
Tridiagonal pairs of Racah type, the double

lowering operator Ψ, and the universal

enveloping algebra U(sl2)

TerwilligerFest - Combinatorics around the q-Onsager Algebra

Sarah Bockting-Conrad

DePaul University, United States



⋆Happy birthday, Paul! ⋆

⋆Thank you for the many years ⋆
of mathematical adventures!
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Introduction & Motivation

This talk is about tridiagonal pairs and tridiagonal systems.

Broadly speaking, I am interested in how the 8 tridiagonal systems

associated with a tridiagonal pair are related to one another.

To study this, we can associate some interesting and meaningful linear

transformations with each tridiagonal system.

Understanding how these different maps relate to one another is one way

to better understand what’s going on the tridiagonal systems.
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Introduction & Motivation

Looking at specific families...

• q-Racah case

←− Beautiful! Great things happen!

– It turns out that one of our very special maps, ∆, can be written as

a product of q-exponentials of another map. This factorization

provides a nice ”halfway point” between our two tridiagonal systems

and allows us to say a lot about what’s going on in that case.

• Racah case ←− ???
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Definition of a tridiagonal pair

Let K denote a field.

Let V denote a vector space over K of finite positive dimension.

By a tridiagonal pair (or TD pair) on V we mean an ordered pair of

linear transformations A : V → V and A∗ : V → V satisfying:

1. Each of A,A∗ is diagonalizable.

2. There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0.

3. There exists an ordering {V ∗
i }δi=0 of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ),

where V ∗
−1 = 0 and V ∗

δ+1 = 0.

4. There does not exist a subspace W of V such that AW ⊆W ,

A∗W ⊆W , W ̸= 0, W ̸= V .
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Example: Q-polynomial distance-regular graph

Let Γ = Γ(X ,E ) denote a Q-polynomial distance-regular graph.

Let A denote the adjacency matrix of Γ.

Fix x ∈ X . Let A∗ = A∗(x) denote the dual adjacency matrix of Γ with

respect to x . That is, A∗ is the diagonal matrix in MatC(X ) whose

(y , y)-entry is given by

(A∗)yy = |X | (E1)xy .

Let W denote an irreducible (A,A∗)-submodule of C|X |.

Then A,A∗ form a TD pair on W .
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Standard ordering

Definition
Given a TD pair A,A∗, an ordering {Vi}di=0 of the eigenspaces of A is

called standard whenever

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0. (A similar discussion applies to A∗.)

Lemma (Ito, Terwilliger)
If {Vi}di=0 is a standard ordering of the eigenspaces of A, then {Vd−i}di=0

is standard and no other ordering is standard.
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Tridiagonal system

By a tridiagonal system (or TD system) on V , we mean a sequence

Φ = (A; {Vi}di=0;A
∗; {V ∗

i }di=0)

that satisfies (1)–(3) below.

1. A,A∗ is a tridiagonal pair on V .

2. {Vi}di=0 is a standard ordering of the eigenspaces of A.

3. {V ∗
i }di=0 is a standard ordering of the eigenspaces of A∗.
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Relatives of a TD system

A given TD system can be modified in a number of ways to get a new

TD system.

(A; {Vi}di=0;A
∗; {V ∗

i }di=0) (A∗; {V ∗
i }di=0;A; {Vi}di=0)

(A; {Vd−i}di=0;A
∗; {V ∗

i }di=0) (A∗; {V ∗
d−i}di=0;A; {Vi}di=0)

(A; {Vi}di=0;A
∗; {V ∗

d−i}di=0) (A∗; {V ∗
i }di=0;A; {Vd−i}di=0)

(A; {Vd−i}di=0;A
∗; {V ∗

d−i}di=0) (A∗; {V ∗
d−i}di=0;A; {Vd−i}di=0)

These eight TD systems are said to be relatives of one another.
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Assumptions

Until further notice, we fix a TD system

Φ = (A; {Vi}di=0;A
∗; {V ∗

i }di=0).

Let

Φ⇓ = (A; {Vd−i}di=0;A
∗; {V ∗

i }di=0).

Throughout this talk, we will focus on Φ and its associated objects. Keep

in mind that a similar discussion applies to Φ⇓ and its associated objects.

For any object f associated with Φ, we let f ⇓ denote the corresponding

object associated with Φ⇓.
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The Racah case

For 0 ≤ i ≤ d , we let θi (resp. θ
∗
i ) denote the eigenvalue of A (resp. A∗)

corresponding to the eigenspace Vi (resp. V
∗
i ).

Definition

We say that the TD system Φ has Racah type whenever there exist

scalars a, b, c , a∗, b∗, c∗ ∈ K such that c , c∗ are nonzero and

θi = a+ bi + ci2,

θ∗i = a∗ + b∗i + c∗i2

for 0 ≤ i ≤ d .

Assumption:

Throughout this talk, we assume that Φ has Racah type.
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The split decompositions of V

Definition

For 0 ≤ i ≤ d , define

Ui = (V ∗
0 + V ∗

1 + · · ·+ V ∗
i ) ∩ (Vi + Vi+1 + · · ·+ Vd),

U⇓
i = (V ∗

0 + V ∗
1 + · · ·+ V ∗

i ) ∩ (V0 + V1 + · · ·+ Vd−i ).

Theorem (Ito, Tanabe, Terwilliger)

V = U0 + U1 + · · ·+ Ud (direct sum)

V = U⇓
0 + U⇓

1 + · · ·+ U⇓
d (direct sum)

We refer to {Ui}di=0 as the first split decomposition of V .

We refer to {U⇓
i }di=0 as the second split decomposition of V .
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The maps H ,H⇓

Definition

Let H : V → V denote the linear transformation such that for 0 ≤ i ≤ d ,

Ui is an eigenspace of H with eigenvalue d − 2i . That is,

(H − (d − 2i)I )Ui = 0

for 0 ≤ i ≤ d .

Definition

Let H⇓ : V → V denote the linear transformation such that for

0 ≤ i ≤ d , U⇓
i is an eigenspace of H⇓ with eigenvalue d − 2i . That is,

(H⇓ − (d − 2i)I )U⇓
i = 0

for 0 ≤ i ≤ d .
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Split decompositions of V

Lemma (Ito, Tanabe, Terwilliger)

Let 0 ≤ i ≤ d.

A,A∗ act on the first split decomposition in the following way:

(A− θi I )Ui ⊆ Ui+1, (A∗ − θ∗i I )Ui ⊆ Ui−1.

A,A∗ act on the second split decomposition in the following way:

(A− θd−i I )U
⇓
i ⊆ U⇓

i+1, (A∗ − θ∗i I )U
⇓
i ⊆ U⇓

i−1.
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The raising maps R ,R⇓

Let

R = A− aI +
b

2
(H − dI )− c

4
(H − dI )2 .

By construction,

• R acts on Ui as A− θi I for 0 ≤ i ≤ d ,

• RUi ⊆ Ui+1 (0 ≤ i < d), RUd = 0.

Let

R⇓ = A− aI − b

2

(
H⇓ + dI

)
− c

4

(
H⇓ + dI

)2
.

By construction,

• R⇓ acts on U⇓
i as A− θd−i I for 0 ≤ i ≤ d ,

• R⇓U⇓
i ⊆ U⇓

i+1 (0 ≤ i < d), R⇓U⇓
d = 0.
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Relating R and H, R⇓ and H⇓

Lemma

Both

HR − RH = −2R,
H⇓R⇓ − R⇓H⇓ = −2R⇓

Corollary

Both

AH − HA

2
= A− aI +

b

2
(H − dI )− c

4
(H − dI )2,

AH⇓ − H⇓A

2
= A− aI − b

2
(H⇓ + dI )− c

4
(H⇓ + dI )2.
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The linear transformation ψ

We now introduce the linear transformation ψ : V → V .

The exact definition is a bit technical. One key feature of ψ is the following.

Lemma (B. 2012)

For 0 ≤ i ≤ d, both

ψUi ⊆ Ui−1,

ψU⇓
i ⊆ U⇓

i−1.

Moreover, ψd+1 = 0.

In light of the above result, we refer to ψ as the double lowering

operator.
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The linear transformation ψ

Lemma (B. 2012)

We have that ψ = ψ⇓.

Lemma

Both

Hψ − ψH = 2ψ,

H⇓ψ − ψH⇓ = 2ψ.

Lemma

Both

ψR − Rψ = H,

ψR⇓ − R⇓ψ = H⇓.
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Relation summary

Our relations

Hψ − ψH = 2ψ

HR − RH = −2R
ψR − Rψ = H

Φ⇓-analogues

H⇓ψ − ψH⇓ = 2ψ

H⇓R⇓ − R⇓H⇓ = −2R⇓

ψR⇓ − R⇓ψ = H⇓
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The universal enveloping algebra U(sl2)

Definition

The universal enveloping algebra U(sl2) is defined to be the unital

associative K-algebra with generators

e, f , h

and relations

ef − fe = h,

he − eh = 2e,

hf − fh = −2f .
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Two U(sl2)-module structures on V

Theorem

There exists a U(sl2)-module structure on V for which the generators act

as follows:

element of U(sl2) e f h

action on V ψ R H

Theorem

There exists a U(sl2)-module structure on V for which the generators act

as follows:

element of U(sl2) e f h

action on V ψ R⇓ H⇓
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Irreducible U(sl2)-submodules of V

Let denote M the subalgebra of End(V ) generated by A.

For 0 ≤ i ≤ d/2 and v ∈ Ki = Ui ∩ U⇓
i , let Mv denote the

M-submodule of V generated by v .

Lemma

Let 0 ≤ i ≤ d/2 and v ∈ Ki . For either of the U(sl2)-actions on V from

the previous slide, Mv is an irreducible U(sl2)-submodule of V with

dimension d − 2i + 1.

Lemma

For either of the U(sl2)-actions on V from the previous slide, V can be

written as a direct sum of its irreducible U(sl2)-submodules.
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The Casimir element of U(sl2)

Definition

Define the normalized Casimir element C of U(sl2) by

C = (h + 1)2 + 4fe,

= (h − 1)2 + 4ef .

We mention that

• C is in the center of U(sl2).

• C acts as a scalar multiple of the identity on irreducible

U(sl2)-modules.

23



The action of the Casimir element on V

Lemma

With respect to the first U(sl2)-module structure on V ,

the action of the C on V is equal to both

(H + 1)2 + 4Rψ,

(H − 1)2 + 4ψR.

Lemma

With respect to the second U(sl2)-module structure on V ,

the action of the C on V is equal to both

(H⇓ + 1)2 + 4R⇓ψ,

(H⇓ − 1)2 + 4ψR⇓.
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The action of the Casimir element on V

Lemma

Let 0 ≤ i ≤ d/2 and v ∈ Ki .

With respect to either of the U(sl2)-module structures on V ,

C acts on Mv as d − 2i + 1 times the identity.
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Comparing the actions of C on V

Lemma

The following coincide:

(i) the action of C on V for the first U(sl2)-module structure on V ,

(ii) the action of C on V for the second U(sl2)-module structure on V .

Corollary

The following four expressions are equal:

(H + 1)2 + 4Rψ,

(H − 1)2 + 4ψR,

(H⇓ + 1)2 + 4R⇓ψ,

(H⇓ − 1)2 + 4ψR⇓.
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The relationship between ψ,H ,H⇓

Proposition

The following coincide:

(I − cψ)H + (b + cd)ψ, (I − cψ)H⇓ − (b + cd)ψ,

H(I − cψ) + (b + cd + 2)ψ, H⇓(I − cψ)− (b + cd − 2)ψ.
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The relationship between ψ,H ,H⇓

Lemma

The element I − cψ ∈ End(V ) is invertible. Its inverse is as follows:

(I − cψ)−1 =
d∑

i=0

c iψi .
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The relationship between ψ,H ,H⇓

Theorem

We have

H − H⇓ =
−2(b + cd)ψ

I − cψ
.

The denominator above is invertible by the previous lemma.

Lemma

The operators ψ and H − H⇓ commute.
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The relationship between ψ,H ,H⇓

Lemma

For 0 ≤ i ≤ d, (
H − H⇓)Ui ⊆ U0 + U1 + · · ·+ Ui−1,(
H − H⇓)U⇓

i ⊆ U⇓
0 + U⇓

1 + · · ·+ U⇓
i−1.

Moreover H − H⇓ is nilpotent.

Lemma

The element c
(
H − H⇓)− 2(b + cd)I ∈ End(V ) is invertible.
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The relationship between ψ,H ,H⇓

Theorem

We have

ψ =
H − H⇓

c (H − H⇓)− 2(b + cd)I
.

The denominator above is invertible by the previous lemma.
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Future Work

Okay... so we have all of these equations relating the maps for Φ and

Φ⇓... now what?

• Carefully write all of this up by December 31st and submit it to the

special issue of JACO!

• The equations we found are analogous to those from the q-Racah

case, so it seems reasonable to hope that ∆ can be written as a

product of two polynomials in ψ. Now we just need to find it!

• Wish Paul happy birthday one more time.
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The End

Thank you for your attention!
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