:

Does there exist a tetravalent half-arc-transitive graph of every
possible “type” (in particular, with arbitrary large non-abelian
vertex-stabiliser).

But if “conjecture” is true, then the answer to the above is
affirmative.



2nd problem

FIXICITY OF GRAPHS



Motion and Fixicity

Let G be a permutation group on Ω and g ∈ G .

Support of g : Supp(g) := {ω ∈ Ω: ωg 6= ω}

Fixed points of g : Fix(g) := {ω ∈ Ω: ωg = ω}

Motion of G : mt(G ) := min{|Supp(g)| : g ∈ G , g 6= 1}

Fixicity of G : fx(G ) := max{|Fix(g)| : g ∈ G , g 6= 1}

Let Γ be a graph with Aut(Γ) acting on V (Γ).

Motion of Γ: mt(Γ) := mt(Aut(Γ))

Fixicity of G : fx(Γ) := fx(Aut(Γ))



Fixicity of cubic vertex-transitive graphs

Question: Can we somehow non-trivially bound the fixicity?

Problem: Suppose we are given a class of graphs G. Find a a
function f : N→ N (as slowly growing as possible) such that all
(but finitely many) graphs Γ ∈ G satisfy

fx(Γ) ≤ f (|V(Γ)|)

We will consider this question for classes G of

I cubic vertex-transitive graphs;

I cubic arc-transitive graphs.



Split Praeger-Xu graphs

Some cubic vertex-transitive graphs have very large fixicity:

Split wreath graph SWm : fx(SWm) = n − 4

More generally, split Praeger-Xu graphs SPX (n, k) satisfy

fx(SPX (m, k)) = n − k2k+1

Here
n = |V(SPX (m, k))| = m2k



Fixicity of cubic vertex-transitive graphs
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Fixicity of cubic vertex-transitive graphs – conjecture

Conjecture

If Γ is a finite connected cubic vertex-transitive graph, then either
it is isomorphic to a SPX-graph or

fx(Γ) ≤ 1

3
n.



Fixicity of cubic arc-transitive graphs
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Cubic arc-transitive graphs with fixicity
√

2n

G = 〈u, v , t | um, vm, t2, [u, v ], ut = u−1, v t = v−1〉 ∼= Z2
m : Z2

a = ut, b = vt, c = u−1v−1t (three involutions)

Γ = Cay(G ; {a, b, c})

σ : u 7→ v 7→ u−1v−1, t 7→ t

σ ∈ Aut(G ), a 7→ b 7→ c 7→ a σ ∈ Aut(Γ)1G

Suppose there exists λ ∈ Z∗
m such that λ2 + λ+ 1 = 0.

Then σ fixes pointwise 〈u−1vλ, t〉 ∼= Zm : Z2, hence:

fx(Γ) ≥ 2m =
√

2n



Fixicity of cubic arc-transitive graphs

Recall the problem: Find a function f : N→ N (as slowly growing
as possible) such that all (but finitely many) cubic arc-transitive
graphs Γ satisfy

fx(Γ) ≤ f (|V(Γ)|)

By previous result, f (n) has to grow at least as fast as
√

2n.

Theorem (Spiga, Lehner, PP)

For every positive constant α all but finitely many connected cubic
arc-transitive graphs satisfy

fx(Γ) < α|V(Γ)|.

This shows that the “optimal” f (n) is sublinear, but at least
√

2n.


