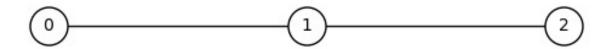
Quantum State Transfer in Association Schemes

Hanmeng (Harmony) Zhan

Worcester Polytechnic Institute

Combinatorics around the q-Onsager Algebra, June 27, 2025 TerwilligerFest, Kranjska Gora, Slovenia

Classical random walk

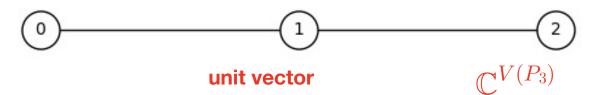


- state: probability distribution x(t) in $\mathbb{R}^{V(P_3)}$
- transition matrix: stochastic adjacency matrix M of P_3

$$x(t+1) = \begin{array}{ccc} 0 & 1 & 2 \\ 0 & \frac{1}{2} & 0 \\ 1 & 0 & 1 \\ 2 & 0 & \frac{1}{2} & 0 \end{array}$$

Classical random walk

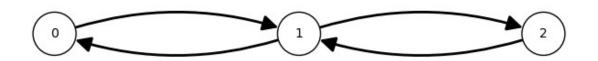
Quantum



- state: probability distribution x(t) in $\mathbb{R}^{V(P_3)}$
- ullet transition matrix: stochastic adjacency matrix M of P_3

$x(t+1) = \begin{array}{cccc} & & & & & & & \\ & 0 & 1 & 2 & & \\ & 0 & \frac{1}{2} & 0 & \\ & 1 & 0 & & \\ & 2 & 0 & & \\ & & 1 & 0 & \\ & & & 0 & \\ & & & 0 & \\ & & & 0 & \\ & & & 0 & \\ \end{array}$

A discrete quantum walk on the arcs



- state: unit vector x(t) in $\mathbb{C}^{\operatorname{arcs}(P_3)}$
- transition matrix: unitary adjacency matrix U of the line digraph of P_3 , where (a,b) is adjacent to (c,d) if b=c

$$x(t+1) = \begin{pmatrix} (0,1) & (1,0) & (1,2) & (2,1) \\ (0,1) & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 1 & 0 & 0 & 0 \\ (1,2) & 0 & 0 & 1 \\ (2,1) & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} x(t)$$

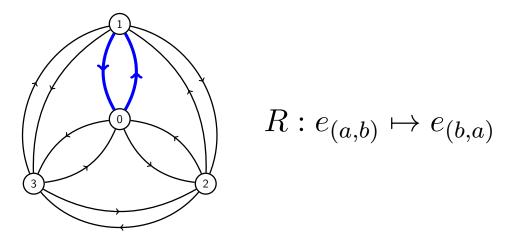
A coined quantum walk with Grover coins

U = RC, where

C is the coin matrix (changes direction but preserves the tail)

$$C = \begin{pmatrix} \frac{2}{3}J - I & & & \\ & \frac{2}{3}J - I & & \\ & & \frac{2}{3}J - I & \\ & & & \frac{2}{3}J - I \end{pmatrix}$$

ullet R is the arc-reversal matrix (moves the tail in that direction)



(Aharonov, Ambainis, Kempe, 2001)

A discrete quantum walk on X

- Initial state: unit vector $x \in \mathbb{C}^{\operatorname{arcs}(X)}$
- \bullet Transition matrix: unitary matrix $U = RC \in \mathbb{C}^{\operatorname{arcs}(X) \times \operatorname{arcs}(X)}$
- State at time t: $U^t x$
- Outcome of measurement: an arc (a,b), with probability

$$p_t(x \to (a,b)) := ((U^t x) \circ \overline{(U^t x)})_{(a,b)}$$

• Probability at a vertex *a*:

$$p_t(x \to a) := \sum_{b \sim a} p_t(x \to (a, b))$$

Perfect state transfer

Perfect state transfer from a to b:

$$\exists t : \left| \left\langle U^t x_a, x_b \right\rangle \right| = 1,$$

where x_a and x_b are unit vectors with

$$supp(x_a) = \{(a, u) : u \sim a\}, \quad supp(x_b) = \{(b, v) : v \sim b\}.$$

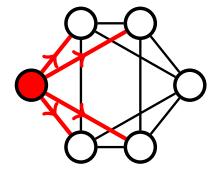


Figure: At time 0

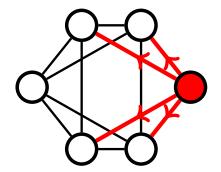


Figure: At time t

Pretty good state transfer

Pretty good state transfer from a to b:

$$\forall \epsilon > 0, \exists t : \left| \left\langle U^t x_a, x_b \right\rangle \right| > 1 - \epsilon,$$

where x_a and x_b are unit vectors with

$$supp(x_a) = \{(a, u) : u \sim a\}, \quad supp(x_b) = \{(b, v) : v \sim b\}.$$

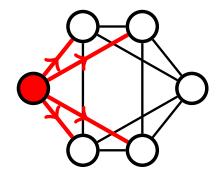


Figure: At time 0

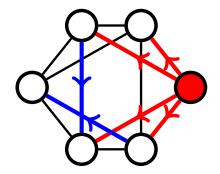


Figure: At time *t*

Local uniform mixing

Local uniform mixing at a:

$$\exists t : (U^t x_a) \circ (\overline{U^t x_a}) = \frac{1}{|\operatorname{arcs}(X)|} \mathbf{1},$$

where x_a is a unit vector with

$$\operatorname{supp}(x_a) = \{(a, u) : u \sim a\}.$$

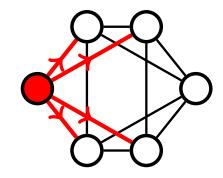


Figure: At time 0

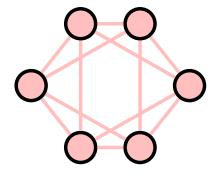


Figure: At time *t*

Local ϵ -uniform mixing

Local ϵ -uniform mixing at a:

$$\forall \epsilon > 0, \exists t : \left| \left\langle (U^t x_a) \circ (\overline{U^t x_a}), \frac{1}{|\operatorname{arcs}(X)|} \mathbf{1} \right\rangle \right| > 1 - \epsilon,$$

where x_a is a unit vector with

$$supp(x_a) = \{(a, u) : u \sim a\}.$$

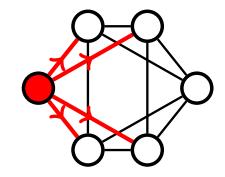


Figure: At time 0

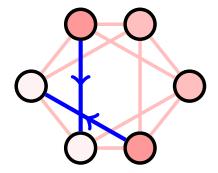


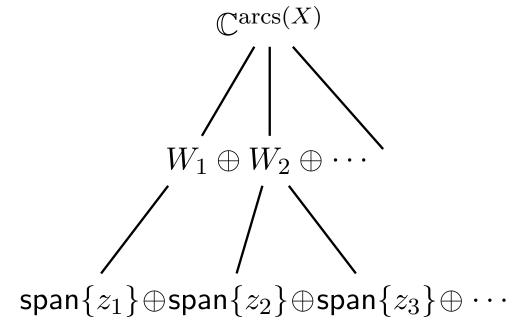
Figure: At time *t*

From coins to weighted adjacency matrices

${\bf Diagonalizing}\ {\cal U}$

If
$$U = RC$$

then



state space

 $\langle R,C \rangle$ -invariant subspaces

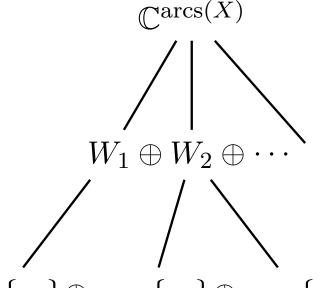
1-dim U-invariant subspaces

Diagonalizing U

If U = RC where R and C are reflections:

$$R^2 = C^2 = I, \quad R^* = R, \quad C^* = C$$

then



state space

 $\langle R,C \rangle$ -invariant subspaces of dim 1 or 2

 $\operatorname{span}\{z_1\}\oplus\operatorname{span}\{z_2\}\oplus\operatorname{span}\{z_3\}\oplus\cdots$ 1-dim U-invariant subspaces

The spectral decomposition of U is determined by those of R, C and CRC (Godsil and Zhan, 2023)

Coins vs weights

coin matrix	Hermitian adjacency matrix
$\begin{pmatrix} \frac{2}{k}J - I & & \\ & \frac{2}{k}J - I & \\ & & \ddots \end{pmatrix}$	
$ \begin{pmatrix} \frac{2}{k} \begin{pmatrix} 1 & i & i \\ -i & 1 & 1 \\ -i & 1 & 1 \end{pmatrix} - I \\ & & \frac{2}{k}J - I $ $ \vdots $	
$\begin{pmatrix} I - \frac{2}{k}J \\ \frac{2}{k}J - I \\ & \ddots \end{pmatrix}$	
$egin{pmatrix} -I & & & & & \ & rac{2}{k}J-I & & & & \ & & \ddots & & & \ & & & \ddots & \end{pmatrix}$	

Pretty good state transfer in schemes

Assuming $Cx_a = x_a$ and $Cx_b = x_b$

Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decomposition

$$H = \sum_{\lambda} \lambda E_{\lambda}.$$

The eigenvalue support of a is

$$\Lambda_a = \{\lambda : E_\lambda e_a \neq 0\}.$$

Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decomposition

$$H = \sum_{\lambda} \lambda E_{\lambda}.$$

The eigenvalue support of a is

$$\Lambda_a = \{\lambda : E_\lambda e_a \neq 0\}.$$

a and b are strongly cospectral if for each λ :

$$E_{\lambda}e_a \parallel E_{\lambda}e_b$$
 and $\parallel E_{\lambda}e_a \parallel = \parallel E_{\lambda}e_b \parallel$.

Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decomposition

$$H = \sum_{\lambda} \lambda E_{\lambda}.$$

The eigenvalue support of a is

$$\Lambda_a = \{\lambda : E_\lambda e_a \neq 0\}.$$

a and b are strongly cospectral if for each λ :

$$E_{\lambda}e_a \parallel E_{\lambda}e_b$$
 and $\parallel E_{\lambda}e_a \parallel = \parallel E_{\lambda}e_b \parallel$.

Strongly cospectral vertices have the same eigenvalue support.

Characterizing PGST

Theorem (Chan and Zhan, 2023; Zhan, 2025+)

Let H be a normalized Hermitian adjacency matrix of a graph X with

$$H = \sum_{\lambda} \lambda E_{\lambda},$$

A quantum walk associated with H admits ab-PGST if and only if

1 a and b are γ -strongly cospectral for some unimodular $\gamma \in \mathbb{C}$:

$$E_{\lambda}e_{a} = \pm \gamma E_{\lambda}e_{b}, \quad \forall \lambda$$

② For any set $\{\ell_{\lambda}:\lambda\in\Lambda_a\}$ of integers such that

$$\sum_{\lambda \in \Lambda_a} \ell_\lambda \arccos \lambda \equiv 0 \pmod{2\pi},$$

we have

$$\sum_{\lambda \in \Lambda_{ab}^{-}} \ell_{\lambda} \equiv 0 \pmod{2}.$$

An example with Grover coins

PGST happens on the hypercube Q_5 between antipodal vertices

lacktriangle The antipodal vertices of Q_5 are strongly cospectral, with

$$\Lambda^{+} = \left\{1, \frac{1}{5}, -\frac{3}{5}\right\}, \quad \Lambda^{-} = \left\{\frac{3}{5}, -\frac{1}{5}, -1\right\}.$$

The following implication is true:

$$\ell_1 \arccos(1) + \ell_{\frac{1}{5}} \arccos\left(\frac{1}{5}\right) + \ell_{-\frac{3}{5}} \arccos\left(-\frac{3}{5}\right)$$
$$+\ell_{-1} \arccos(-1) + \ell_{-\frac{1}{5}} \arccos\left(-\frac{1}{5}\right) + \ell_{\frac{3}{5}} \arccos\left(\frac{3}{5}\right) \equiv_{2\pi} 0$$

$$\Longrightarrow \ell_{-1} + \ell_{-\frac{1}{5}} + \ell_{\frac{3}{5}} \equiv_2 0$$

Hypercubes

- ullet Between $oldsymbol{0}$ and $oldsymbol{1}$ on Q_d
 - ullet d prime; unweighted (Chan and Zhan, 2023)

Hypercubes

- ullet Between $oldsymbol{0}$ and $oldsymbol{1}$ on Q_d
 - d prime; unweighted (Chan and Zhan, 2023)
 - d composite: ?

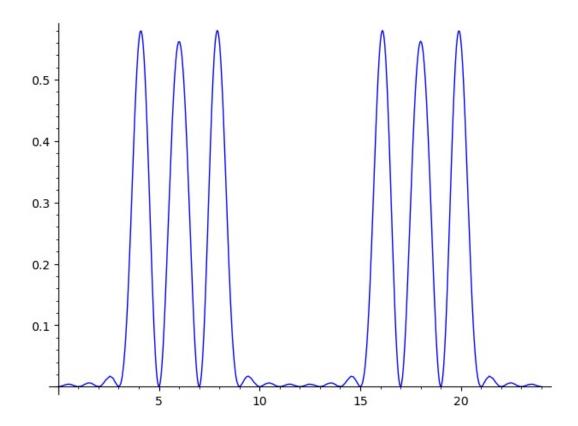


Figure: Q_4 : transfer probability between antipodal vertices with Grover coins

A sufficient condition on graph spectra

Theorem (Zhan, 2025+)

Let H be a real symmetric adjacency matrix of X. A quantum walk associated with H admits ab-PGST if the following hold.

- The spectral radius of H is a prime p.
- $oldsymbol{a}$ and b are strongly cospectral relative to H, and

$$\Lambda_a \subseteq \{p - 2r : r = 0, 1, \cdots, p\}.$$

- The eigenvalue support Λ_a satisfies one of the following.
 - For any pair $\lambda, -\lambda$ in Λ_a , we have $\lambda \in \Lambda_{ab}^{\pm} \iff -\lambda \in \Lambda_{ab}^{\pm}$. For any pair $\lambda, -\lambda$ in Λ_a , we have $\lambda \in \Lambda_{ab}^{\pm} \iff -\lambda \in \Lambda_{ab}^{\mp}$.

Proof. The angles

$$\{\pi\} \cup \{\arccos(\lambda/p) : \lambda \in \Lambda_a, 0 < \lambda < p\}$$

are linearly independent over \mathbb{Q} .

Enabling PGST with weighted Grover coins

- ullet Between $oldsymbol{0}$ and $oldsymbol{1}$ on Q_d
 - d prime; unweighted (Chan and Zhan, 2023)
 - d composite: weighted with 2 weights (Zhan, 2025+)

Enabling PGST with weighted Grover coins

- ullet Between $oldsymbol{0}$ and $oldsymbol{1}$ on Q_d
 - d prime; unweighted (Chan and Zhan, 2023)
 - d composite: weighted with 2 weights (Zhan, 2025+)
- Between 0 and 1 on folded d-cube weighted
 - any d: weighted with 2 weights (Martin, O'Toole and Zhan, 2025++)

Enabling PGST with weighted Grover coins

- ullet Between $oldsymbol{0}$ and $oldsymbol{1}$ on Q_d
 - d prime; unweighted (Chan and Zhan, 2023)
 - d composite: weighted with 2 weights (Zhan, 2025+)
- ullet Between $oldsymbol{0}$ and $oldsymbol{1}$ on folded d-cube weighted
 - any d: weighted with 2 weights (Martin, O'Toole and Zhan, 2025++)
- ullet Between $oldsymbol{0}$ and b on connected cubelike graph
 - any connection set: weighted with at most 3 weights

PGST on connected $X(\mathbb{Z}_2^d, C)$

Proof. If $X = Q_d$, suppose $b \neq 1$. Then $C = S \sqcup \{c\} \sqcup T$ with $b = \sum_{s \in S} s$. Let

$$H = w \sum_{s \in S} A_s + mA_c + \sum_{t \in T} A_t,$$

where $m \geq 1$, $w \geq 2(m+|T|)$ and w|S|+m+|T| is an odd prime.

- $\lambda_g \pm \lambda_h = w(\psi_g(S) \pm \psi_h(S)) + m(\psi_g(c) \pm \psi_h(c)) + \psi_g(T) \pm \psi_h(T)$
- $\lambda_g \lambda_h$ is even

$$\gamma_g(x) = H(g,x)$$

- $\frac{\psi_g(b)}{\psi_h(b)} = \prod_{s \in S} (-1)^{\langle g, s \rangle} (-1)^{\langle h, s \rangle} = (-1)^{|S \cap g^{\perp}| + |S \cap h^{\perp}|}$
- If $\lambda_g = \lambda_h$, then $\psi_g(S) = \psi_h(S)$, so $\left| S \cap g^{\perp} \right| = \left| S \cap h^{\perp} \right|$.
- If $\lambda_h = -\lambda_h$, then $\psi_g(S) = -\psi_h(S)$, so $\left| S \cap g^\perp \right| + \left| S \cap h^\perp \right| = |S|$.

Problems on PGST

- ① Which graphs in translation schemes admit PGST with $H \in \mathbb{C}(A)$?

 Can we determine the minimum number of distinct weights needed?
- ② For which schemes do we need complex Hermitian H for PGST?
- **3** Study strongly cospectral vertices relative to a unimodular $\gamma \in \mathbb{C}$:

$$E_{\lambda}e_{a} = \pm \gamma E_{\lambda}e_{b}, \quad \forall \lambda$$

ϵ -uniform mixing in schemes

Assuming $Cx_a = x_a$

Connection to generalized PGST

Perfect state transfer from x to y:

$$\exists t : \left| \left\langle U^t x, y \right\rangle \right| = 1.$$

Pretty good state transfer from x to y:

$$\forall \epsilon > 0, \exists t : \left| \left\langle U^t x, y \right\rangle \right| > 1 - \epsilon,$$

Connection to generalized PGST

Perfect state transfer from x to y:

$$\exists t : \left| \left\langle U^t x, y \right\rangle \right| = 1.$$

Pretty good state transfer from x to y:

$$\forall \epsilon > 0, \exists t : \left| \left\langle U^t x, y \right\rangle \right| > 1 - \epsilon,$$

A state x is flat if all entries of x have the same absolute value.

Connection to generalized PGST

Perfect state transfer from x to y:

$$\exists t : \left| \left\langle U^t x, y \right\rangle \right| = 1.$$

Pretty good state transfer from x to y:

$$\forall \epsilon > 0, \exists t : \left| \left\langle U^t x, y \right\rangle \right| > 1 - \epsilon,$$

A state x is flat if all entries of x have the same absolute value.

- local uniform mixing at $a \iff \mathsf{PST}$ from x_a to a flat state
- local ϵ -uniform mixing at $a \iff \mathsf{PGST}$ from x_a to a flat state

Generalized PGST

Theorem (Chan and Zhan, 2023)

Let the spectral decomposition of U be

$$U = \sum_{\theta} e^{i\theta} F_{\theta}.$$

Then U admits xy-PGST if and only if the following hold.

 $oldsymbol{0}$ x and y are strongly cospectral relative to U:

$$F_{\theta}x = e^{i\delta}F_{\theta}y, \quad \forall \theta$$

2 There is a unimodular $\gamma \in \mathbb{C}$ such that, for any $\epsilon > 0$, there exists $t \in \mathbb{R}$ such that if $F_{\theta}x \neq 0$, then $\left|e^{i(t\theta+\delta)} - \gamma\right| < \epsilon$.

Grover coins

Theorem (Zhan, 2025+)

Let X be a regular graph that admits local ϵ -uniform mixing with Grover coins.

- **1** If X is non-bipartite with local ϵ -uniform mixing, then n is a perfect square.
- ② If, in addition, X lies in a scheme, then X admits ϵ -uniform mixing.
- ③ If, in addition, X is complete or strongly regular, then the adjacency algebra of X contains a real Hadamard matrix.

Grover coins

Theorem (Zhan, 2025+)

Let X be a regular graph that admits local ϵ -uniform mixing with Grover coins.

- ① If X is non-bipartite with local ϵ -uniform mixing, then n is a perfect square.
- 2 If, in addition, X lies in a scheme, then X admits ϵ -uniform mixing.
- ③ If, in addition, X is complete or strongly regular, then the adjacency algebra of X contains a real Hadamard matrix.

Theorem (Zhan, 2025+)

A strongly regular graph X admits ϵ -uniform mixing if and only if X or \overline{X} has parameters $(4m^2, 2m^2 \pm m, m^2 \pm m, m^2 \pm m)$ where $m \geq 2$.

X distance regular with distance partition $\{C_0, \cdots, C_d\}$ relative to a.

X distance regular with distance partition $\{C_0, \cdots, C_d\}$ relative to a.

• The partition $\{C_{ij}\}$ where

$$C_{ij} = \{(u, v) : u \sim v, \text{dist}(a, u) = i, \text{dist}(a, v) = j\}$$

is an equitable partition of the line digraph of X

X distance regular with distance partition $\{C_0, \cdots, C_d\}$ relative to a.

• The partition $\{C_{ij}\}$ where

$$C_{ij} = \{(u, v) : u \sim v, \text{dist}(a, u) = i, \text{dist}(a, v) = j\}$$

is an equitable partition of the line digraph of X

• If S is the characteristic matrix of the above parititon, then $\mathrm{col}(S)$ is U-invariant, and $U^tx_a\in\mathrm{col}(S)$ for any $t\in\mathbb{R}$

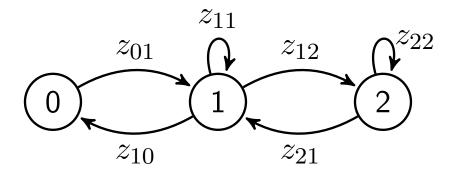
X distance regular with distance partition $\{C_0, \cdots, C_d\}$ relative to a.

• The partition $\{C_{ij}\}$ where

$$C_{ij} = \{(u, v) : u \sim v, \text{dist}(a, u) = i, \text{dist}(a, v) = j\}$$

is an equitable partition of the line digraph of X

- If S is the characteristic matrix of the above parititon, then $\mathrm{col}(S)$ is U-invariant, and $U^tx_a\in\mathrm{col}(S)$ for any $t\in\mathbb{R}$
- If there is PGST from x_a to y, then $y \in col(S)$



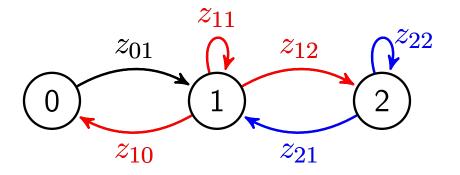
X distance regular with distance partition $\{C_0, \cdots, C_d\}$ relative to a.

• The partition $\{C_{ij}\}$ where

$$C_{ij} = \{(u, v) : u \sim v, \text{dist}(a, u) = i, \text{dist}(a, v) = j\}$$

is an equitable partition of the line digraph of X

- If S is the characteristic matrix of the above parititon, then $\mathrm{col}(S)$ is U-invariant, and $U^tx_a\in\mathrm{col}(S)$ for any $t\in\mathbb{R}$
- If there is PGST from x_a to y, then $y \in col(S)$
- ullet If X is strongly regular, then y or Ry is constant on outgoing arcs of the same vertex



DRG: consequences of strong cospectrality

Let P be the eigenmatrix of the scheme. Let y=Sz. There are scalars δ_r where $\delta_0 \in \{0, \pi\}$ such that

$$\sqrt{k} \begin{pmatrix} \cos \delta_0 \\ \cos \delta_1 \\ \vdots \\ \cos \delta_d \end{pmatrix} = P \begin{pmatrix} b_0 \\ c_1 & a_1 & b_1 \\ & & & \ddots \\ & & & & c_d & a_d \end{pmatrix} z$$

and

$$\sqrt{k} \begin{pmatrix} \cos(\delta_0 + \theta_0) \\ \cos(\delta_1 + \theta_1) \\ \vdots \\ \cos(\delta_d + \theta_d) \end{pmatrix} = P \begin{pmatrix} b_0 \\ c_1 & a_1 & b_1 \\ & & & \ddots \\ & & & & c_d & a_d \end{pmatrix} R'z$$

Problems on ϵ -uniform mixing

Let X be a graph in a scheme.

- If X is non-bipartite distance regular graph, and x_a is strongly cospectral to a flat vector y, must y or Ry be constant on outgoing arcs of the same vertex?
- ② What about bipartite graphs? U^tx_a has flat imaginary parts
- **3** Do weighted Grover coins enable ϵ -uniform mixing? Complex Hadamard matrix?
- What about other target probability distributions? Strong cospectrality between x_a and a general state

Thank you!

