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A problem, from older work

Joint work with Bob Guralnick and John Shareshian.
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A problem, from older work

Joint work with Bob Guralnick and John Shareshian.

Binomial Question. Given n > 1, can you find primes p, r so that
every nontrivial binomial coef. is divisible by at least one of p, r?

Example:
For n = 1,000,000, we can take p =5 and r = 999,983.

(Z) is divisible by r if k > 999,983 or k < 17.

<Z> is divisible by p = 5 unless k is divisible by 56,
as (14 x)2*5° = (1 +x5°)2° mod 5.

Similar tricks plus some brute force computation give a “yes” answer
out to n =1 billion. (Shareshian and me, 2016)
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Motivation

Q: Vn, 3?7 p,rs.t. YO < k < n, p divides () or r divides (7).



Motivation

Q: Vn, 37 p,rs.t. YO < k < n, p divides (}) or r divides (7).
Motivation is from group theory.

Let C(G) = all cosets of all proper subgroups G.

Problem: When possible, find uncomplicated groups that act
fixed-point-freely on C(G).
For P a p-group, R an r-group (p, r primes), and C a cyclic group:
1. An action by PxCxR is good.
2. An action by CxR is better.

Higher motivation: show that the “universal vertex-transitive
G-geometry” C(G) is not contractible. (Smith-Oliver Theory)



Groups acting on C(G)
C(G) = all cosets of all proper s.g.'s of G

How to act on C(G)?
- multiply on left by L C G.
- multiply on right by R C G.
- act by automorphism of G, thatis, by A C Aut G.
- exchange left and right.

Indeed, AutC(G) = ((G x G) x Aut G) xZs / Kernel.

What cosets are fixed by L x R left/right multiplication action?

LHxR = Hx <—
LHxRx 1x = Hx <~
LHR* "x = Hx —
LR CH.

Thus, L x R acts fpf-ly on proper cosets <= Vx, (L,R*) = G.

In this situation, we say that L, R invariably generate G.




Invariable generation of simple groups by Sylow subgroups

L x R acts fpfly on C(G) <= L, R invariably generate G.
< Vx, L and R* generate G.

Theorem (Shareshian and me, 2016).
If S is a Lie-type or sporadic simple group, then S is invariably
generated by a Sylow 2-subgroup and some other Sylow subgroup.

Recall the Classification of Finite Simple Groups says that a simple
group is Lie-type (matrix group), sporadic, or alternating.

The direct analog for alternating is false — consider Aszy, or Agn_1.

But it is reasonable to ask the following.

Open Question 1. For each alternating group A, can you find
primes p, r so that A, is invbly generated by Sylow p-, r-subgroups?
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Relationship between two questions

L x R acts fpfly on C(G) <= L, R invariably generate G.
< Vx, L and R* generate G.

At this point, we've considered two questions:

Binomial Question. Given n > 1, can you find primes p, r so that
every nontrivial binomial coef. is divisible by at least one of p, r?

Open Question 1. For each alternating group A, can you find
primes p, r so that A, is invbly generated by Sylow p-, r-subgroups?

The two questions turn out to be completely equivalent!
(Shareshian and me, 2016)

E.g.: A1oo0000 is invariably generated by Sylow 999983- and 5-sgs.



Ongoing work

L x R acts fpfly on C(G) <= L, R invariably generate G.
< Vx, L and R* generate G.

Right after acceptance of our paper, we saw how to improve it:

Invariable generation by a cyclic subgroup and a Sylow subgroup
gives a stronger version of noncontractibility of C(G).

After some more work, and subject to finishing checking details:

Theorem-in-progress (Guralnick, Shareshian and me 2019+).
If S is a Lie-type or sporadic simple group, then S is invariably
generated by two elements of prime order. (up to finitely? many
exceptions)

What about alternating groups?
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Ongoing work — alternating groups

L, R invariably generate G if Vx, L and R* generate G.

Which alternating groups are invariably generated by two elements
of prime order?

- Most of them — asymptotic density 1. (assuming RH)

- Not all of them. Fails for Ag, A1, Asp, .. ..

But it's reasonable to ask the following:

Open Question 2 (harder).
Is every alternating group invariably generated by two elements of
prime power order?

The answer is “yes" out to 90 million.
(We expect to be able to check out to 1 billion or greater.)

Work on the harder question has yielded insight on the easier onel!
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Computationally checking invariable generation of A, by Sylow sgs

Q1: Is A, always invariably generated by two Sylow sgs?
Q2: Is A, always invariably generated by two elts of pp order?

Strategy for checking inv. gen. of A, by Sylow: (older)

1. Reduce to binomial divisibility (pure number theory).
Now it's enough to find p|n and r dividing every (7).

2. Take p so that p? be largest prime-power divisor of n.

3. If 3 prime r between n — p? and n, then done!
(completely similar to n = 1,000,000 example)

4. Otherwise, apply brute force to find an r that “works".

This strategy fails for 22 numbers up to 1 billion.
For these, apply more brute force with a prime other than p.

Computing out to 1 billion took 2 weeks on my MacBook.
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Computationally checking invariable generation of A, by pp elts

Q1: Is A, always invariably generated by two Sylow sgs?
Q2: Is A, always invariably generated by two elts of pp order?

As before, let p? be large(st) pp divisor of n, and
r be some other prime.

To avoid primitive proper subgroups of A, we need to have

r > +/n, and the r-power element to be the product of
n

r-cycles. Wlog, LfJ r-cycles.

r

(Using results of Praeger; Liebeck and Saxl)

We take the p-power element to have cycle structure corresponding
to the base-p representation of n.

. n
To get transitive subgroup, we must have %J -r+p? > n.
r

n
(When L;J > 1, there are additional “cheap” checks to make.)

Computing to 90 million takes a few hours on my MacBook.



Example: 31416

Example: Find pp elements that invariably generate As1416.
31416 factorizes as 23-3-7-11-17.
Largest pp divisor is p = p! = 17. (2nd largest is 11.)

Unfortunately there are no primes between 31399 and 31416.
But 7853 is prime, and 31416 = 4 - 7853 + 4.

Unfortunately, 31416 =6 - 173 +6- 172 + 12 - 17, so
15708 =3-173 +3- 172 + 6 - 17.
So 17 fails a “cheap check” for transitivity.

However, As1416 is generated by the product of 4 7853-cycles
and an 11-power element.
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