Cayley graphs, integer flows

CQ Zhang
(The \# 3 in Brian's Family)

West Virginia University, USA

79th birthday: 2017-05-29, in Sanya, China

2017-05-29, with 2nd \& 3rd generations

2017-05-29, with 2nd \& 3rd generations

2018-05-28, with 2nd \& 3rd generation

80th birthday: 2018-05-29, with 2nd generation

CQ Zhang (The \# 3 in Brian's Family)
Cayley graphs, integer flows

Favorite problems by Alspach

Kelley Conjecture.

Every regular tournament has a Hamilton cycle decomposition.

Favorite problems by Alspach

Kelley Conjecture.

Every regular tournament has a Hamilton cycle decomposition.

Hamiltonian Cayley Graph Conjecture.

Every connected Cayley graph has a Hamilton cycle.

Favorite problems by Alspach

Kelley Conjecture.

Every regular tournament has a Hamilton cycle decomposition.

Hamiltonian Cayley Graph Conjecture.

Every connected Cayley graph has a Hamilton cycle.

Cycle Double Cover Conjecture.

Every bridgeless graph has a family of cycles covering every edge precisely twice.

From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected

Cayley graph contains a Hamilton cycle.

From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected

Cayley graph contains a Hamilton cycle.
Note: Hamilton cycle

From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected

Cayley graph contains a Hamilton cycle.
Note: Hamilton cycle \Rightarrow

From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected
Cayley graph contains a Hamilton cycle.
Note: Hamilton cycle \Rightarrow
4-flow and

From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle \Rightarrow
4 -flow and 3 -edge-coloring (if cubic).

From Hamilton cycle to 4-flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected
Cayley graph contains a Hamilton cycle.
Note: Hamilton cycle \Rightarrow
4 -flow and 3 -edge-coloring (if cubic).
A weaker conjecture (Alspach, Liu and Z) Every Cayley graph admits a nowhere-zero 4-flow.

From Hamilton cycle to 4 -flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle \Rightarrow
4 -flow and 3 -edge-coloring (if cubic).
A weaker conjecture (Alspach, Liu and Z) Every Cayley graph admits a nowhere-zero 4-flow.

An equivalent version - Cayley Snark conjecture (Alspach, Liu and Z) Every cubic Cayley graph is 3 -edge-colorable.

From Hamilton cycle to 4 -flow and 3-edge-coloring

Hamiltonian Cayley Graph Conjecture. Every connected
Cayley graph contains a Hamilton cycle.
Note: Hamilton cycle \Rightarrow
4 -flow and 3 -edge-coloring (if cubic).
A weaker conjecture (Alspach, Liu and Z) Every Cayley graph admits a nowhere-zero 4-flow.

An equivalent version - Cayley Snark conjecture (Alspach, Liu and Z) Every cubic Cayley graph is 3 -edge-colorable.
(Equivalently, there is no Cayley snark.)

Partial result to Cayley Snark conjecture

Theorem (Alspach, Liu and Z) True for solvable groups.

Partial result to Cayley Snark conjecture

Theorem (Alspach, Liu and Z) True for solvable groups.

Studies about Cayley snarks

Some structural properties of Cayley snarks (if exist) have been discovered/described by
(Roman Nedela, Martin Škoviera, 2001 COMBINATORICA)
(Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič, 2005 DM)

Introduction of flow theory

k-face-color

- Given a planar graph G, a k-face-coloring is a mapping $f:\{$ faces $\} \rightarrow\{0,1, \cdots, k-1\}$ such that no two adjacent faces have the same color.

k-face-color

- Given a planar graph G, a k-face-coloring is a mapping $f:\{$ faces $\} \rightarrow\{0,1, \cdots, k-1\}$ such that no two adjacent faces have the same color.

k-face-color

- Given a planar graph G, a k-face-coloring is a mapping $f:\{$ faces $\} \rightarrow\{0,1, \cdots, k-1\}$ such that no two adjacent faces have the same color.

Tutte's integer flow

Integer flow was originally introduced by Tutte (1949) as a generalization of map coloring problems.

Tutte's integer flow

Integer flow was originally introduced by Tutte (1949) as a generalization of map coloring problems.
A mapping $f: E(G) \mapsto \mathbb{Z}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

- (1) $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$;
- (2) $0<|f(e)|<k \quad \forall e \in E(G)$.

Tutte's integer flow

Integer flow was originally introduced by Tutte (1949) as a generalization of map coloring problems.
A mapping $f: E(G) \mapsto \mathbb{Z}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

- (1) $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$;
- (2) $0<|f(e)|<k \quad \forall e \in E(G)$.

Tutte's integer flow

Integer flow was originally introduced by Tutte (1949) as a generalization of map coloring problems.
A mapping $f: E(G) \mapsto \mathbb{Z}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

- (1) $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$;
- (2) $0<|f(e)|<k \quad \forall e \in E(G)$.

Tutte's integer flow

Integer flow was originally introduced by Tutte (1949) as a generalization of map coloring problems.
A mapping $f: E(G) \mapsto \mathbb{Z}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

- (1) $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$;
- (2) $0<|f(e)|<k \quad \forall e \in E(G)$.

Tutte's integer flow

Integer flow was originally introduced by Tutte (1949) as a generalization of map coloring problems.
A mapping $f: E(G) \mapsto \mathbb{Z}$ is a nowhere-zero k-flow (k-NZF) if under orientation D,

- (1) $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$;
- (2) $0<|f(e)|<k \quad \forall e \in E(G)$.

Tutte's integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.
G is k-face-colorable $\Leftrightarrow G$ has a nowhere-zero k-flow.

Tutte's integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.
G is k-face-colorable $\Leftrightarrow G$ has a nowhere-zero k-flow.

A planar graph G is 4 -face-colorable $\Leftrightarrow G$ has a 4-NZF.

Tutte's integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.
G is k-face-colorable $\Leftrightarrow G$ has a nowhere-zero k-flow.

A planar graph G is 4 -face-colorable $\Leftrightarrow G$ has a 4-NZF.

Tutte's integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.
G is k-face-colorable $\Leftrightarrow G$ has a nowhere-zero k-flow.

A planar graph G is 4 -face-colorable $\Leftrightarrow G$ has a $4-$ NZF.

Tutte's integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.
G is k-face-colorable $\Leftrightarrow G$ has a nowhere-zero k-flow.

A planar graph G is 4 -face-colorable $\Leftrightarrow G$ has a $4-$ NZF.

Tutte's integer flow

Theorem (Tutte) Let G be a 2-edge-connected planar graph.
G is k-face-colorable $\Leftrightarrow G$ has a nowhere-zero k-flow.

A planar graph G is 4 -face-colorable $\Leftrightarrow G$ has a 4-NZF.

flow value of $e \equiv$ color of right side - color of left side

Observations

*

2-flow \Leftrightarrow even (eulerian)

Observations

*

$$
\text { 2-flow } \Leftrightarrow \quad \text { even (eulerian) }
$$

* if $h \geq k$:
k-flow $\Rightarrow h$-flow.

Observations

*

$$
\text { 2-flow } \Leftrightarrow \quad \text { even (eulerian) }
$$

* if $h \geq k$:

$$
k \text {-flow } \quad \Rightarrow \quad h \text {-flow. }
$$

* For cubic graphs:

4-flow $\Leftrightarrow 3$-edge-colorable.

Observations

*

$$
\text { 2-flow } \Leftrightarrow \quad \text { even (eulerian) }
$$

* if $h \geq k$:

$$
k \text {-flow } \quad \Rightarrow \quad h \text {-flow. }
$$

* For cubic graphs:

4-flow $\Leftrightarrow 3$-edge-colorable.

* Petersen graph P_{10} :

5-flow, but not 4-flow.

Observations

*

$$
\text { 2-flow } \Leftrightarrow \quad \text { even (eulerian) }
$$

* if $h \geq k$:

$$
k \text {-flow } \quad \Rightarrow \quad h \text {-flow. }
$$

* For cubic graphs:

4-flow $\Leftrightarrow 3$-edge-colorable.

* Petersen graph P_{10} :

5-flow, but not 4-flow.

* K_{4} :

4-flow, but not 3-flow.

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Some Partial Results

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Some Partial Results

Seymour: Bridgeless $\Rightarrow 6-N Z F$;

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected $\Rightarrow 3$-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Some Partial Results

Seymour: Bridgeless $\Rightarrow 6-N Z F$;
Jaeger: 4-edge-connected $\Rightarrow 4$-NZF;

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected \Rightarrow 3-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Some Partial Results

Seymour: Bridgeless $\Rightarrow 6-N Z F$;
Jaeger: 4-edge-connected $\Rightarrow 4$-NZF;
Lovázs-Thomassen-Wu-Z: 6-edge-connected $\Rightarrow 3$-NZF;

Tutte's flow conjectures

- 3-Flow Conjecture 4-edge-connected $\Rightarrow 3$-NZF;
- 4-Flow Conjecture Bridgeless, Petersen-minor free $\Rightarrow 4$-NZF;
- 5-Flow Conjecture Bridgeless $\Rightarrow 5$-NZF.

Some Partial Results

Seymour: Bridgeless $\Rightarrow 6-N Z F$;
Jaeger: 4-edge-connected $\Rightarrow 4$-NZF;
Lovázs-Thomassen-Wu-Z: 6-edge-connected $\Rightarrow 3$-NZF;
Robertson-Sanders-Seymour-Thomas: cubic, P_{10}-minor free \Rightarrow 4-NZF;

Flow for Cayley graphs

Some equivalent properties of integer flows and
how to find nowhere-zero k-flows
and
some recent discoveries

4-flow

3-edge-coloring

Fact (Tutte). Equivalent if G is cubic.

* 4-flow
* 3-edge-colorable.

3-edge-coloring

Fact (Tutte). Equivalent if G is cubic.

* 4-flow
* 3-edge-colorable.

For Cayley Graphs:

We only need to work on cubic graphs.

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$
Claim. G is cubic.
Assume not.

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$
Claim. G is cubic.
Assume not.
Case 1. If $s_{1}^{2} \neq 1$

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$
Claim. G is cubic.
Assume not.
Case 1. If $s_{1}^{2} \neq 1$ then s_{1}-edges induce a 2 -factor Q of G.

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$
Claim. G is cubic.
Assume not.
Case 1. If $s_{1}^{2} \neq 1$
then s_{1}-edges induce a 2 -factor Q of G.
$\Rightarrow Q$ has a 2 -NZF f_{2}.

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$
Claim. G is cubic.
Assume not.
Case 1. If $s_{1}^{2} \neq 1$
then s_{1}-edges induce a 2 -factor Q of G.
$\Rightarrow Q$ has a 2 -NZF f_{2}.
And the smaller Cayley graph $G-Q=G\left(\Gamma, S-\left\{s_{1}\right\}\right)$ has 4-NZF f_{4}.

Why "cubic" is sufficient for Cayley graphs?

Let $G=G(\Gamma, S)$ be a smallest Cayley graph without 4-NZF.
Let $S=\left\{s_{1}, \cdots, s_{t}\right\}$
Claim. G is cubic.
Assume not.
Case 1. If $s_{1}^{2} \neq 1$
then s_{1}-edges induce a 2 -factor Q of G.
$\Rightarrow Q$ has a 2 -NZF f_{2}.
And the smaller Cayley graph $G-Q=G\left(\Gamma, S-\left\{s_{1}\right\}\right)$ has 4-NZF f_{4}.
$\Rightarrow G$ has a 4 -NZF $f=f_{4}+f_{2}$.

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even $\quad \Rightarrow \quad G$ is even

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even $\quad \Rightarrow \quad G$ is even $\quad \Rightarrow \quad G$ has 2 -NZF.

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even $\quad \Rightarrow \quad G$ is even $\quad \Rightarrow \quad G$ has 2 -NZF.
So, G is t-regular and $t=5,7,9, \cdots$.

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even $\quad \Rightarrow \quad G$ is even $\quad \Rightarrow \quad G$ has $2-$ NZF.
So, G is t-regular and $t=5,7,9, \cdots$.
Similar: s_{1}, s_{2}-edges induce a 2 -factor Q (with 2-NZF f_{2})

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even $\Rightarrow G$ is even $\quad \Rightarrow \quad G$ has $2-$ NZF.
So, G is t-regular and $t=5,7,9, \cdots$.
Similar: s_{1}, s_{2}-edges induce a 2 -factor Q (with 2 -NZF f_{2}) $G\left(\Gamma, S-\left\{s_{1}, s_{2}\right\}\right)$ is smaller, and has 4-NZF f_{4}.

Case 2. $s_{i}^{2}=1 \forall s_{i} \in S$

If $t=|S|$ is even $\Rightarrow G$ is even $\quad \Rightarrow \quad G$ has $2-$ NZF.
So, G is t-regular and $t=5,7,9, \cdots$.
Similar: s_{1}, s_{2}-edges induce a 2 -factor Q (with 2 -NZF f_{2})
$G\left(\Gamma, S-\left\{s_{1}, s_{2}\right\}\right)$ is smaller, and has 4 -NZF f_{4}. $f=f_{2}+f_{4}$ is 4 -NZF of G.

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle \Rightarrow

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle $\Rightarrow 3$-edge-coloring (if cubic),

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle $\Rightarrow 3$-edge-coloring (if cubic), and 4 -flow.

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle $\Rightarrow 3$-edge-coloring (if cubic), and 4 -flow. A weaker conjecture (Alspach, Liu and Z) Every Cayley graph admits a nowhere-zero 4-flow.

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle $\Rightarrow 3$-edge-coloring (if cubic), and 4 -flow.
A weaker conjecture (Alspach, Liu and Z) Every Cayley graph admits a nowhere-zero 4-flow.

An equivalent version - Cayley Snark conjecture (Alspach, Liu and Z) Every cubic Cayley graph is 3-edge-colorable.

From Hamilton cycle to 3 edge-coloring

Cayley graph HC conjecture Every connected Cayley graph contains a Hamilton cycle.

Note: Hamilton cycle $\Rightarrow 3$-edge-coloring (if cubic), and 4 -flow.
A weaker conjecture (Alspach, Liu and Z) Every Cayley graph admits a nowhere-zero 4-flow.

An equivalent version - Cayley Snark conjecture (Alspach, Liu and Z) Every cubic Cayley graph is 3-edge-colorable.
(Equivalently, there is no Cayley snark.)

Partial result to Cayley Snark conjecture

Theorem (Alspach, Liu and Z) True for solvable groups.

Partial result to Cayley Snark conjecture

Theorem (Alspach, Liu and Z) True for solvable groups.

Studies about Cayley snarks

Some structural properties of Cayley snarks (if exist) have been discovered/described.
(Roman Nedela, Martin Škoviera, 2001 COMBINATORICA)
(Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič, 2005 DM)

3-flow

Tutte's conjecture

Tutte Conjecture.

Every 4-edge-connected Cayley graph has a 3-NZF.

Tutte's conjecture

Tutte Conjecture.

Every 4-edge-connected Cayley graph has a 3-NZF.
Open problem. Tutte's Conjecture holds for Cayley graphs. (That is, every t-regular Cayley graph with $t \geq 5$ has 3 -NZF.)

3-NZF and Modulo 3-orientation

Definition. Let $k \in Z^{+}$.
An orientation D of G is a modulo k-orientation if

$$
d_{D}^{+}(v) \equiv d_{D}^{-}(v) \quad(\bmod k) \quad \forall v \in V(G)
$$

3-NZF and Modulo 3-orientation

Definition. Let $k \in Z^{+}$.
An orientation D of G is a modulo k-orientation if

$$
d_{D}^{+}(v) \equiv d_{D}^{-}(v) \quad(\bmod k) \quad \forall v \in V(G)
$$

Theorem (Tutte). Equivalent statements,
(1) G admits a nowhere-zero 3 -flow
(2) G admits a modulo 3-orientation.

Cayley graphs with 3-flow

Theorem. (Primož Potočnik, Martin Škoviera, Riste Škrekovski, 2005 DM) Tutte's 3-flow conjecture is true for abelian groups.

Cayley graphs with 3-flow

Theorem. (Primož Potočnik, Martin Škoviera, Riste Škrekovski , 2005 DM) Tutte's 3 -flow conjecture is true for abelian groups.
Theorem. (M. Nánásiová and M. Škoviera 2009 JAlgComb.) Tutte's 3 -flow conjecture is true for
(1) abelian groups.
(2) nilpotent groups.

Cayley graphs with 3-flow

Theorem. (Primož Potočnik, Martin Škoviera, Riste Škrekovski, 2005 DM) Tutte's 3 -flow conjecture is true for abelian groups.
Theorem. (M. Nánásiová and M. Škoviera 2009 JAlgComb.) Tutte's 3 -flow conjecture is true for
(1) abelian groups.
(2) nilpotent groups.

Theorem. (Yang and Li 2014 JIPL) Tutte's 3 -flow conjecture is true for dihedral groups.

Cayley graphs with 3-flow

Theorem. (Primož Potočnik, Martin Škoviera, Riste Škrekovski, 2005 DM) Tutte's 3-flow conjecture is true for abelian groups.
Theorem. (M. Nánásiová and M. Škoviera 2009 JAlgComb .) Tutte's 3 -flow conjecture is true for
(1) abelian groups.
(2) nilpotent groups.

Theorem. (Yang and Li 2014 JIPL) Tutte's 3 -flow conjecture is true for dihedral groups.

Theorem. (Li and Li 2015 FMC) Tutte's 3-flow conjecture is true for
(1) generalized dihedral groups and
(2) generalized quaternion groups.

5-flow

Tutte's conjecture

Tutte's 5-flow conjecture

Every bridgeless graph has 5-NZF.

Tutte's conjecture

Tutte's 5-flow conjecture

Every bridgeless graph has 5-NZF.
How about Cayley graphs?

Tutte's conjecture

Tutte's 5-flow conjecture

Every bridgeless graph has 5-NZF.
How about Cayley graphs?
Open problem. Every Cayley graph admits a 5-NZF.

Tutte's conjecture

Tutte's 5-flow conjecture

Every bridgeless graph has 5-NZF.
How about Cayley graphs?
Open problem. Every Cayley graph admits a 5-NZF.
It is a weaker version of Alspach-Liu-Z conjecture.

Tutte's conjecture

Tutte's 5-flow conjecture

Every bridgeless graph has 5-NZF.
How about Cayley graphs?
Open problem. Every Cayley graph admits a 5-NZF.
It is a weaker version of Alspach-Liu-Z conjecture.
Again, we only need to pay attention to cubic case.

Circular flow, and, flow index

Circular flow and Flow index

Definition Let $r \in Q^{+}$, and (D, f) be a flow of G.
If $f: E(G) \rightarrow[1, r-1]$,
then (D, f) is a circular r-flow.

Circular flow and Flow index

Definition Let $r \in Q^{+}$, and (D, f) be a flow of G.
If $f: E(G) \rightarrow[1, r-1]$, then (D, f) is a circular r-flow.

Fact 1: Let $r_{1}, r_{2} \in R^{+}$with $r_{1} \leq r_{2}$. circular r_{1}-flow, \Rightarrow circular r_{2}-flow.

Circular flow and Flow index

Definition Let $r \in Q^{+}$, and (D, f) be a flow of G.
If $f: E(G) \rightarrow[1, r-1]$, then (D, f) is a circular r-flow.

Fact 1: Let $r_{1}, r_{2} \in R^{+}$with $r_{1} \leq r_{2}$. circular r_{1}-flow, \Rightarrow circular r_{2}-flow.

Fact 2: Let $r \in Z^{+}$.
circular r-flow, \Leftrightarrow integer valued r-flow.

Circular flow and Flow index

Definition Let $r \in Q^{+}$, and (D, f) be a flow of G.
If $f: E(G) \rightarrow[1, r-1]$, then (D, f) is a circular r-flow.

Fact 1: Let $r_{1}, r_{2} \in R^{+}$with $r_{1} \leq r_{2}$.
circular r_{1}-flow, \Rightarrow circular r_{2}-flow.
Fact 2: Let $r \in Z^{+}$.
circular r-flow, \Leftrightarrow integer valued r-flow.
Definition The flow index of G is
$\phi(G)=\min \left\{r \in R^{+}: \quad G\right.$ admits a nowhere-zero circular r-flow $\}$.

Tutte's Theorem and one of our new results

Theorem (Tutte). Equivalent statements,
(1) G admits a nowhere-zero 3 -flow
(2) G admits a modulo 3-orientation.

Tutte's Theorem and one of our new results

Theorem (Tutte). Equivalent statements,
(1) G admits a nowhere-zero 3 -flow
(2) G admits a modulo 3-orientation.

Theorem ($\mathbf{L i}$, Thomassen, $\mathbf{W u}$ and Z.). Equivalent statements, (1) G admits a nowhere-zero r-flow for some rational number $r<3$.
(That is, $\phi(G)<3$)
(2) G admits a strongly connected modulo 3-orientation.

Graphs with flow index $\phi(G)<3$

Theorem (Thomassen).
G is 8-edge-connected,

Graphs with flow index $\phi(G)<3$

Theorem (Thomassen).
G is 8-edge-connected, \Rightarrow the flow index $\phi(G) \leq 3$.

Graphs with flow index $\phi(G)<3$

Theorem (Thomassen).
G is 8-edge-connected, \Rightarrow the flow index $\phi(G) \leq 3$.
Theorem (Li , Thomassen, Wu and Z.)
G is 8-edge-connected,

Graphs with flow index $\phi(G)<3$

Theorem (Thomassen).
G is 8-edge-connected, \Rightarrow the flow index $\phi(G) \leq 3$.
Theorem (Li , Thomassen, Wu and Z.)
G is 8-edge-connected, \Rightarrow the flow index $\phi(G)<3$.

Early studies of 6-edge-connected graphs

(Galluccio and Goddyn (2002))
G is 6-edge-connected $\Rightarrow \phi(G)<4$.

Early studies of 6-edge-connected graphs

(Galluccio and Goddyn (2002))
G is 6-edge-connected $\Rightarrow \phi(G)<4$.
(Lovász, Thomassen, Wu and Z., JCTB (2013)) G is 6-edge-connected $\Rightarrow \phi(G) \leq 3$.

Early studies of 6-edge-connected graphs

(Galluccio and Goddyn (2002))
G is 6-edge-connected $\Rightarrow \phi(G)<4$.
(Lovász, Thomassen, Wu and Z., JCTB (2013))
G is 6 -edge-connected $\Rightarrow \phi(G) \leq 3$.
(A conjecture of Lai)
G has 3 edge-disjoint spanning trees $\Rightarrow \phi(G) \leq 3$.

Equivalence of integer flow and modulo flow

Tutte's Lemma

Equivalent.
(1) G admits a nowhere-zero k-flow
(balanced in the integer group Z),

Equivalence of integer flow and modulo flow

Tutte's Lemma

Equivalent.
(1) G admits a nowhere-zero k-flow
(balanced in the integer group Z),
(2) G admits a nowhere-zero modulo k-flow.
(balanced in the Z_{k}-group)

Generalization: Strongly connected orientation and flow

 indexAssume G admits a modulo k-flow (D, f) such that

Generalization: Strongly connected orientation and flow

 index$$
\begin{aligned}
& \text { Assume } G \text { admits a modulo } k \text {-flow }(D, f) \text { such that } \\
& f: E(G) \rightarrow\{1, \cdots, k-2\}
\end{aligned}
$$

Generalization: Strongly connected orientation and flow index

Assume G admits a modulo k-flow (D, f) such that $f: E(G) \rightarrow\{1, \cdots, k-2\}$
(note, if $f(x \rightarrow y)=k-1$ then change: $f(y \rightarrow x)=1$.)

Generalization: Strongly connected orientation and flow index

Assume G admits a modulo k-flow (D, f) such that $f: E(G) \rightarrow\{1, \cdots, k-2\}$
(note, if $f(x \rightarrow y)=k-1$ then change: $f(y \rightarrow x)=1$.)
Theorem (Li , Thomassen, Wu and Z):
Equivalent:
(1) D is strongly connected

Generalization: Strongly connected orientation and flow index

Assume G admits a modulo k-flow (D, f) such that $f: E(G) \rightarrow\{1, \cdots, k-2\}$
(note, if $f(x \rightarrow y)=k-1$ then change: $f(y \rightarrow x)=1$.)
Theorem (Li , Thomassen, Wu and Z):
Equivalent:
(1) D is strongly connected
(2) $\phi(G)<k$.

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)
Problem. G is 4-edge-connected $\Rightarrow \phi(G)<4$.

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)
Problem. G is 4-edge-connected $\Rightarrow \phi(G)<4$.
(strengthening Jaeger 4-flow theorem: $\phi(G) \leq 4$.)

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)
Problem. G is 4-edge-connected $\Rightarrow \phi(G)<4$.
(strengthening Jaeger 4-flow theorem: $\phi(G) \leq 4$.)
Problem. G is 6-edge-connected $\Rightarrow \phi(G)<3$.

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)
Problem. G is 4-edge-connected $\Rightarrow \phi(G)<4$.
(strengthening Jaeger 4-flow theorem: $\phi(G) \leq 4$.)
Problem. G is 6-edge-connected $\Rightarrow \phi(G)<3$.
(strengthening Lovász-Thomassen-Wu-Z. 3-flow theorem:
$\phi(G) \leq 3$.)

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)
Problem. G is 4-edge-connected $\Rightarrow \phi(G)<4$.
(strengthening Jaeger 4-flow theorem: $\phi(G) \leq 4$.)
Problem. G is 6-edge-connected $\Rightarrow \phi(G)<3$.
(strengthening Lovász-Thomassen-Wu-Z. 3-flow theorem:
$\phi(G) \leq 3$.)
We may also work on those problems for Cayley graphs!

Open problems

Problem. G is 3-edge-connected $\Rightarrow \phi(G)<6$.
(strengthening Seymour 6-flow theorem: $\phi(G) \leq 6$)
Problem. G is 4-edge-connected $\Rightarrow \phi(G)<4$.
(strengthening Jaeger 4-flow theorem: $\phi(G) \leq 4$.)
Problem. G is 6-edge-connected $\Rightarrow \phi(G)<3$.
(strengthening Lovász-Thomassen-Wu-Z. 3-flow theorem:
$\phi(G) \leq 3$.)
We may also work on those problems for Cayley graphs!
Note, for Cayley graphs,

$$
\text { edge-connectivity }=\text { degree }
$$

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?

Open problems for Cayley graphs

> 3-flow
> * 5-regular $\Rightarrow \phi \leq 3 ?$
> * 7-regular $\Rightarrow \phi<3$?

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)
4-flow

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)
4-flow
* (ALZ-conjecture) 3-regular $\Rightarrow \phi \leq 4$?
* 5 -regular $\Rightarrow \phi<4$?
(It is known: 5-regular $\Rightarrow \phi \leq 4$)

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)
4-flow
* (ALZ-conjecture) 3-regular $\Rightarrow \phi \leq 4$?
* 5 -regular $\Rightarrow \phi<4$?
(It is known: 5 -regular $\Rightarrow \phi \leq 4$)
5-flow

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)
4-flow
* (ALZ-conjecture) 3-regular $\Rightarrow \phi \leq 4$?
* 5-regular $\Rightarrow \phi<4$?
(It is known: 5-regular $\Rightarrow \phi \leq 4$)
5-flow
* 3-regular $\Rightarrow \phi \leq 5$?
(It is known: 3-regular $\Rightarrow \phi \leq 6$)

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)
4-flow
* (ALZ-conjecture) 3-regular $\Rightarrow \phi \leq 4$?
* 5 -regular $\Rightarrow \phi<4$?
(It is known: 5 -regular $\Rightarrow \phi \leq 4$)
5-flow
* 3-regular $\Rightarrow \phi \leq 5$?
(It is known: 3-regular $\Rightarrow \phi \leq 6$)
* 3-regular $\Rightarrow \quad \phi<5$?

Open problems for Cayley graphs

3-flow

* 5-regular $\Rightarrow \phi \leq 3$?
* 7-regular $\Rightarrow \phi<3$?
(It is known: 7-regular $\Rightarrow \phi \leq 3$)
4-flow
* (ALZ-conjecture) 3-regular $\Rightarrow \phi \leq 4$?
* 5-regular $\Rightarrow \phi<4$?
(It is known: 5 -regular $\Rightarrow \phi \leq 4$)
5-flow
* 3-regular $\Rightarrow \phi \leq 5$?
(It is known: 3-regular $\Rightarrow \phi \leq 6$)
* 3-regular $\Rightarrow \quad \phi<5$?
(Weaker versions of ALZ-conjecture)

Summary of open problems

Note, the edge connectivity of a Cayley graph = it is degree.

Happy birthdays to

Brian
and
Dragan

