Two problems about symmetries of finite graphs

Presented by

Primož Potočnik Faculty of Mathematics and Physics, University of Ljubljana

> Based on joint work with Pablo Spiga, Gabriel Verret, Florian Lehner

> > Koper, 28th May, 2018

On the occasion of 80th birthday of Brian Alspach and 65th birthday of Dragan Marušič

1st problem

CONTROLLING THE AUTOMORPHISM GROUP OF A COVERING GRAPH

Motivation, part 1

- Let Γ be a finite connected cubic G-arc-transitive graph. Then G is of one of 7 "types":
 - ► *G* is 1-arc-regular;
 - ► G is 2-arc-regular (two "types");
 - G is 3-arc-regular;
 - ► G is 4-arc-regular (two "types");
 - ► G is 5-arc-regular.
- It is easy to construct pairs (Γ, G) for each of the above possibilities.
- Problem (Djoković and Miller, 1980): Can this be achieved with G = Aut(Γ)?

Motivation, part 2

- Let Γ be a finite connected tetravalent G-half-arc-transitive graph. Then (by Marušič and Nedela):
 - $|G_v| = 2^s$ for some $s \ge 1$;
 - ▶ for every *s*, there is a finite number of "types" for *G*;
- **Easy** to find pairs (Γ, G) for each of the above types.
- Marušič, Nedela, 2001: Can this be achieved with G = Aut(Γ)?
- Yes, for some types, unknown in general!

Possible general approach to such problems

General problem: We are given a pair (Γ, G) of a given "type", but such that $G < \operatorname{Aut}(\Gamma)$. Can we find another pair $(\tilde{\Gamma}, \tilde{G})$ of the same "type", where $\tilde{G} = \operatorname{Aut}(\tilde{\Gamma})$. Let $\tilde{\Gamma}$ and Γ be connected graphs.

A graph morphism $\wp\colon \tilde{\Gamma}\to \Gamma$ is a covering projection provided that

▷ ℘ is a surjection (epimorphism);

For every v ∈ V_Γ the restriction ℘_v: Γ̃(v) → Γ(℘(v)) is a bijection. The valence is preserved.

Fibres and induced automorphisms

Let $\wp \colon \widetilde{\Gamma} \to \Gamma$ be a covering projection.

For a vertex v of Γ , the preimage $\wp^{-1}(x)$ is called a fibre of v.

- An automorphism g̃ ∈ Aut(Γ̃) that maps fibres to fibres induces an automorphism g of Γ.
- In this case we say: \tilde{g} projects, g lifts, and \tilde{g} is a lift of g.
- Let G ≤ Aut(Γ). If every g ∈ G lifts, then G lifts. The set G̃ of all lifts of all g ∈ G is a group, called the lift of G.
- The lift of the trivial group (id_Γ) ≤ Aut(Γ) is called the group of covering tranformations ... CT(℘).

Regular covers and its nice feature

If $CT(\wp)$ is transitive on every fibre, then \wp is a regular covering projection.

Let $\wp \colon \tilde{\Gamma} \to \Gamma$ be a regular covering projection. Suppose that $G \leq \operatorname{Aut}(\Gamma)$ lifts to \tilde{G} . Then:

- G is vertex-transitive iff \tilde{G} is vertex-transitive;
- G is edge-transitive iff \tilde{G} is edge-transitive;
- G is s-arc-transitive iff \tilde{G} is s-arc-transitive;

In short, regular covering projections preserve "type".

The problem

Recall our problem: For a (Γ, G) of a given "type", find another pair $(\tilde{\Gamma}, \tilde{G})$ of the same "type" satisfying $\tilde{G} = \operatorname{Aut}(\tilde{\Gamma})$.

We can now solve this by:

finding a regular covering projection $\wp\colon \tilde{\Gamma}\to \Gamma$ s.t.:

- 1. G lifts along \wp , but no larger group does;
- 2. Every automorphism of ${\rm Aut}(\tilde{\Gamma})$ projects to some automorphism of $\Gamma.$

This works since "type" is preserved by \wp .

Main result

Theorem (P. Spiga, PP, 2017)

Let Γ be a finite graph s.t. Aut(Γ) acts faithfully on the integral cycle space $H_1(\Gamma, \mathbb{Z})$, let $G \leq \text{Aut}(\Gamma)$ and let p be an odd prime. Then there exists a regular covering projection $\wp \colon \tilde{\Gamma} \to \Gamma$ s.t.

- G is the maximal group that lifts along φ;
- CT(\varphi) is a (finite) p-group.

We are not quite happy with this. We would like to add:

• Every automorphism of $\tilde{\Gamma}$ projects to an automorphism of Γ .

We conjecture this is true, but we have no proof!

Nevertheless, in some cases this theorem yields the desired result. For example:

Theorem

Let Γ be a finite cubic G-arc-transitive graph. Then there exists a regular covering projection $\wp \colon \tilde{\Gamma} \to \Gamma$ (with $\tilde{\Gamma}$ finite) such that $\operatorname{Aut}(\tilde{\Gamma})$ is the lift of G.

Theorem

Let Γ be a finite (G, 2)-arc-transitive graph (or G-arc-transitive of prime valence). Then there exists a regular covering projection $\wp: \tilde{\Gamma} \to \Gamma$ (with $\tilde{\Gamma}$ finite) such that $\operatorname{Aut}(\tilde{\Gamma})$ is the lift of G.

... and several other similar theorems...

Our theorem is not good enough to solve the problem of Marušič and Nedela:

Does there exist a tetravalent half-arc-transitive graph of every possible "type" (in particular, with arbitrary large non-abelian vertex-stabiliser).

But if "conjecture" is true, then the answer to the above is affirmative.

2nd problem

FIXICITY OF GRAPHS

Motion and Fixicity

Let G be a permutation group on Ω and $g \in G$.

Support of g: Supp(g) := { $\omega \in \Omega$: $\omega^g \neq \omega$ } Fixed points of g: Fix(g) := { $\omega \in \Omega$: $\omega^g = \omega$ } Motion of G: mt(G) := min{|Supp(g)| : $g \in G, g \neq 1$ } Fixicity of G: fx(G) := max{|Fix(g)| : $g \in G, g \neq 1$ }

Let Γ be a graph with $Aut(\Gamma)$ acting on $V(\Gamma)$.

Motion of Γ : mt(Γ) := mt(Aut(Γ)) Fixicity of *G*: fx(Γ) := fx(Aut(Γ)) Fixicity of cubic vertex-transitive graphs

Question: Can we somehow non-trivially bound the fixicity?

Problem: Suppose we are given a class of graphs \mathcal{G} . Find a a function $f: \mathbb{N} \to \mathbb{N}$ (as slowly growing as possible) such that all (but finitely many) graphs $\Gamma \in \mathcal{G}$ satisfy

 $fx(\Gamma) \leq f(|V(\Gamma)|)$

We will consider this question for classes ${\mathcal G}$ of

- cubic vertex-transitive graphs;
- cubic arc-transitive graphs.

Split Praeger-Xu graphs

Some cubic vertex-transitive graphs have very large fixicity:

Split wreath graph SW_m : $fx(SW_m) = n - 4$

More generally, split Praeger-Xu graphs SPX(n, k) satisfy

$$fx(SPX(m,k)) = n - k2^{k+1}$$

Here

$$n = |V(SPX(m, k))| = m2^k$$

Fixicity of cubic vertex-transitive graphs

$$f(n)=\frac{1}{3}n$$

Fixicity of cubic vertex-transitive graphs - conjecture

Conjecture

If Γ is a finite connected cubic vertex-transitive graph, then either it is isomorphic to a SPX-graph or

$$\operatorname{fx}(\Gamma) \leq \frac{1}{3}n$$

Fixicity of cubic arc-transitive graphs

 $f(n)=\sqrt{2n}$

Cubic arc-transitive graphs with fixicity $\sqrt{2n}$

$$G = \langle u, v, t \mid u^{m}, v^{m}, t^{2}, [u, v], u^{t} = u^{-1}, v^{t} = v^{-1} \rangle \cong \mathbb{Z}_{m}^{2} : \mathbb{Z}_{2}$$

$$a = ut, b = vt, c = u^{-1}v^{-1}t \quad \text{(three involutions)}$$

$$\Gamma = \text{Cay}(G; \{a, b, c\})$$

$$\sigma : u \mapsto v \mapsto u^{-1}v^{-1}, t \mapsto t$$

$$\sigma \in \text{Aut}(G), a \mapsto b \mapsto c \mapsto a \quad \sigma \in \text{Aut}(\Gamma)_{1_{G}}$$

Suppose there exists $\lambda \in \mathbb{Z}_{m}^{*}$ such that $\lambda^{2} + \lambda + 1 = 0$.

Then σ fixes pointwise $\langle u^{-1}v^{\lambda}, t \rangle \cong \mathbb{Z}_m : \mathbb{Z}_2$, hence:

 $\operatorname{fx}(\Gamma) \geq 2m = \sqrt{2n}$

Fixicity of cubic arc-transitive graphs

Recall the problem: Find a function $f : \mathbb{N} \to \mathbb{N}$ (as slowly growing as possible) such that all (but finitely many) cubic arc-transitive graphs Γ satisfy

 $\operatorname{fx}(\Gamma) \leq f(|V(\Gamma)|)$

By previous result, f(n) has to grow at least as fast as $\sqrt{2n}$.

Theorem (Spiga, Lehner, PP)

For every positive constant α all but finitely many connected cubic arc-transitive graphs satisfy

 $\operatorname{fx}(\Gamma) < \alpha |V(\Gamma)|.$

This shows that the "optimal" f(n) is sublinear, but at least $\sqrt{2n}$.