Graphs, groups, and more: Celebrating
Brian Alspach 80th and Dragan Marušič's 65th.
Koper

Invariable generation of alternating groups by prime-power elements

Russ Woodroofe
University of Primorska
russ.woodroofe@famnit.upr.si

A problem, from older work

Joint work with Bob Guralnick and John Shareshian.

Joint work with Bob Guralnick and John Shareshian.
Binomial Question. Given $n>1$, can you find primes p, r so that every nontrivial binomial coef. is divisible by at least one of p, r ?

Example:

For $n=1,000,000$, we can take $p=5$ and $r=999,983$.
$\binom{n}{k}$ is divisible by r if $k>999,983$ or $k<17$.
$\binom{n}{k}$ is divisible by $p=5$ unless k is divisible by 5^{6}, as $(1+x)^{2^{6} \cdot 5^{6}} \equiv\left(1+x^{5^{6}}\right)^{2^{6}} \bmod 5$.

Similar tricks plus some brute force computation give a "yes" answer out to $n=1$ billion. (Shareshian and me, 2016)

Motivation

Q: $\forall n, \exists$? p, r s.t. $\forall 0<k<n, p$ divides $\binom{n}{k}$ or r divides $\binom{n}{k}$.

Motivation

Q: $\forall n, \exists$? p, r s.t. $\forall 0<k<n, p$ divides $\binom{n}{k}$ or $r \operatorname{divides}\binom{n}{k}$.
Motivation is from group theory.
Let $\mathcal{C}(G)=$ all cosets of all proper subgroups G.
Problem: When possible, find uncomplicated groups that act fixed-point-freely on $\mathcal{C}(G)$.
For P a p-group, R an r-group (p, r primes), and C a cyclic group:

1. An action by $P \rtimes C \rtimes R$ is good.
2. An action by $C \rtimes R$ is better.

Higher motivation: show that the "universal vertex-transitive G-geometry" $\mathcal{C}(G)$ is not contractible. (Smith-Oliver Theory)

Groups acting on $\mathcal{C}(G)$

$\mathcal{C}(G)=$ all cosets of all proper s.g.'s of G

How to act on $\mathcal{C}(G)$?

- multiply on left by $L \subseteq G$.
- multiply on right by $R \subseteq G$.
- act by automorphism of G, that is, by $A \subseteq$ Aut G.
- exchange left and right.

Indeed, Aut $\mathcal{C}(G) \cong((G \times G) \rtimes$ Aut $G) \rtimes \mathbb{Z}_{2}$ / Kernel.
What cosets are fixed by $L \times R$ left/right multiplication action?

$$
\begin{aligned}
& L H x R=H x \\
& L H x R x^{-1} x=H x \\
& L H R^{x^{-1} x=H x} \\
& L, R^{x^{-1}} \subseteq H
\end{aligned}
$$

Thus, $L \times R$ acts fpf-ly on proper cosets $\Longleftrightarrow \forall x,\left\langle L, R^{x}\right\rangle=G$. In this situation, we say that L, R invariably generate G.

Invariable generation of simple groups by Sylow subgroups
$L \times R$ acts fpfly on $\mathcal{C}(G) \Longleftrightarrow L, R$ invariably generate G. $\Longleftrightarrow \forall x, L$ and R^{x} generate G.

Theorem (Shareshian and me, 2016).
If S is a Lie-type or sporadic simple group, then S is invariably generated by a Sylow 2-subgroup and some other Sylow subgroup.

Recall the Classification of Finite Simple Groups says that a simple group is Lie-type (matrix group), sporadic, or alternating.

The direct analog for alternating is false - consider A_{31}, or $A_{2^{n}-1}$.
But it is reasonable to ask the following.
Open Question 1. For each alternating group A_{n}, can you find primes p, r so that A_{n} is invbly generated by Sylow p-, r-subgroups?

Relationship between two questions

$L \times R$ acts fpfly on $\mathcal{C}(G) \Longleftrightarrow L, R$ invariably generate G. $\Longleftrightarrow \forall x, L$ and R^{x} generate G.

At this point, we've considered two questions:
Binomial Question. Given $n>1$, can you find primes p, r so that every nontrivial binomial coef. is divisible by at least one of p, r ?

Open Question 1. For each alternating group A_{n}, can you find primes p, r so that A_{n} is invbly generated by Sylow $p-, r$-subgroups?

The two questions turn out to be completely equivalent! (Shareshian and me, 2016)
E.g.: $A_{1000000}$ is invariably generated by Sylow 999983- and 5-sgs.

Ongoing work

$$
\begin{aligned}
L \times R \text { acts fpfly on } \mathcal{C}(G) & \Longleftrightarrow L, R \text { invariably generate } G . \\
& \Longleftrightarrow \forall x, L \text { and } R^{\times} \text {generate } G .
\end{aligned}
$$

Right after acceptance of our paper, we saw how to improve it: Invariable generation by a cyclic subgroup and a Sylow subgroup gives a stronger version of noncontractibility of $\mathcal{C}(G)$.

After some more work, and subject to finishing checking details:
Theorem-in-progress (Guralnick, Shareshian and me 2019+). If S is a Lie-type or sporadic simple group, then S is invariably generated by two elements of prime order. (up to finitely? many exceptions)

What about alternating groups?

Ongoing work - alternating groups

L, R invariably generate G if $\forall x, L$ and R^{x} generate G.
Which alternating groups are invariably generated by two elements of prime order?

- Most of them - asymptotic density 1. (assuming RH)
- Not all of them. Fails for $A_{8}, A_{16}, A_{32}, \ldots$.

But it's reasonable to ask the following:

Open Question 2 (harder).

Is every alternating group invariably generated by two elements of prime power order?

The answer is "yes" out to 90 million.
(We expect to be able to check out to 1 billion or greater.)
Work on the harder question has yielded insight on the easier one!

Computationally checking invariable generation of A_{n} by Sylow sgs

Q1: Is A_{n} always invariably generated by two Sylow sgs?
Q2: Is A_{n} always invariably generated by two elts of pp order?
Strategy for checking inv. gen. of A_{n} by Sylow: (older)

1. Reduce to binomial divisibility (pure number theory). Now it's enough to find $p \mid n$ and r dividing every $\binom{n}{k}$.
2. Take p so that p^{a} be largest prime-power divisor of n.
3. If \exists prime r between $n-p^{a}$ and n, then done! (completely similar to $n=1,000,000$ example)
4. Otherwise, apply brute force to find an r that "works".

This strategy fails for 22 numbers up to 1 billion.
For these, apply more brute force with a prime other than p.
Computing out to 1 billion took 2 weeks on my MacBook.

Computationally checking invariable generation of A_{n} by pp elts

Q1: Is A_{n} always invariably generated by two Sylow sgs?
Q2: Is A_{n} always invariably generated by two elts of pp order?
As before, let p^{a} be large(st) pp divisor of n, and r be some other prime.

To avoid primitive proper subgroups of A_{n}, we need to have $r>\sqrt{n}$, and the r-power element to be the product of r-cycles. Wlog, $\left\lfloor\frac{n}{r}\right\rfloor r$-cycles.
(Using results of Praeger; Liebeck and Saxl)
We take the p-power element to have cycle structure corresponding to the base- p representation of n.

To get transitive subgroup, we must have $\left\lfloor\frac{n}{r}\right\rfloor \cdot r+p^{a}>n$. (When $\left\lfloor\frac{n}{r}\right\rfloor>1$, there are additional "cheap" checks to make.)
Computing to 90 million takes a few hours on my MacBook.

Example: 31416

Example: Find pp elements that invariably generate A_{31416}.
31416 factorizes as $2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 17$.
Largest pp divisor is $p=p^{1}=17$. (2nd largest is 11.)
Unfortunately there are no primes between 31399 and 31416. But 7853 is prime, and $31416=4 \cdot 7853+4$.

Unfortunately, $31416=6 \cdot 17^{3}+6 \cdot 17^{2}+12 \cdot 17$, so

$$
15708=3 \cdot 17^{3}+3 \cdot 17^{2}+6 \cdot 17
$$

So 17 fails a "cheap check" for transitivity.
However, A_{31416} is generated by the product of 47853 -cycles and an 11-power element.

Happy Birthday Brian and Dragan

-Advertisement-

If you use GAP on a Mac, you need Gap.app!

- includes latest version of GAP (built-in)
- drag-and-drop install
- Mac-like editing, command completion
- graphics - draw subgroup lattices (and more)

Available at cocoagap.sourceforge.io for the low price of free!

GAP 4.9.1 of 05-May-2018
Architecture: $\times 86$ _64-apple-darwin16.7.0-default 64
Contiguration: gmp 5.1.2
Loading the library and packages ...
Packages:
Actib 1.3, Alnuth 3.1.0, AtlasRep 1.5.1, AutPGrp 1.9, Browse 1.8.7, CRISP 1.4.4, Cryst 4.1.17, CrystCat 1.1.8, CTbLLIb 1.2.2, FactInt 1.6.2, FGA 1.4.0, GAPDOC 1.6.1, 10 4.5.1, IRREDSOL 1.4, LAGUNA 3.9.0, Polenta 1.3.8, Polycyclic 2.13.1, Pringrp 3.3.1, RadiRoot 2.8, ResClasses 4.7.1, Smallgrp 1.3, Sophus 1.24, SpinSym 1.5, TomLib 1.2.6, TransGrp 2.0.2,
Try '??help' for help. See also '?copyright', '?cite' and '?authors' SizeScreen $([80,50])$;"
SetHelpViewer("gap.app");
G:= DihedralGroup(12);
<pc group of size 12 with 3 generators>
GraphicSubgroupLattice(G);
<graphic subgroup lattice "GraphicSubgroupLattice">
MenuSelected ($0,2,1$) :
\#I All Subgroups (G) $\rightarrow(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, G)$
gap>

