Graphs with small distinguishing index

Monika Pilśniak AGH University, Krakow, Poland

Koper, 28th May 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ─ 差 … 釣ぬぐ

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ─ 差 … 釣ぬぐ

◆□> ◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

◆□> ◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

c - edge colouring, not necessarily proper, of G = (V, E)

c - edge colouring, not necessarily proper, of G = (V, E)

ション ふゆ マ キャット マン・ション シックション

Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E : c(\varphi(e)) \neq c(e)$.

c - edge colouring, not necessarily proper, of G = (V, E)

- Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E : c(\varphi(e)) \neq c(e)$.
- Def. c is a distinguishing colouring if it breaks every non-trivial automorphism of G.

c - edge colouring, not necessarily proper, of G = (V, E)

- Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E : c(\varphi(e)) \neq c(e)$.
- Def. c is a distinguishing colouring if it breaks every non-trivial automorphism of G.
- Def. (Kalinowski & P., 2015) The distinguishing index D'(G)of a graph G is the least number of colours in a distinguishing edge colouring.

c - edge colouring, not necessarily proper, of G = (V, E)

- Def. c breaks an automorphism φ of G if φ does not preserve colours of c, i.e. $\exists e \in E : c(\varphi(e)) \neq c(e)$.
- Def. c is a distinguishing colouring if it breaks every non-trivial automorphism of G.
- Def. (Kalinowski & P., 2015) The distinguishing index D'(G)of a graph G is the least number of colours in a distinguishing edge colouring.

• Assumption: $|G| \ge 3$

D'(G) = 1 iff G is an asymmetric graph, i.e. Aut $(G) = {id}$.

D'(G) = 1 iff G is an asymmetric graph, i.e. Aut $(G) = {id}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

イロト (得) (日) (日) (日) (日) (の)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

 $D'(K_n) = 3, n = 3, 4, 5, \quad D'(K_n) = 2, n \ge 6.$

Trees

Def. A tree T is bisymmetric (resp. symmetric) if it has a central edge e_c (resp. a central vertex v_c), all leaves are at the same distance from e_c (resp. v_c) and every vertex that is not a leaf has the same degree.

ション ふゆ マ キャット マン・ション シックション

Trees

Def. A tree T is bisymmetric (resp. symmetric) if it has a central edge e_c (resp. a central vertex v_c), all leaves are at the same distance from e_c (resp. v_c) and every vertex that is not a leaf has the same degree.

・ロト ・聞ト ・ヨト ・ヨト

э

Trees

Def. A tree T is bisymmetric (resp. symmetric) if it has a central edge e_c (resp. a central vertex v_c), all leaves are at the same distance from e_c (resp. v_c) and every vertex that is not a leaf has the same degree.

General bounds

Thm. (Kalinowski & P. 2015) If T is a tree of order $n \ge 3$, then

$D'(T) \leq \Delta(T).$

Moreover, equality is achieved if and only if T is either a symmetric or a bisymmetric tree.

Kalinowski, Pilśniak, *Distinguishing graphs by edge colourings*, European J. Combin. 45 (2015)

イロト (局) (日) (日) (日) (の)

General bounds

Thm. (Kalinowski & P. 2015) If T is a tree of order $n \ge 3$, then

$D'(T) \leq \Delta(T).$

Moreover, equality is achieved if and only if T is either a symmetric or a bisymmetric tree.

Thm. (Kalinowski & P. 2015) If G is a connected graph of order $n \ge 3$, then

 $D'(G) \leq \Delta(G)$

except for three small cycles C_3 , C_4 or C_5 .

Kalinowski, Pilśniak, *Distinguishing graphs by edge colourings*, European J. Combin. 45 (2015)

イロト (局) (日) (日) (日) (の)

Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

◆□> ◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

Thm. (P. 2017) Let G be a connected graph with $\Delta(G) \ge 3$. If G is neither a symmetric nor a bisymmetric tree, then

 $D'(G) \leq \Delta(G) - 1$

unless G is K_4 or $K_{3,3}$.

Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

ション ふゆ マ キャット マン・ション シックション

Thm. (P. 2017) Let G be a connected graph with $\Delta(G) \ge 3$. If G is neither a symmetric nor a bisymmetric tree, then

 $D'(G) \leq \Delta(G) - 1$

ション ふゆ マ キャット マン・ション シックション

unless G is K_4 or $K_{3,3}$.

Cor. If G is connected, then

Thm. (P. 2017) Let G be a connected graph with $\Delta(G) \ge 3$. If G is neither a symmetric nor a bisymmetric tree, then

 $D'(G) \leq \Delta(G) - 1$

イロト 不得 トイヨト イヨト ヨー ろくで

unless G is K_4 or $K_{3,3}$.

Cor. If G is connected, then $D'(G) = \Delta(G) + 1$ iff $G \in \{C_3, C_4, C_5\}$,

Thm. (P. 2017) Let G be a connected graph with $\Delta(G) \ge 3$. If G is neither a symmetric nor a bisymmetric tree, then

 $D'(G) \leq \Delta(G) - 1$

unless G is K_4 or $K_{3,3}$.

Cor. If G is connected, then $D'(G) = \Delta(G) + 1$ iff $G \in \{C_3, C_4, C_5\}$, $D'(G) = \Delta(G)$ iff $G \in \{K_4, K_{3,3}\} \cup \{C_n : n \ge 6\}$, or G is either a symmetric or a bisymmetric tree.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Key lemma

Def. A graph G is almost spanned by a subgraph H if H is a spanning subgraph of G - v for some $v \in V(G)$.

Key lemma

Def. A graph G is almost spanned by a subgraph H if H is a spanning subgraph of G - v for some $v \in V(G)$.

Lem. (P. 2017) If G is spanned or almost spanned by a subgraph H, then

 $D'(G) \leq D'(H) + 1.$

Key lemma

Def. A graph G is almost spanned by a subgraph H if H is a spanning subgraph of G - v for some $v \in V(G)$.

Lem. (*P. 2017*) If *G* is spanned or almost spanned by a subgraph *H*, then

 $D'(G) \leq D'(H) + 1.$

Pilśniak, Improving upper bounds for the distinguishing index, (Ars Math. Contemp. 13, 2017)

Def. A graph is traceable if it contains a Hamiltonian path.

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \ge 7$, then

 $D'(G) \leq 2.$

Pilśniak, Improving upper bounds for the distinguishing index, Ars Math. Contemp. 13 (2017)

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \ge 7$, then

 $D'(G) \leq 2.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ n = 6: $D'(K_{3,3}) = 3$

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \ge 7$, then

 $D'(G) \leq 2.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶
$$n = 6$$
: $D'(K_{3,3}) = 3$.

Proof: G is a path, or

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \ge 7$, then

 $D'(G) \leq 2.$

ション ふゆ マ キャット マン・ション シックション

•
$$n = 6$$
: $D'(K_{3,3}) = 3$.

Proof: G is a path, or G is a path with a pendant triangle, or

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order $n \ge 7$, then

 $D'(G) \leq 2.$

•
$$n = 6$$
: $D'(K_{3,3}) = 3$.

Proof: G is a path, or G is a path with a pendant triangle, or G contains an asymmetric spanning or almost spanning subgraph.

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D'(G) \leq 2$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D'(G) \leq 2$.

Thm. (P. 2017) If G is a 3-connected planar graph, then $D'(G) \leq 3.$

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D'(G) \leq 2$.

ション ふゆ マ キャット マン・ション シックション

Thm. (P. 2017) If G is a 3-connected planar graph, then $D'(G) \leq 3.$

Proof: based on

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D'(G) \leq 2$.

ション ふゆ マ キャット マン・ション シックション

Thm. (P. 2017) If G is a 3-connected planar graph, then $D'(G) \leq 3$.

Proof: based on Thm. (Barnette 1966) Every 3-connected planar graph has a spanning tree T with $\Delta(T) \leq 3$.

By a theorem of Tutte, every 4-connected planar graph G is Hamiltonian. Then $D'(G) \leq 2$.

Thm. (*P. 2017*) If G is a 3-connected planar graph, then $D'(G) \leq 3$.

Proof: based on Thm. (Barnette 1966) Every 3-connected planar graph has a spanning tree T with $\Delta(T) \leq 3$.

Thm. (*P.* & Tucker 2018+) If G is a 3-connected planar graph different from K_4 , then

 $D'(G) \leq 2.$

2-connected planar graphs

$$D'(K_{2,r^2})=r+1$$

2-connected planar graphs

$$D'(K_{2,r^2})=r+1$$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

2-connected planar graphs

$$D'(K_{2,r^2})=r+1$$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (*P. 2017*) If *G* is a connected claw-free graph, then $D'(G) \leq 3.$

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Thm. (P. 2017) If G is a connected claw-free graph, then $D'(G) \leq 3.$

Proof: based on

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (*P. 2017*) If G is a connected claw-free graph, then $D'(G) \leq 3$.

Proof: based on Thm. (Win 1989) A 2-connected claw-free graph has a spanning tree T with $\Delta(T) \leq 3$.

ション ふゆ マ キャット マン・ション シックション

Def. A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Thm. (*P. 2017*) If G is a connected claw-free graph, then $D'(G) \leq 3.$

Proof: based on

Thm. (*Win 1989*) A 2-connected claw-free graph has a spanning tree T with $\Delta(T) \leq 3$.

Thm. (Kargul, Musial & Pal, 2018+) If G is a connected claw-free graph and $|G| \ge 7$, then

 $D'(G) \leq 2.$

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ ・ クタマ

The Cartesian product of graphs

• Cartesian product $G \Box H$

The Cartesian product of graphs

• Cartesian product $G \Box H$

vertex set: $V(G) \times V(H)$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のくで

The Cartesian product of graphs

• Cartesian product $G \Box H$

vertex set: $V(G) \times V(H)$

 $E(G\Box H) = \{(x, u)(y, v) \mid (xy \in E(G) \land u = v) \lor (x = y \land uv \in E(H))\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski & P. 2017] If G is a connected graph of order $n \ge 3$, then $D'(G^k) = 2$.

Gorzkowska, Kalinowski, Pilśniak, The distinguishing index of Cartesian product of graphs, Ars Math. Contemp. 12, 2017

ション ふゆ マ キャット マン・ション シックション

The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski & P. 2017] If G is a connected graph of order $n \ge 3$, then $D'(G^k) = 2$.

Obs. If K_2^k is a hypercube of dimension k, then $D'(K_2^k) = 2$ unless k = 2.

Gorzkowska, Kalinowski, Pilśniak, *The distinguishing index of Cartesian product of graphs*, Ars Math. Contemp. 12, 2017

The Cartesian power of a graph

- Thm. [Gorzkowska, Kalinowski & P. 2017] If G is a connected graph of order $n \ge 3$, then $D'(G^k) = 2$.
 - Obs. If K_2^k is a hypercube of dimension k, then $D'(K_2^k) = 2$ unless k = 2.
 - Since a hypercube is Hamiltonian for $k \ge 3$.

Gorzkowska, Kalinowski, Pilśniak, *The distinguishing index of Cartesian product of graphs*, Ars Math. Contemp. 12, 2017

The Cartesian product of countable graphs

Thm. (Broere & P. 2017) If G is a connected prime, countably infinite graphs, then $D'(G^k) = 2$, for any $k \ge 2$.

Broere, Pilśniak, The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13, 2017

イロト 不良 トイヨト イヨト ヨー ろくで

The Cartesian product of countable graphs

- Thm. (Broere & P. 2017) If G is a connected prime, countably infinite graphs, then $D'(G^k) = 2$, for any $k \ge 2$.
- Thm. (Broere & P. 2017) If G and H are two connected relatively prime, countably infinite graphs, then $D'(G\Box H) \leq 2$.

Broere, Pilśniak, The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13, 2017

The Cartesian product of countable graphs

- Thm. (Broere & P. 2017) If G is a connected prime, countably infinite graphs, then $D'(G^k) = 2$, for any $k \ge 2$.
- Thm. (Broere & P. 2017) If G and H are two connected relatively prime, countably infinite graphs, then $D'(G\Box H) \leq 2$.
- Thm. (Broere & P., 2017) $D'(K_2^{\aleph_0}) = 2$.

Broere, Pilśniak, The distinguishing index of the Cartesian product of countable graphs, Ars Math. Contemp. 13, 2017

Total colourings

D''(G) - total distinguishing number

Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Total colourings

D''(G) - total distinguishing number

Thm. (Kalinowski, P. & Woźniak 2016) If G is a connected graph, then

 $D''(G) \leq \left\lceil \sqrt{\Delta(G)} \right\rceil.$

ション ふゆ マ キャット マン・ション シックション

Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

Total colourings

D''(G) - total distinguishing number

Thm. (Kalinowski, P. & Woźniak 2016) If G is a connected graph, then

 $D''(G) \leq \left\lceil \sqrt{\Delta(G)}
ight
ceil.$

It is sharp:

イロト イポト イヨト イヨト ヨー のくぐ

Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

 $\chi''_D(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

 $\chi''_D(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

Total Colouring Conjecture (Behzad '65, Vizing '68)

 $\chi''(G) \leq \Delta(G) + 2.$

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ ・ クタマ

 $\chi''_D(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

Total Colouring Conjecture(Behzad '65, Vizing '68) $\chi''(G) \leq \Delta(G) + 2.$

Thm. (Kalinowski, P. & Woźniak 2016) If G is a connected graph, then

 $\chi_D''(G) \le \chi''(G) + 1.$

Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

 $\chi''_D(G)$ - total distinguishing chromatic number is the minimum number of colours in a distinguishing total colouring

Total Colouring Conjecture(Behzad '65, Vizing '68) $\chi''(G) \leq \Delta(G) + 2.$

Thm. (Kalinowski, P. & Woźniak 2016) If G is a connected graph, then

 $\chi_D''(G) \le \chi''(G) + 1.$

Moreover, if $\chi''(G) \ge \Delta(G) + 2$, then $\chi''_D(G) = \chi''(G).$

Kalinowski, Pilśniak, Woźniak, Distinguishing graphs by total colourings,

THANK YOU VERY MUCH!

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで