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Classical random walk

state: probability distribution x(t) in RV (P3)

transition matrix: stochastic adjacency matrix M of P3

x(t + 1) =

0 1 2







0 0 1

2 0
1 1 0 1
2 0 1

2 0
x(t)
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Quantum
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CV (P3)



A discrete quantum walk on the arcs

state: unit vector x(t) in Carcs(P3)

transition matrix: unitary adjacency matrix U of the line digraph of
P3, where (a, b) is adjacent to (c, d) if b = c

x(t + 1) =

(0, 1) (1, 0) (1, 2) (2, 1)








(0, 1) 0 1→
2

1→
2 0

(1, 0) 1 0 0 0
(1, 2) 0 0 0 1
(2, 1) 0 1→

2 → 1→
2 0

x(t)
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A coined quantum walk with Grover coins

U = RC, where
C is the coin matrix (changes direction but preserves the tail)

0

1

23

2
3 → 12
3 → 12
3 → 1

2
3
2
3
2
3

2
3
2
3
2
3

C =





2
3J → I

2
3J → I

2
3J → I

2
3J → I





R is the arc-reversal matrix (moves the tail in that direction)

0

1

23

R : e(a,b) ↑↓ e(b,a)

(Aharonov, Ambainis, Kempe, 2001)
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A discrete quantum walk on X

Initial state: unit vector x ↔ Carcs(X)

Transition matrix: unitary matrix U = RC ↔ Carcs(X)↑arcs(X)

State at time t: U
t
x

Outcome of measurement: an arc (a, b), with probability

pt(x ↓ (a, b)) := ((U t
x) ↗ (U tx))(a,b)

Probability at a vertex a:

pt(x ↓ a) :=
∑

b↓a

pt(x ↓ (a, b))
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Perfect state transfer

Perfect state transfer from a to b:

↘t :
∣∣∣
〈
U

t
xa, xb

〉∣∣∣ = 1,

where xa and xb are unit vectors with

supp(xa) = {(a, u) : u ≃ a}, supp(xb) = {(b, v) : v ≃ b}.

Figure: At time 0 Figure: At time t

6



Pretty good state transfer

Pretty good state transfer from a to b:

⇐ω > 0, ↘t :
∣∣∣
〈
U

t
xa, xb

〉∣∣∣ > 1 → ω,

where xa and xb are unit vectors with

supp(xa) = {(a, u) : u ≃ a}, supp(xb) = {(b, v) : v ≃ b}.

Figure: At time 0 Figure: At time t
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Local uniform mixing

Local uniform mixing at a:

↘t : (U t
xa) ↗ (U txa) = 1

|arcs(X)|1,

where xa is a unit vector with

supp(xa) = {(a, u) : u ≃ a}.

Figure: At time 0 Figure: At time t
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Local ω-uniform mixing

Local ω-uniform mixing at a :

⇐ω > 0, ↘t :
∣∣∣∣

〈
(U t

xa) ↗ (U txa), 1
|arcs(X)|1

〉∣∣∣∣ > 1 → ω,

where xa is a unit vector with

supp(xa) = {(a, u) : u ≃ a}.

Figure: At time 0 Figure: At time t
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From coins to weighted adjacency matrices

10



Diagonalizing U

If U = RC

where R and C are reflections:

R
2 = C

2 = I, R
↔ = R, C

↔ = C

then
Carcs(X)

W1 ⇒ W2 ⇒ · · ·

span{z1}⇒span{z2}⇒span{z3}⇒ · · ·

state space

⇑R, C⇓-invariant subspaces

1-dim U -invariant subspaces

The spectral decomposition of U is determined by those of R, C and
CRC (Godsil and Zhan, 2023)
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W1 ⇒ W2 ⇒ · · ·

span{z1}⇒span{z2}⇒span{z3}⇒ · · ·

state space

⇑R, C⇓-invariant subspaces
of dim 1 or 2

1-dim U -invariant subspaces

The spectral decomposition of U is determined by those of R, C and
CRC (Godsil and Zhan, 2023)

11



Coins vs weights

coin matrix Hermitian adjacency matrix




2
k J → I

2
k J → I

. . .









2
k

(
1 i i

→i 1 1
→i 1 1

)
→ I

2
k J → I

. . .








I → 2

k J
2
k J → I

. . .








→I

2
k J → I

. . .




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Pretty good state transfer in schemes

Assuming Cxa = xa and Cxb = xb
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Eigenvalue support and strong cospectrality

Let H of a Hermitian adjacency matrix of X with spectral decompoistion

H =
∑

ω

εEω.

The eigenvalue support of a is

!a = {ε : Eωea ⇔= 0}.

a and b are strongly cospectral if for each ε:

Eωea ↖ Eωeb and ↖Eωea↖ = ↖Eωeb↖.

Strongly cospectral vertices have the same eigenvalue support.
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Characterizing PGST

Theorem (Chan and Zhan, 2023; Zhan, 2025+)
Let H be a normalized Hermitian adjacency matrix of a graph X with

H =
∑

ω

εEω,

A quantum walk associated with H admits ab-PGST if and only if

1 a and b are ϑ-strongly cospectral for some unimodular ϑ ↔ C:

Eωea = ±ϑEωeb, ⇐ε

2 For any set {ϖω : ε ↔ !a} of integers such that

∑

ω→!a

ϖω arccos ε ↙ 0 (mod 2ϱ),

we have ∑

ω→!→
ab

ϖω ↙ 0 (mod 2).
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An example with Grover coins

PGST happens on the hypercube Q5 between antipodal vertices

1 The antipodal vertices of Q5 are strongly cospectral, with

!+ =
{

1,
1
5 , →3

5


, !↗ =

{3
5 , →1

5 , →1


.

2 The following implication is true:

ϖ1 arccos(1) + ϖ 1
5

arccos
(1

5

)
+ ϖ↗ 3

5
arccos

(
→3

5

)

+ϖ↗1 arccos(→1) + ϖ↗ 1
5

arccos
(

→1
5

)
+ ϖ 3

5
arccos

(3
5

)
↙2ε 0

=∝ ϖ↗1 + ϖ↗ 1
5

+ ϖ 3
5

↙2 0
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Hypercubes

Between 0 and 1 on Qd

d prime; unweighted (Chan and Zhan, 2023)

d composite: ?

Figure: Q4: transfer probability between antipodal vertices with Grover coins
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Hypercubes

Between 0 and 1 on Qd

d prime; unweighted (Chan and Zhan, 2023)

d composite: ?

Figure: Q4: transfer probability between antipodal vertices with Grover coins
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A su!cient condition on graph spectra

Theorem (Zhan, 2025+)
Let H be a real symmetric adjacency matrix of X. A quantum walk associated

with H admits ab-PGST if the following hold.

1 The spectral radius of H is a prime p.

2 a and b are strongly cospectral relative to H, and

!a ′ {p → 2r : r = 0, 1, · · · , p}.

3 The eigenvalue support !a satisfies one of the following.

For any pair ε, →ε in !a, we have ε ↔ !±
ab ∞∝ →ε ↔ !±

ab.

For any pair ε, →ε in !a, we have ε ↔ !±
ab ∞∝ →ε ↔ !↑

ab.

Proof. The angles

{ϱ} ∈ {arccos(ε/p) : ε ↔ !a, 0 < ε < p}

are linearly independent over Q.
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Enabling PGST with weighted Grover coins

Between 0 and 1 on Qd

d prime; unweighted (Chan and Zhan, 2023)

d composite: weighted with 2 weights (Zhan, 2025+)

Between 0 and 1 on folded d-cube weighted

any d: weighted with 2 weights (Martin, O’Toole and Zhan, 2025++)

Between 0 and b on connected cubelike graph

any connection set: weighted with at most 3 weights
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PGST on connected X(Zd

2, C)
Proof. If X = Qd, suppose b ⇔= 1. Then C = S ∋ {c} ∋ T with
b = 

s↘S s. Let

H = w

∑

s↘S

As + mAc +
∑

t↘T

At,

where m △ 1, w △ 2(m + |T |) and w|S| + m + |T | is an odd prime.
εg ± εh = w(ςg(S) ± ςh(S)) + m(ςg(c) ± ςh(c)) + ςg(T ) ± ςh(T )

εg → εh is even

ςg(b)
ςh(b) = 

s↘S(→1)≃g,s⇐(→1)≃h,s⇐ = (→1)|S⇒g↑|+|S⇒h↑|

If εg = εh, then ςg(S) = ςh(S), so
∣∣∣S ▽ g

⇑
∣∣∣ =

∣∣∣S ▽ h
⇑

∣∣∣.

If εh = →εh, then ςg(S) = →ςh(S), so
∣∣∣S ▽ g

⇑
∣∣∣ +

∣∣∣S ▽ h
⇑

∣∣∣ = |S|.

20
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Problems on PGST

1 Which graphs in translation schemes admit PGST with H ↔ C(A)?
Can we determine the minimum number of distinct weights needed?

2 For which schemes do we need complex Hermitian H for PGST?

3 Study strongly cospectral vertices relative to a unimodular ϑ ↔ C:

Eωea = ±ϑEωeb, ⇐ε
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ω-uniform mixing in schemes

Assuming Cxa = xa
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Connection to generalized PGST

Perfect state transfer from x to y:

↘t :
∣∣∣
〈
U

t
x, y

〉∣∣∣ = 1.

Pretty good state transfer from x to y:

⇐ω > 0, ↘t :
∣∣∣
〈
U

t
x, y

〉∣∣∣ > 1 → ω,

A state x is flat if all entries of x have the same absolute value.

local uniform mixing at a ∞∝ PST from xa to a flat state

local ω-uniform mixing at a ∞∝ PGST from xa to a flat state

23



Connection to generalized PGST

Perfect state transfer from x to y:

↘t :
∣∣∣
〈
U

t
x, y

〉∣∣∣ = 1.

Pretty good state transfer from x to y:

⇐ω > 0, ↘t :
∣∣∣
〈
U

t
x, y

〉∣∣∣ > 1 → ω,

A state x is flat if all entries of x have the same absolute value.

local uniform mixing at a ∞∝ PST from xa to a flat state

local ω-uniform mixing at a ∞∝ PGST from xa to a flat state

23



Connection to generalized PGST

Perfect state transfer from x to y:

↘t :
∣∣∣
〈
U

t
x, y

〉∣∣∣ = 1.

Pretty good state transfer from x to y:

⇐ω > 0, ↘t :
∣∣∣
〈
U

t
x, y

〉∣∣∣ > 1 → ω,

A state x is flat if all entries of x have the same absolute value.

local uniform mixing at a ∞∝ PST from xa to a flat state

local ω-uniform mixing at a ∞∝ PGST from xa to a flat state

23



Generalized PGST

Theorem (Chan and Zhan, 2023)
Let the spectral decomposition of U be

U =
∑

ϑ

e
iϑ

Fϑ.

Then U admits xy-PGST if and only if the following hold.

1 x and y are strongly cospectral relative to U :

Fϑx = e
iϖ

Fϑy, ⇐φ

2 There is a unimodular ϑ ↔ C such that, for any ω > 0, there exists

t ↔ R such that if Fϑx ⇔= 0, then

∣∣∣ei(tϑ+ϖ) → ϑ

∣∣∣ < ω.
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Grover coins

Theorem (Zhan, 2025+)
Let X be a regular graph that admits local ω-uniform mixing with Grover coins.

1 If X is non-bipartite with local ω-uniform mixing, then n is a perfect square.

2 If, in addition, X lies in a scheme, then X admits ω-uniform mixing.

3 If, in addition, X is complete or strongly regular, then the adjacency

algebra of X contains a real Hadamard matrix.

Theorem (Zhan, 2025+)

A strongly regular graph X admits ω-uniform mixing if and only if X or X has

parameters (4m
2
, 2m

2 ± m, m
2 ± m, m

2 ± m) where m △ 2.
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Restricting the target state

X distance regular with distance partition {C0, · · · , Cd} relative to a.

The partition {Cij} where

Cij = {(u, v) : u ≃ v, dist(a, u) = i, dist(a, v) = j}

is an equitable partition of the line digraph of X

If S is the characteristic matrix of the above parititon, then col(S) is
U -invariant, and U

t
xa ↔ col(S) for any t ↔ R

If there is PGST from xa to y, then y ↔ col(S)

If X is strongly regular, then y or Ry is constant on outgoing arcs
of the same vertex
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DRG: consequences of strong cospectrality

Let P be the eigenmatrix of the scheme. Let y = Sz. There are scalars
ωr where ω0 → {0, ε} such that

↑
k





cos ω0
cos ω1

...
cos ωd




= P





b0
c1 a1 b1

. . .
cd ad




z

and

↑
k





cos(ω0 + ϑ0)
cos(ω1 + ϑ1)

...
cos(ωd + ϑd)




= P





b0
c1 a1 b1

. . .
cd ad




R

→
z
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Problems on ω-uniform mixing

Let X be a graph in a scheme.

1 If X is non-bipartite distance regular graph, and xa is strongly
cospectral to a flat vector y, must y or Ry be constant on outgoing
arcs of the same vertex?

2 What about bipartite graphs?

U
t
xa has flat imaginary parts

3 Do weighted Grover coins enable ω-uniform mixing?

Complex Hadamard matrix?

4 What about other target probability distributions?

Strong cospectrality between xa and a general state
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Thank you!
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