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¢ - edge colouring, not necessarily proper, of G = (V/, E)

Def. ¢ breaks an automorphism ¢ of G if ¢ does not preserve
colours of ¢, i.e. Je € E : c(p(e)) # c(e).

Def. c is a distinguishing colouring if it breaks every non-trivial
automorphism of G.

Def. (Kalinowski & P., 2015) The distinguishing index D'(G)
of a graph G is the least number of colours in a distinguishing
edge colouring.

» Assumption: |G| > 3
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Examples

D'(G) = 1 iff G is an asymmetric graph, i.e. Aut(G) = {id}.
D'(P,)=2,n>3 o0——0—"~GC-0—0

D'(C)=3,n<5, D'(C))=2, n>6

D'(K,)=3,n=3,4,5 D'(Ky)=2n>6.
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Thm. (Kalinowski & P. 2015)
If T is a tree of order n > 3, then
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Moreover, equality is achieved if and only if T is either
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General bounds

Thm. (Kalinowski & P. 2015)
If T is a tree of order n > 3, then

D'(T) < A(T).

Moreover, equality is achieved if and only if T is either
a symmetric or a bisymmetric tree.

Thm. (Kalinowski & P. 2015) If G is a connected graph of order
n > 3, then
D'(G) < A(G)

except for three small cycles C3, C4 or Gs.

P Kalinowski, Pilsniak, Distinguishing graphs by edge colourings, European J. Combin. 45 (2015)
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Graphs with D'(G) = A(G)

Thm. (P. 2017)
Let G be a connected graph with A(G) > 3. If G is neither

a symmetric nor a bisymmetric tree, then
D'(G) < A(G) -1

unless G is Ky or Kz 3.

Cor. If G is connected, then
DI(G) = A(G) +1iff G e {C3, Cy, C5},

D'(G) = A(G) iff G € {Ka, K33} U{C, : n>6},
or G is either a symmetric or a bisymmetric tree.
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a spanning subgraph of G — v for some v € V(G).
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Traceable graphs

Def. A graph is traceable if it contains a Hamiltonian path.

Thm. (P. 2017) If G is a traceable graph of order n > 7, then

D'(G) < 2.

> n=0: D,(K373) = 3.

Proof: G is a path, or
G is a path with a pendant triangle, or

G contains an asymmetric spanning or almost spanning
subgraph.
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Planar graphs

By a theorem of Tutte, every 4-connected planar graph G is
Hamiltonian. Then D'(G) < 2.

Thm. (P. 2017) If G is a 3-connected planar graph, then
D'(G) <3.

Proof. based on

Thm. (Barnette 1966) Every 3-connected planar graph has
a spanning tree T with A(T) < 3.

Thm. (P. & Tucker 2018+) If G is a 3-connected planar graph
different from Kj, then

D'(G) < 2.
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Claw-free graphs

Def. A graph G is claw-free if it does not contain Ki 3 as an
induced subgraph.

Thm. (P. 2017) If G is a connected claw-free graph, then
D'(G) <3.

Proof. based on
Thm. (Win 1989) A 2-connected claw-free graph has a spanning tree
T with A(T) < 3.

Thm. (Kargul, Musial & Pal, 2018+) If G is a connected claw-free
graph and |G| > 7, then

D'(G) < 2.
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The Cartesian product of graphs

» Cartesian product GOH
vertex set: V(G) x V(H)

E(GOH) = {xu y, v) | (xy € E(G) ANu=v)V
(x =y AuveE(H))

1.
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The Cartesian power of a graph

Thm. [Gorzkowska, Kalinowski & P. 2017]
If G is a connected graph of order n > 3, then D'(G*) = 2.

Obs. If KX is a hypercube of dimension k, then D'(KJ) = 2 unless
k=2.

» Since a hypercube is Hamiltonian for k > 3.

P Gorzkowska, Kalinowski, Pilsniak, The distinguishing index of Cartesian product of graphs,

Ars Math. Contemp. 12, 2017
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The Cartesian product of countable graphs

Thm. (Broere & P. 2017) If G is a connected prime, countably
infinite graphs, then D’(Gk) =2, for any k > 2.

Thm. (Broere & P. 2017) If G and H are two connected relatively
prime, countably infinite graphs, then D’(GLH) < 2.

Thm. (Broere & P.,, 2017) D'(K,°) = 2.

P Broere, Piléniak, The distinguishing index of the Cartesian product of countable graphs, Ars

Math. Contemp. 13, 2017
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Total colourings
D"(G) - total distinguishing number

Thm. (Kalinowski, P. & Wozniak 2016) If G is a connected graph,
then
D"(G) < { A(G)W .

It is sharp:

P Kalinowski, Pilsniak, Wozniak, Distinguishing graphs by total colourings,

Ars Math. Contemp. 11, 2016
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Total proper colourings

xb(G) - total distinguishing chromatic number is the
minimum number of colours in a distinguishing total colouring

Total Colouring Conjecture(Behzad 65, Vizing '68)
X'(G) < A(G) + 2.

Thm. (Kalinowski, P. & Wozniak 2016) If G is a connected graph,
then

Xp(G) =x"(G)+1.
Moreover, if X"(G) > A(G) + 2, then

xp(G) = x"(G).

P Kalinowski, Pilsniak, Wozniak, Distinguishing graphs by total colourings,

Ars Math. Contemp. 11, 2016



THANK YOU VERY MUCH!



