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c - edge olouring, not neessarily proper, of G = (V ,E )

Def. c breaks an automorphism ϕ of G if ϕ does not preserve

olours of c , i.e. ∃e ∈ E : c(ϕ(e)) 6= c(e).

Def. c is a distinguishing olouring if it breaks every non-trivial

automorphism of G .

Def. (Kalinowski & P., 2015) The distinguishing index D ′(G )
of a graph G is the least number of olours in a distinguishing

edge olouring.

◮
Assumption: |G | ≥ 3
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Examples

D ′(G ) = 1 i� G is an asymmetri graph, i.e. Aut (G ) = {id}.

D ′(Pn) = 2, n ≥ 3

D ′(Cn) = 3, n ≤ 5, D ′(Cn) = 2, n ≥ 6

D ′(Kn) = 3, n = 3, 4, 5, D ′(Kn) = 2, n ≥ 6 .



Trees

Def. A tree T is bisymmetri (resp. symmetri) if it has a entral

edge ec (resp. a entral vertex vc), all leaves are at the same

distane from ec (resp. vc) and every vertex that is not a leaf

has the same degree.



Trees

Def. A tree T is bisymmetri (resp. symmetri) if it has a entral

edge ec (resp. a entral vertex vc), all leaves are at the same

distane from ec (resp. vc) and every vertex that is not a leaf

has the same degree.

b b

b b b

b b b b b b b b b

bbb

bbbbbbbbb



Trees

Def. A tree T is bisymmetri (resp. symmetri) if it has a entral

edge ec (resp. a entral vertex vc), all leaves are at the same

distane from ec (resp. vc) and every vertex that is not a leaf

has the same degree.

b b

b b b

b b b b b b b b b

bbb

bbbbbbbbb

bbb



General bounds

Thm. (Kalinowski & P. 2015)

If T is a tree of order n ≥ 3, then

D ′(T ) ≤ ∆(T ).

Moreover, equality is ahieved if and only if T is either
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General bounds

Thm. (Kalinowski & P. 2015)

If T is a tree of order n ≥ 3, then

D ′(T ) ≤ ∆(T ).

Moreover, equality is ahieved if and only if T is either

a symmetri or a bisymmetri tree.

Thm. (Kalinowski & P. 2015) If G is a onneted graph of order

n ≥ 3, then

D ′(G ) ≤ ∆(G )

exept for three small yles C
3

, C
4

or C
5

.

◮
Kalinowski, Pil±niak, Distinguishing graphs by edge olourings, European J. Combin. 45 (2015)
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Graphs with D
′(G ) = ∆(G )

Thm. (P. 2017)

Let G be a onneted graph with ∆(G ) ≥ 3. If G is neither

a symmetri nor a bisymmetri tree, then

D ′(G ) ≤ ∆(G )− 1

unless G is K
4

or K
3,3

.

Cor. If G is onneted, then

D ′(G ) = ∆(G ) + 1 i� G ∈ {C
3

,C
4

,C
5

},

D ′(G ) = ∆(G ) i� G ∈ {K
4

,K
3,3

} ∪ {Cn : n ≥ 6},
or G is either a symmetri or a bisymmetri tree.
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Traeable graphs

Def. A graph is traeable if it ontains a Hamiltonian path.

Thm. (P. 2017) If G is a traeable graph of order n ≥ 7, then

D ′(G ) ≤ 2.

◮ n = 6: D ′(K
3,3

) = 3.

Proof: G is a path, or

G is a path with a pendant triangle, or

G ontains an asymmetri spanning or almost spanning

subgraph.
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Planar graphs

By a theorem of Tutte, every 4-onneted planar graph G is

Hamiltonian. Then D ′(G ) ≤ 2.

Thm. (P. 2017) If G is a 3-onneted planar graph, then

D ′(G ) ≤ 3.

Proof: based on

Thm. (Barnette 1966) Every 3-onneted planar graph has

a spanning tree T with ∆(T ) ≤ 3.

Thm. (P. & Tuker 2018+) If G is a 3-onneted planar graph

di�erent from K
4

, then

D ′(G ) ≤ 2.
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Claw-free graphs

Def. A graph G is law-free if it does not ontain K
1,3

as an

indued subgraph.

Thm. (P. 2017) If G is a onneted law-free graph, then

D ′(G ) ≤ 3.

Proof: based on

Thm. (Win 1989) A 2-onneted law-free graph has a spanning tree

T with ∆(T ) ≤ 3.

Thm. (Kargul, Musial & Pal, 2018+) If G is a onneted law-free

graph and |G | ≥ 7, then

D ′(G ) ≤ 2.
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The Cartesian produt of graphs

◮
Cartesian produt G✷H

vertex set: V (G )× V (H)

E (G✷H) =
{

(x , u)(y , v) | (xy ∈ E (G ) ∧ u = v)∨
(x = y ∧ uv ∈ E (H))

}

Ex. P
4

✷P
3
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The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski & P. 2017℄

If G is a onneted graph of order n ≥ 3, then D ′(G k) = 2.

Obs. If K k
2

is a hyperube of dimension k , then D ′(K k
2

) = 2 unless

k = 2.

◮
Sine a hyperube is Hamiltonian for k ≥ 3.

◮
Gorzkowska, Kalinowski, Pil±niak, The distinguishing index of Cartesian produt of graphs,

Ars Math. Contemp. 12, 2017
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Thm. (Broere & P. 2017) If G and H are two onneted relatively

prime, ountably in�nite graphs, then D ′(G�H) ≤ 2.

Thm. (Broere & P., 2017) D ′(Kℵ
0

2

) = 2.
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Math. Contemp. 13, 2017
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Total olourings

D ′′(G ) - total distinguishing number

Thm. (Kalinowski, P. & Wo¹niak 2016) If G is a onneted graph,

then

D ′′(G ) ≤
⌈

√

∆(G )
⌉

.

It is sharp:
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b

b b b b

◮
Kalinowski, Pil±niak, Wo¹niak, Distinguishing graphs by total olourings,

Ars Math. Contemp. 11, 2016



Total proper olourings

χ
′′

D
(G ) - total distinguishing hromati number is the

minimum number of olours in a distinguishing total olouring



Total proper olourings

χ
′′

D
(G ) - total distinguishing hromati number is the

minimum number of olours in a distinguishing total olouring

Total Colouring Conjeture(Behzad '65, Vizing '68)

χ
′′(G ) ≤ ∆(G ) + 2.



Total proper olourings

χ
′′

D
(G ) - total distinguishing hromati number is the

minimum number of olours in a distinguishing total olouring

Total Colouring Conjeture(Behzad '65, Vizing '68)

χ
′′(G ) ≤ ∆(G ) + 2.

Thm. (Kalinowski, P. & Wo¹niak 2016) If G is a onneted graph,

then

χ
′′

D
(G ) ≤ χ

′′(G ) + 1.

◮
Kalinowski, Pil±niak, Wo¹niak, Distinguishing graphs by total olourings,

Ars Math. Contemp. 11, 2016



Total proper olourings

χ
′′

D
(G ) - total distinguishing hromati number is the

minimum number of olours in a distinguishing total olouring

Total Colouring Conjeture(Behzad '65, Vizing '68)

χ
′′(G ) ≤ ∆(G ) + 2.

Thm. (Kalinowski, P. & Wo¹niak 2016) If G is a onneted graph,

then

χ
′′

D
(G ) ≤ χ

′′(G ) + 1.

Moreover, if χ
′′(G ) ≥ ∆(G ) + 2, then

χ
′′

D
(G ) = χ

′′(G ).

◮
Kalinowski, Pil±niak, Wo¹niak, Distinguishing graphs by total olourings,

Ars Math. Contemp. 11, 2016
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