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Classical random walk

® ® ®

o state: probability distribution x(t) in RY(¥3)

@ transition matrix: stochastic adjacency matrix M of P;

r(t+1) =

N~ O

O = O O
N—= O = =
S = O N



W walk

Quantum

Q. & ®

unit vector (CV(P3)

o state: an z(t) in RYFsT

@ transition matrix: Efoehas’d\ca:ljacency matrix M of P

unitary

0 1 2
0/0 % 0

x(t+1):1$0
2 \0 ¥



A discrete quantum walk on the arcs

O ulls-O-lll=-O

@ state: unit vector x(%) in Cares(Ps)

@ transition matrix: unitary adjacency matrix U of the line digraph of
Ps, where (a, b) is adjacent to (¢,d) if b= ¢

(0,1) (1,0) (1,2) (2,1)

(0,1) /0 5 7 0\
x(t—l—l): (1,0) 1 0 0 0 x(t)
(1,2) | o 0 0 1

enp\o L & o)



A coined quantum walk with Grover coins

U = RC', where
o (' is the coin matrix (changes direction but preserves the tail)

:
(59 O — -
°’° \ o 2) -1

@ R is the arc-reversal matrix (moves the tail in that direction)

(Aharonov, Ambainis, Kempe, 2001)



A discrete quantum walk on X

o Initial state: unit vector x € Cares(X)

o Transition matrix: unitary matrix U = RC € Cares(X)xares(X)
e State at time t: Ulx

@ Outcome of measurement: an arc (a,b), with probability

pe(z — (a,b)) :== (U'x) o (U'x))(4,p)

@ Probability at a vertex a:

pe(x — a) = Zpt(x — (a, b))

b~a



Perfect state transfer

Perfect state transfer from a to b:
t : |<Utaza,xb>‘ =1,
where x, and x; are unit vectors with

supp(xq) = {(a,u) : u ~a}, supp(xp) = {(b,v): v~ b}.

Figure: At time 0 Figure: At time t



Pretty good state transfer

Pretty good state transfer from a to b:
Ve > 0,dt : |<Uta:a,xb>‘ > 1 — €,
where x, and x; are unit vectors with

supp(zq) = {(a,u) : u ~a}, supp(xp) = {(b,v):v ~ b}.

Figure: At time 0 Figure: At time t



Local uniform mixing

Local uniform mixing at a:

t o te ) = 1
At : (U'xy) o (Utxy,) |arcs(X)\1’
where x, is a unit vector with
supp(xq) = {(a,u) : u ~ a}.
O O
O O
O O

Figure: At time 0 Figure: At time t



Local e-uniform mixing

Local e-uniform mixing at a :

Ve > 0,3t : '<(Uta:a)o(Uta:a) > 1 —,

’ \arcs1<X>\ 1>'

where x, is a unit vector with

supp(xq) = {(a,u) : u ~ a}.

T e

Figure: At time 0 Figure: At time t



From coins to weighted adjacency matrices
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Diagonalizing U

If U = RC
then
(Carcs(X)
WioWad---

/N

span{z; } @span{zo }Pspan{z3}® - -

state space

(R, C')-invariant subspaces

1-dim U-invariant subspaces
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Diagonalizing U

If U = RC where R and (' are reflections:

R°=C?=1], R*=R, C*=C

then
(Carcs(X) state space
Wi eWo P --- (R, C)-invariant subspaces
/ / \ of dim 1 or 2
span{zi }@span{za}®span{z3}@ --- 1-dim U-invariant subspaces

The spectral decomposition of U is determined by those of R, C' and
CRC' (Godsil and Zhan, 2023)
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Coins vs weights

coin matrix

Hermitian adjacency matrix

2
271
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Pretty good state transfer in schemes

Assuming C'z, = x, and C'xp = xy
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Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decompoistion

H =) AE\.
A

The eigenvalue support of a is

Aa = {)\ ; E>\€a 7& O}

14



Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decompoistion

H =) AE\.
A

The eigenvalue support of a is

Aa = {)\ ; E>\€a 7& O}

a and b are strongly cospectral if for each A:

E)\ea H E)\eb and |]E>\eaH m— HE)\ebH.
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Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decompoistion

H =) AE\.
A

The eigenvalue support of a is

Aa = {)\ ; E>\€a 7& O}

a and b are strongly cospectral if for each A:

E)\ea H E)\eb and HE)\GGH m— HE)\ebH.

Strongly cospectral vertices have the same eigenvalue support.
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Characterizing PGS
Theorem (Chan and Zhan, 2023; Zhan, 2025+ )

Let H be a normalized Hermitian adjacency matrix of a graph X with
H =Y \Ej,
A

A quantum walk associated with H admits ab-PGST if and only if

@ a and b are y-strongly cospectral for some unimodular v € C:

E)\ea = :|:’7E>\6b, VA
@ For any set {{y : A € A,} of integers such that

Z ¢y arccos A =0 (mod 2m),
)\EAa

we have

Z /=0 (mod 2).

15



An example with Grover coins

PGST happens on the hypercube ()5 between antipodal vertices

© The antipodal vertices of ()5 are strongly cospectral, with
1 3 3 1
A_I_:{l?_a__}a A_:{_v__7_1}'
5 5 5 5
@ The following implication is true:

5 5

1 3
¢1 arccos(1) + £1 arccos (5) + ¢ 3 arccos <_5>

5 5]

1 3
+/¢_1 arccos(—1) + ¢_1 arccos (—5) + 3 arccos (5) =5. 0

:>€_1 —I—g_%—Fg% =5 ()



Hypercubes

@ Between 0 and 1 on ()4
o d prime; unweighted (Chan and Zhan, 2023)
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Hypercubes

@ Between 0 and 1 on @)y
o d prime; unweighted (Chan and Zhan, 2023)

e d composite: ?

0.4
0.3 A
0.2 A

5 10 15 20

Figure: (Q4: transfer probability between antipodal vertices with Grover coins
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A sufficient condition on graph spectra

Theorem (Zhan, 2025+ )

Let H be a real symmetric adjacency matrix of X. A quantum walk associated
with H admits ab-PGST if the following hold.

@ T he spectral radius of H is a prime p.

@ a and b are strongly cospectral relative to H, and

Ao C{p—2r:r=0,1,--- ,p}.

© The eigenvalue support A, satisfies one of the following.

e For any pair A\, —\ in A,, we have \ € Aib < —\E Afb.
o For any pair A\, —X in A,, we have A € A, <— —X e Al

Proof. The angles
{r} U {arccos(A/p) : A € Ay, 0 < A\ < p}

are linearly independent over Q. O
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Enabling PGST with weighted Grover coins

@ Between 0 and 1 on ()4

o d prime; unweighted (Chan and Zhan, 2023)

o d composite: weighted with 2 weights (Zhan, 2025+)
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Enabling PGST with weighted Grover coins

@ Between 0 and 1 on ()4

o d prime; unweighted (Chan and Zhan, 2023)

o d composite: weighted with 2 weights (Zhan, 2025+)

@ Between 0 and 1 on folded d-cube weighted
o any d: weighted with 2 weights (Martin, O'Toole and Zhan, 2025++)
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Enabling PGST with weighted Grover coins

@ Between 0 and 1 on Q4

o d prime; unweighted (Chan and Zhan, 2023)

o d composite: weighted with 2 weights (Zhan, 2025+)

@ Between 0 and 1 on folded d-cube weighted
o any d: weighted with 2 weights (Martin, O'Toole and Zhan, 2025++)

@ Between 0 and b on connected cubelike graph

@ any connection set: weighted with at most 3 weights
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PGST on connected X (Z4, C)

Proof. If X = g, suppose b # 1. Then C' = S U {c} UT with
b = ZSES s. Let

H=w) As+mA.+) A,
s€S teT P(H)

where m > 1, w > 2(m + |T'|) and|w|S| +m + |T|| is an odd prime.

o Mg £, = w(thg(S) £9n(S)) + m(vhy(c) £ tn(c)) + vy (T) =+ 3 (T)
)(j,x)

@ \; — Ap is even 7\7? (x)=

° mi = T (— 1)) (~1) ) = (1l +[son]

o If \g = A, then 145(S) = ¥n(S), s0 [ SN gt| =[N At

o If A\, = —Ap, then ¥, (S) = —n(S), so |SﬁgL + |Sﬂ hL‘ = |5].
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Problems on PGS

@ Which graphs in translation schemes admit PGST with H € C(A)?

Can we determine the minimum number of distinct weights needed?

© For which schemes do we need complex Hermitian H for PGST?

© Study strongly cospectral vertices relative to a unimodular v € C:

E>\€a — :|:’7E)\€b, VA

21



e-uniform mixing in schemes

Assuming C'z, = x,

29



Connection to generalized PGS

Perfect state transfer from z to y:

3t : ‘<Ut:c,y>‘ = 1.
Pretty good state transfer from x to y:

Ve > 0,dt : ‘<Ut:v,y>’ > 1 — €,

23



Connection to generalized PGS

Perfect state transfer from z to y:

3t : |<Utx,y>‘ = 1.
Pretty good state transfer from x to y:

Ve > 0,dt : ‘<Uta:,y>’ > 1 — €,

A state x is flat if all entries of £ have the same absolute value.
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Connection to generalized PGS

Perfect state transfer from z to y:

3t : |<Utx,y>‘ = 1.
Pretty good state transfer from x to y:

Ve > 0,dt : ‘<Ut$,y>’ > 1 — €,

A state x is flat if all entries of £ have the same absolute value.

@ local uniform mixing at a <= PST from z, to a flat state

@ local e-uniform mixing at a <= PGST from z, to a flat state

23



Generalized PGS

Theorem (Chan and Zhan, 2023)

Let the spectral decomposition of U be
U = Z eng.
0

Then U admits xy-PGST if and only if the following hold.

© x and y are strongly cospectral relative to U :

Foxr = engy, W47,

@ There is a unimodular v € C such that, for any € > 0, there exists
t € R such that if Fyx # 0, then |e!®010) — ~| < ¢

24



Grover coins

Theorem (Zhan, 2025+ )

Let X be a regular graph that admits local e-uniform mixing with Grover coins.

@ /f X is non-bipartite with local e-uniform mixing, then n is a perfect square.

@ /f, in addition, X lies in a scheme, then X admits e-uniform mixing.

© /f, in addition, X is complete or strongly regular, then the adjacency
algebra of X contains a real Hadamard matrix.

45



Grover coins

Theorem (Zhan, 2025+ )

Let X be a regular graph that admits local e-uniform mixing with Grover coins.

@ /f X is non-bipartite with local e-uniform mixing, then n is a perfect square.

@ /f, in addition, X lies in a scheme, then X admits e-uniform mixing.

© /f, in addition, X is complete or strongly regular, then the adjacency
algebra of X contains a real Hadamard matrix.

Theorem (Zhan, 2025+ )

A strongly regular graph X admits e-uniform mixing if and only if X or X has
parameters (4m?,2m? = m, m? £ m, m? & m) where m > 2.
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Restricting the target state

X distance regular with distance partition {Cy,--- ,Cy} relative to a.
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Restricting the target state

X distance regular with distance partition {Cy,--- ,Cy} relative to a.
@ The partition {C};} where

Cii = {(u,v) : u ~ v,dist(a,u) =1, dist(a,v) = j}

is an equitable partition of the line digraph of X
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Restricting the target state

X distance regular with distance partition {Cy,--- ,Cy} relative to a.
@ The partition {C};} where

Cii = {(u,v) : u ~ v,dist(a,u) =1, dist(a,v) = j}

is an equitable partition of the line digraph of X

o If S is the characteristic matrix of the above parititon, then col(SS) is
U-invariant, and U'z, € col(S) for any t € R
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Restricting the target state

X distance regular with distance partition {Cy,--- ,Cy} relative to a.
@ The partition {C};} where

Cii = {(u,v) : u ~wv,dist(a,u) = i,dist(a,v) = j}
is an equitable partition of the line digraph of X

o If S is the characteristic matrix of the above parititon, then col(SS) is
U-invariant, and U'z, € col(S) for any t € R

o If there is PGST from z, to y, then y € col(S)

<11

201 212 <22
210 221
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Restricting the target state

X distance regular with distance partition {Cy,--- ,Cy} relative to a.
@ The partition {C};} where

Cii = {(u,v) : u ~wv,dist(a,u) = i,dist(a,v) = j}
is an equitable partition of the line digraph of X

o If S is the characteristic matrix of the above parititon, then col(SS) is
U-invariant, and U'z, € col(S) for any t € R

o If there is PGST from z, to y, then y € col(S)

e If X is strongly regular, then y or Ry is constant on outgoing arcs
of the same vertex

211 s
201 212 22
210 221
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DRG: consequences of strong cospectrality

Let P be the eigenmatrix of the scheme. Let y = Sz. There are scalars
dr where 9 € {0, 7} such that

(cos 50\ (bo \

Vilesal _p| e a b )
\cos 64/ \ ca ag)
and
(cos(Bo +00)\  [bo \
v 008(51.4—91) L e e h o

\COS(éd + Qd)) \ Cd ad)



Problems on e-uniform mixing

Let X be a graph in a scheme.

© If X is non-bipartite distance regular graph, and z, is strongly
cospectral to a flat vector y, must y or Ry be constant on outgoing
arcs of the same vertex?

©@ What about bipartite graphs?

Utz, has flat imaginary parts

© Do weighted Grover coins enable e-uniform mixing?

Complex Hadamard matrix?

© What about other target probability distributions?

Strong cospectrality between z, and a general state

7278



hank you!
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