Graphs with small distinguishing index

Monika Pilśniak
AGH University, Krakow, Poland

Koper, 28th May 2018

Example

Example

Example

Example

Definitions

c - edge colouring, not necessarily proper, of $G=(V, E)$

Definitions

c - edge colouring, not necessarily proper, of $G=(V, E)$

Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E: c(\varphi(e)) \neq c(e)$.

Definitions

c - edge colouring, not necessarily proper, of $G=(V, E)$

Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E: c(\varphi(e)) \neq c(e)$.

Def. c is a distinguishing colouring if it breaks every non-trivial automorphism of G.

Definitions

c - edge colouring, not necessarily proper, of $G=(V, E)$

Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E: c(\varphi(e)) \neq c(e)$.

Def. c is a distinguishing colouring if it breaks every non-trivial automorphism of G.

Def. (Kalinowski \& P., 2015) The distinguishing index $D^{\prime}(G)$ of a graph G is the least number of colours in a distinguishing edge colouring.

Definitions

c - edge colouring, not necessarily proper, of $G=(V, E)$

Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E: c(\varphi(e)) \neq c(e)$.

Def. c is a distinguishing colouring if it breaks every non-trivial automorphism of G.

Def. (Kalinowski \& P., 2015) The distinguishing index $D^{\prime}(G)$ of a graph G is the least number of colours in a distinguishing edge colouring.

- Assumption: $|G| \geq 3$

Examples

$D^{\prime}(G)=1$ iff G is an asymmetric graph, i.e. Aut $(G)=\{i d\}$.

Examples

$$
\begin{aligned}
& D^{\prime}(G)=1 \text { iff } G \text { is an asymmetric graph, i.e. Aut }(G)=\{\mathrm{id}\} . \\
& D^{\prime}\left(P_{n}\right)=2, n \geq 3
\end{aligned}
$$

Examples

$$
\begin{aligned}
& D^{\prime}(G)=1 \text { iff } G \text { is an asymmetric graph, i.e. Aut }(G)=\{\text { id }\} \text {. } \\
& D^{\prime}\left(P_{n}\right)=2, n \geq 3 \\
& D^{\prime}\left(C_{n}\right)=3, n \leq 5, \quad D^{\prime}\left(C_{n}\right)=2, n \geq 6
\end{aligned}
$$

Examples

$D^{\prime}(G)=1$ iff G is an asymmetric graph, i.e. Aut $(G)=\{i d\}$.

$$
D^{\prime}\left(P_{n}\right)=2, n \geq 3
$$

$D^{\prime}\left(C_{n}\right)=3, n \leq 5, \quad D^{\prime}\left(C_{n}\right)=2, n \geq 6$

Examples

$D^{\prime}(G)=1$ iff G is an asymmetric graph, i.e. Aut $(G)=\{i d\}$.
$D^{\prime}\left(P_{n}\right)=2, n \geq 3$

$D^{\prime}\left(C_{n}\right)=3, n \leq 5, \quad D^{\prime}\left(C_{n}\right)=2, n \geq 6$

$D^{\prime}\left(K_{n}\right)=3, n=3,4,5, \quad D^{\prime}\left(K_{n}\right)=2, n \geq 6$.

Trees

Def. A tree T is bisymmetric (resp. symmetric) if it has a central edge e_{c} (resp. a central vertex v_{c}), all leaves are at the same distance from $e_{c}\left(\right.$ resp. $\left.v_{c}\right)$ and every vertex that is not a leaf has the same degree.

Trees

Def. A tree T is bisymmetric (resp. symmetric) if it has a central edge e_{c} (resp. a central vertex v_{c}), all leaves are at the same distance from e_{c} (resp. v_{c}) and every vertex that is not a leaf has the same degree.

Trees

Def. A tree T is bisymmetric (resp. symmetric) if it has a central edge e_{c} (resp. a central vertex v_{c}), all leaves are at the same distance from e_{c} (resp. v_{c}) and every vertex that is not a leaf has the same degree.

General bounds

Thm. (Kalinowski \& P. 2015)
If T is a tree of order $n \geq 3$, then

$$
D^{\prime}(T) \leq \Delta(T)
$$

Moreover, equality is achieved if and only if T is either a symmetric or a bisymmetric tree.
$>$ Kalinowski, Pilśniak, Distinguishing graphs by edge colourings, European J. Combin. 45 (2015)

General bounds

Thm. (Kalinowski \& P. 2015) If T is a tree of order $n \geq 3$, then

$$
D^{\prime}(T) \leq \Delta(T)
$$

Moreover, equality is achieved if and only if T is either a symmetric or a bisymmetric tree.

Thm. (Kalinowski \& P. 2015) If G is a connected graph of order $n \geq 3$, then

$$
D^{\prime}(G) \leq \Delta(G)
$$

except for three small cycles C_{3}, C_{4} or C_{5}.

- Kalinowski, Pilśniak, Distinguishing graphs by edge colourings, European J. Combin. 45 (2015)

Graphs with $D^{\prime}(G)=\Delta(G)$

- Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

Graphs with $D^{\prime}(G)=\Delta(G)$

Thm. (P. 2017)
Let G be a connected graph with $\Delta(G) \geq 3$. If G is neither a symmetric nor a bisymmetric tree, then

$$
D^{\prime}(G) \leq \Delta(G)-1
$$

unless G is K_{4} or $K_{3,3}$.

- Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

Graphs with $D^{\prime}(G)=\Delta(G)$

Thm. (P. 2017)
Let G be a connected graph with $\Delta(G) \geq 3$. If G is neither a symmetric nor a bisymmetric tree, then

$$
D^{\prime}(G) \leq \Delta(G)-1
$$

unless G is K_{4} or $K_{3,3}$.

Cor. If G is connected, then

Graphs with $D^{\prime}(G)=\Delta(G)$

Thm. (P. 2017)
Let G be a connected graph with $\Delta(G) \geq 3$. If G is neither a symmetric nor a bisymmetric tree, then

$$
D^{\prime}(G) \leq \Delta(G)-1
$$

unless G is K_{4} or $K_{3,3}$.

Cor. If G is connected, then

$$
D^{\prime}(G)=\Delta(G)+1 \text { iff } G \in\left\{C_{3}, C_{4}, C_{5}\right\}
$$

Graphs with $D^{\prime}(G)=\Delta(G)$

Thm. (P. 2017)
Let G be a connected graph with $\Delta(G) \geq 3$. If G is neither a symmetric nor a bisymmetric tree, then

$$
D^{\prime}(G) \leq \Delta(G)-1
$$

unless G is K_{4} or $K_{3,3}$.

Cor. If G is connected, then
$D^{\prime}(G)=\Delta(G)+1$ iff $G \in\left\{C_{3}, C_{4}, C_{5}\right\}$,
$D^{\prime}(G)=\Delta(G)$ iff $G \in\left\{K_{4}, K_{3,3}\right\} \cup\left\{C_{n}: n \geq 6\right\}$, or G is either a symmetric or a bisymmetric tree.

Key lemma

Def. A graph G is almost spanned by a subgraph H if H is a spanning subgraph of $G-v$ for some $v \in V(G)$.

- Pilśniak, Improving upper bounds for the distinguishing index, (Ars Math. Contemp. 13, 2017)

Key lemma

Def. A graph G is almost spanned by a subgraph H if H is a spanning subgraph of $G-v$ for some $v \in V(G)$.

Lem. (P. 2017) If G is spanned or almost spanned by a subgraph H, then

$$
D^{\prime}(G) \leq D^{\prime}(H)+1
$$

- Pilśniak, Improving upper bounds for the distinguishing index, (Ars Math. Contemp. 13, 2017)

Key lemma

Def. A graph G is almost spanned by a subgraph H if H is a spanning subgraph of $G-v$ for some $v \in V(G)$.

Lem. (P. 2017) If G is spanned or almost spanned by a subgraph H, then

$$
D^{\prime}(G) \leq D^{\prime}(H)+1
$$

- Pilśniak, Improving upper bounds for the distinguishing index, (Ars Math. Contemp. 13, 2017)

Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \geq 7$, then

$$
D^{\prime}(G) \leq 2
$$

- Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \geq 7$, then

$$
D^{\prime}(G) \leq 2
$$

- $n=6: D^{\prime}\left(K_{3,3}\right)=3$.

Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \geq 7$, then

$$
D^{\prime}(G) \leq 2
$$

- $n=6: D^{\prime}\left(K_{3,3}\right)=3$.

Proof: G is a path, or

Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \geq 7$, then

$$
D^{\prime}(G) \leq 2
$$

- $n=6: D^{\prime}\left(K_{3,3}\right)=3$.

Proof: G is a path, or
G is a path with a pendant triangle, or

Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \geq 7$, then

$$
D^{\prime}(G) \leq 2
$$

- $n=6: D^{\prime}\left(K_{3,3}\right)=3$.

Proof: G is a path, or
G is a path with a pendant triangle, or
G contains an asymmetric spanning or almost spanning subgraph.

Planar graphs

Planar graphs

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D^{\prime}(G) \leq 2$.

Planar graphs

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D^{\prime}(G) \leq 2$.

Thm. (P. 2017) If G is a 3-connected planar graph, then

$$
D^{\prime}(G) \leq 3
$$

- Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

Planar graphs

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D^{\prime}(G) \leq 2$.

Thm. (P. 2017) If G is a 3-connected planar graph, then

$$
D^{\prime}(G) \leq 3
$$

Proof: based on

Planar graphs

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D^{\prime}(G) \leq 2$.

Thm. (P. 2017) If G is a 3-connected planar graph, then

$$
D^{\prime}(G) \leq 3
$$

Proof: based on
Thm. (Barnette 1966) Every 3-connected planar graph has a spanning tree T with $\Delta(T) \leq 3$.

Planar graphs

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D^{\prime}(G) \leq 2$.

Thm. (P. 2017) If G is a 3 -connected planar graph, then

$$
D^{\prime}(G) \leq 3
$$

Proof: based on
Thm. (Barnette 1966) Every 3-connected planar graph has a spanning tree T with $\Delta(T) \leq 3$.

Thm. (P. \& Tucker 2018+) If G is a 3-connected planar graph different from K_{4}, then

$$
D^{\prime}(G) \leq 2
$$

2-connected planar graphs

$$
D^{\prime}\left(K_{2, r^{2}}\right)=r+1
$$

2-connected planar graphs

$$
D^{\prime}\left(K_{2, r^{2}}\right)=r+1
$$

2-connected planar graphs

$$
D^{\prime}\left(K_{2, r^{2}}\right)=r+1
$$

Claw-free graphs

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Claw-free graphs

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (P. 2017) If G is a connected claw-free graph, then

$$
D^{\prime}(G) \leq 3
$$

- Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

Claw-free graphs

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (P. 2017) If G is a connected claw-free graph, then

$$
D^{\prime}(G) \leq 3
$$

Proof: based on

Claw-free graphs

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (P. 2017) If G is a connected claw-free graph, then

$$
D^{\prime}(G) \leq 3
$$

Proof: based on
Thm. (Win 1989) A 2-connected claw-free graph has a spanning tree T with $\Delta(T) \leq 3$.

Claw-free graphs

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (P. 2017) If G is a connected claw-free graph, then

$$
D^{\prime}(G) \leq 3
$$

Proof: based on
Thm. (Win 1989) A 2-connected claw-free graph has a spanning tree T with $\Delta(T) \leq 3$.

Thm. (Kargul, Musial \& Pal, 2018+) If G is a connected claw-free graph and $|G| \geq 7$, then

$$
D^{\prime}(G) \leq 2
$$

The Cartesian product of graphs

- Cartesian product $G \square H$

The Cartesian product of graphs

- Cartesian product $G \square H$ vertex set: $V(G) \times V(H)$

The Cartesian product of graphs

- Cartesian product $G \square H$
vertex set: $V(G) \times V(H)$

$$
\begin{aligned}
& E(G \square H)=\{(x, u)(y, v) \mid(x y \in E(G) \wedge u=v) \vee \\
& (x=y \wedge u v \in E(H))\}
\end{aligned}
$$

The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski \& P. 2017]
If G is a connected graph of order $n \geq 3$, then $D^{\prime}\left(G^{k}\right)=2$.

- Gorzkowska, Kalinowski, Piśsniak, The distinguishing index of Cartesian product of graphs, Ars Math. Contemp. 12, 2017

The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski \& P. 2017]
If G is a connected graph of order $n \geq 3$, then $D^{\prime}\left(G^{k}\right)=2$.

Obs. If K_{2}^{k} is a hypercube of dimension k, then $D^{\prime}\left(K_{2}^{k}\right)=2$ unless $k=2$.

- Gorzkowska, Kalinowski, Pilśniak, The distinguishing index of Cartesian product of graphs, Ars Math. Contemp. 12, 2017

The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski \& P. 2017]
If G is a connected graph of order $n \geq 3$, then $D^{\prime}\left(G^{k}\right)=2$.
Obs. If K_{2}^{k} is a hypercube of dimension k, then $D^{\prime}\left(K_{2}^{k}\right)=2$ unless $k=2$.

- Since a hypercube is Hamiltonian for $k \geq 3$.
- Gorzkowska, Kalinowski, Pilśniak, The distinguishing index of Cartesian product of graphs, Ars Math. Contemp. 12, 2017

The Cartesian product of countable graphs

Thm. (Broere \& P. 2017) If G is a connected prime, countably infinite graphs, then $D^{\prime}\left(G^{k}\right)=2$, for any $k \geq 2$.

- Broere, Pilśniak, The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13, 2017

The Cartesian product of countable graphs

Thm. (Broere \& P. 2017) If G is a connected prime, countably infinite graphs, then $D^{\prime}\left(G^{k}\right)=2$, for any $k \geq 2$.

Thm. (Broere \& P. 2017) If G and H are two connected relatively prime, countably infinite graphs, then $D^{\prime}(G \square H) \leq 2$.

- Broere, Pilśniak, The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13, 2017

The Cartesian product of countable graphs

Thm. (Broere \& P. 2017) If G is a connected prime, countably infinite graphs, then $D^{\prime}\left(G^{k}\right)=2$, for any $k \geq 2$.

Thm. (Broere \& P. 2017) If G and H are two connected relatively prime, countably infinite graphs, then $D^{\prime}(G \square H) \leq 2$.

Thm. (Broere \& P., 2017) $D^{\prime}\left(K_{2}^{\aleph_{0}}\right)=2$.

Broere, Pilśniak, The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13, 2017

Total colourings

$D^{\prime \prime}(G)$ - total distinguishing number

- Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

Total colourings

$D^{\prime \prime}(G)$ - total distinguishing number

Thm. (Kalinowski, P. \& Woźniak 2016) If G is a connected graph, then

$$
D^{\prime \prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil .
$$

- Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

Total colourings

$D^{\prime \prime}(G)$ - total distinguishing number

Thm. (Kalinowski, P. \& Woźniak 2016) If G is a connected graph, then

$$
D^{\prime \prime}(G) \leq\lceil\sqrt{\Delta(G)}\rceil
$$

It is sharp:

- Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings, Ars Math. Contemp. 11, 2016

Total proper colourings

$\chi_{D}^{\prime \prime}(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

Total proper colourings

$\chi_{D}^{\prime \prime}(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

Total Colouring Conjecture(Behzad '65, Vizing '68)

$$
\chi^{\prime \prime}(G) \leq \Delta(G)+2
$$

Total proper colourings

$\chi_{D}^{\prime \prime}(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

$$
\begin{aligned}
& \text { Total Colouring Conjecture(Behzad '65, Vizing '68) } \\
& \qquad \chi^{\prime \prime}(G) \leq \Delta(G)+2 .
\end{aligned}
$$

Thm. (Kalinowski, P. \& Woźniak 2016) If G is a connected graph, then

$$
\chi_{D}^{\prime \prime}(G) \leq \chi^{\prime \prime}(G)+1
$$

- Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

Ars Math. Contemp. 11, 2016

Total proper colourings

$\chi_{D}^{\prime \prime}(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

Total Colouring Conjecture(Behzad '65, Vizing '68)

$$
\chi^{\prime \prime}(G) \leq \Delta(G)+2
$$

Thm. (Kalinowski, P. \& Woźniak 2016) If G is a connected graph, then

$$
\chi_{D}^{\prime \prime}(G) \leq \chi^{\prime \prime}(G)+1
$$

Moreover, if $\chi^{\prime \prime}(G) \geq \Delta(G)+2$, then

$$
\chi_{D}^{\prime \prime}(G)=\chi^{\prime \prime}(G)
$$

- Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

Ars Math. Contemp. 11, 2016

THANK YOU VERY MUCH!

