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Favorite problems by Alspach

Kelley Conjecture.
Every regular tournament has a Hamilton cycle decomposition.

Hamiltonian Cayley Graph Conjecture.
Every connected Cayley graph has a Hamilton cycle.

Cycle Double Cover Conjecture.
Every bridgeless graph has a family of cycles covering every edge
precisely twice.
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From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected
Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle ⇒
4-flow and 3-edge-coloring (if cubic).

A weaker conjecture (Alspach, Liu and Z) Every Cayley graph
admits a nowhere-zero 4-flow.

An equivalent version – Cayley Snark conjecture (Alspach, Liu
and Z) Every cubic Cayley graph is 3-edge-colorable.
(Equivalently, there is no Cayley snark.)
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Partial result to Cayley Snark conjecture

Theorem (Alspach, Liu and Z) True for solvable groups.

Studies about Cayley snarks
Some structural properties of Cayley snarks (if exist) have been
discovered/described by
(Roman Nedela, Martin Škoviera, 2001 COMBINATORICA)
(Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič, 2005
DM)
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DM)

CQ Zhang (The # 3 in Brian’s Family) Cayley graphs, integer flows



Introduction of flow theory
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k-face-color

Given a planar graph G, a k-face-coloring is a mapping
f : {faces} → {0, 1, · · · , k − 1} such that no two adjacent
faces have the same color.
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Tutte’s integer flow

Integer flow was originally introduced by Tutte (1949) as a
generalization of map coloring problems.

A mapping f : E(G) 7→ Z is a nowhere-zero k-flow (k-NZF) if
under orientation D,

(1)
∑

e∈E+(v) f(e) =
∑

e∈E−(v) f(e);
(2) 0 < |f(e)| < k ∀e ∈ E(G).
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Tutte’s integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.

G is k-face-colorable ⇔ G has a nowhere-zero k-flow.

A planar graph G is 4-face-colorable ⇔ G has a 4-NZF.
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Observations

*
2-flow ⇔ even (eulerian)

* if h ≥ k:
k-flow ⇒ h-flow.

* For cubic graphs:
4-flow ⇔ 3-edge-colorable.

* Petersen graph P10:
5-flow, but not 4-flow.

* K4:
4-flow, but not 3-flow.
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Tutte’s flow conjectures

3-Flow Conjecture 4-edge-connected ⇒ 3-NZF;

4-Flow Conjecture Bridgeless, Petersen-minor free ⇒ 4-NZF;

5-Flow Conjecture Bridgeless ⇒ 5-NZF.

Some Partial Results

Seymour: Bridgeless ⇒ 6-NZF;

Jaeger: 4-edge-connected ⇒ 4-NZF;

Lovázs-Thomassen-Wu-Z: 6-edge-connected ⇒ 3-NZF;

Robertson-Sanders-Seymour-Thomas: cubic, P10-minor free ⇒
4-NZF;
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Flow for Cayley graphs

Some equivalent properties of integer flows

and

how to find nowhere-zero k-flows

and

some recent discoveries
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4-flow
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3-edge-coloring

Fact (Tutte). Equivalent if G is cubic.
* 4-flow
* 3-edge-colorable.

For Cayley Graphs:
We only need to work on cubic graphs.
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Why “cubic” is sufficient for Cayley graphs?

Let G = G(Γ, S) be a smallest Cayley graph without 4-NZF.

Let S = {s1, · · · , st}

Claim. G is cubic.
Assume not.

Case 1. If s21 6= 1

then s1-edges induce a 2-factor Q of G.
⇒ Q has a 2-NZF f2.
And the smaller Cayley graph G−Q = G(Γ, S − {s1}) has 4-NZF
f4.
⇒ G has a 4-NZF f = f4 + f2.
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Case 2. s2i = 1 ∀ si ∈ S

If t = |S| is even

⇒ G is even ⇒ G has 2-NZF.
So, G is t-regular and t = 5, 7, 9, · · · .
Similar: s1, s2-edges induce a 2-factor Q (with 2-NZF f2)
G(Γ, S − {s1, s2}) is smaller, and has 4-NZF f4.
f = f2 + f4 is 4-NZF of G.
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From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph
contains a Hamilton cycle.

Note: Hamilton cycle ⇒ 3-edge-coloring (if cubic), and 4-flow.

A weaker conjecture (Alspach, Liu and Z) Every Cayley graph
admits a nowhere-zero 4-flow.

An equivalent version – Cayley Snark conjecture (Alspach, Liu
and Z) Every cubic Cayley graph is 3-edge-colorable.
(Equivalently, there is no Cayley snark.)
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Partial result to Cayley Snark conjecture

Theorem (Alspach, Liu and Z) True for solvable groups.

Studies about Cayley snarks
Some structural properties of Cayley snarks (if exist) have been
discovered/described.
(Roman Nedela, Martin Škoviera, 2001 COMBINATORICA)
(Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič, 2005
DM)
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3-flow
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Tutte’s conjecture

Tutte Conjecture.
Every 4-edge-connected Cayley graph has a 3-NZF.

Open problem. Tutte’s Conjecture holds for Cayley graphs.
(That is, every t-regular Cayley graph with t ≥ 5 has 3-NZF.)
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3-NZF and Modulo 3-orientation

Definition. Let k ∈ Z+.
An orientation D of G is a modulo k-orientation if

d+D(v) ≡ d−D(v) (mod k) ∀v ∈ V (G).

Theorem (Tutte). Equivalent statements,
(1) G admits a nowhere-zero 3-flow
(2) G admits a modulo 3-orientation.
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Cayley graphs with 3-flow

Theorem. (Primož Potočnik , Martin Škoviera , Riste Škrekovski ,
2005 DM) Tutte’s 3-flow conjecture is true for abelian groups.

Theorem. (M. Nánásiová and M. Škoviera 2009 JAlgComb.)
Tutte’s 3-flow conjecture is true for
(1) abelian groups.
(2) nilpotent groups.

Theorem. (Yang and Li 2014 JIPL) Tutte’s 3-flow conjecture is
true for dihedral groups.

Theorem. (Li and Li 2015 FMC) Tutte’s 3-flow conjecture is true
for
(1) generalized dihedral groups and
(2) generalized quaternion groups.
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Tutte’s 3-flow conjecture is true for
(1) abelian groups.
(2) nilpotent groups.

Theorem. (Yang and Li 2014 JIPL) Tutte’s 3-flow conjecture is
true for dihedral groups.

Theorem. (Li and Li 2015 FMC) Tutte’s 3-flow conjecture is true
for
(1) generalized dihedral groups and
(2) generalized quaternion groups.

CQ Zhang (The # 3 in Brian’s Family) Cayley graphs, integer flows



Cayley graphs with 3-flow
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2005 DM) Tutte’s 3-flow conjecture is true for abelian groups.
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5-flow
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Tutte’s conjecture

Tutte’s 5-flow conjecture
Every bridgeless graph has 5-NZF.

How about Cayley graphs?

Open problem. Every Cayley graph admits a 5-NZF.

It is a weaker version of Alspach-Liu-Z conjecture.

Again, we only need to pay attention to cubic case.
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Circular flow, and, flow index
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Circular flow and Flow index

Definition Let r ∈ Q+, and (D, f) be a flow of G.
If f : E(G) → [1, r − 1],
then (D, f) is a circular r-flow.

Fact 1: Let r1, r2 ∈ R+ with r1 ≤ r2.
circular r1-flow, ⇒ circular r2-flow.

Fact 2: Let r ∈ Z+ .
circular r-flow, ⇔ integer valued r-flow.

Definition The flow index of G is

φ(G) = min{r ∈ R+ : G admits a nowhere-zero circular r-flow}.
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Tutte’s Theorem and one of our new results

Theorem (Tutte). Equivalent statements,
(1) G admits a nowhere-zero 3-flow
(2) G admits a modulo 3-orientation.

Theorem (Li, Thomassen, Wu and Z.). Equivalent statements,
(1) G admits a nowhere-zero r-flow for some rational number
r < 3.
(That is, φ(G) < 3)
(2) G admits a strongly connected modulo 3-orientation.
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Graphs with flow index φ(G) < 3

Theorem (Thomassen).
G is 8-edge-connected,

⇒ the flow index φ(G) ≤ 3.

Theorem (Li, Thomassen, Wu and Z.)
G is 8-edge-connected, ⇒ the flow index φ(G) < 3.

CQ Zhang (The # 3 in Brian’s Family) Cayley graphs, integer flows



Graphs with flow index φ(G) < 3

Theorem (Thomassen).
G is 8-edge-connected, ⇒ the flow index φ(G) ≤ 3.

Theorem (Li, Thomassen, Wu and Z.)
G is 8-edge-connected, ⇒ the flow index φ(G) < 3.

CQ Zhang (The # 3 in Brian’s Family) Cayley graphs, integer flows



Graphs with flow index φ(G) < 3

Theorem (Thomassen).
G is 8-edge-connected, ⇒ the flow index φ(G) ≤ 3.

Theorem (Li, Thomassen, Wu and Z.)
G is 8-edge-connected,

⇒ the flow index φ(G) < 3.

CQ Zhang (The # 3 in Brian’s Family) Cayley graphs, integer flows



Graphs with flow index φ(G) < 3

Theorem (Thomassen).
G is 8-edge-connected, ⇒ the flow index φ(G) ≤ 3.

Theorem (Li, Thomassen, Wu and Z.)
G is 8-edge-connected, ⇒ the flow index φ(G) < 3.

CQ Zhang (The # 3 in Brian’s Family) Cayley graphs, integer flows



Early studies of 6-edge-connected graphs

(Galluccio and Goddyn (2002))
G is 6-edge-connected ⇒ φ(G) < 4.

(Lovász, Thomassen, Wu and Z., JCTB (2013))
G is 6-edge-connected ⇒ φ(G) ≤ 3.

(A conjecture of Lai)
G has 3 edge-disjoint spanning trees ⇒ φ(G) ≤ 3.
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Equivalence of integer flow and modulo flow

Tutte’s Lemma
Equivalent.
(1) G admits a nowhere-zero k-flow
(balanced in the integer group Z),

(2) G admits a nowhere-zero modulo k-flow.
(balanced in the Zk-group)
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(balanced in the Zk-group)
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Generalization: Strongly connected orientation and flow
index

Assume G admits a modulo k-flow (D, f) such that

f : E(G) → {1, · · · , k − 2}
(note, if f(x → y) = k − 1 then change: f(y → x) = 1.)

Theorem (Li, Thomassen, Wu and Z):
Equivalent:
(1) D is strongly connected
(2) φ(G) < k.
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Open problems

Problem. G is 3-edge-connected ⇒ φ(G) < 6.

(strengthening Seymour 6-flow theorem: φ(G) ≤ 6)

Problem. G is 4-edge-connected ⇒ φ(G) < 4.

(strengthening Jaeger 4-flow theorem: φ(G) ≤ 4.)

Problem. G is 6-edge-connected ⇒ φ(G) < 3.

(strengthening Lovász-Thomassen-Wu-Z. 3-flow theorem:
φ(G) ≤ 3.)

We may also work on those problems for Cayley graphs!

Note, for Cayley graphs,
edge-connectivity = degree

.
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Open problems for Cayley graphs

3-flow
* 5-regular ⇒ φ ≤ 3?

* 7-regular ⇒ φ < 3?

(It is known: 7-regular ⇒ φ ≤ 3)

4-flow

* (ALZ-conjecture) 3-regular ⇒ φ ≤ 4?
* 5-regular ⇒ φ < 4?
(It is known: 5-regular ⇒ φ ≤ 4)

5-flow

* 3-regular ⇒ φ ≤ 5?
(It is known: 3-regular ⇒ φ ≤ 6)

* 3-regular ⇒ φ < 5?
(Weaker versions of ALZ-conjecture)
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Summary of open problems
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Happy birthdays to

Brian

and

Dragan
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