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Introduction

l The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59],
who introduced this object to further the study of designs in statistics.

l The notion was expanded by Higman [Higman1970], who introduced a generalisation known as
coherent configurations, which relate to permutation groups.

l Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming
scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors
to induce an association scheme structure on the set.

l The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].
l Similarly, it is known that one may consider matrices over finite fields and use the rank to induce a
coherent configuration on the set of pairs of matrices: if the difference of two matrices has rank
0, place the pair into relationR0; else place the pair intoR1. This is in fact an association scheme.

l We extend this notion using the determinant.
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Coherent Configurations

A coherent configuration C is a setX with a set of binary operationsR onX (i.e. relations onX2)
such that:

1. R is a partition ofX ×X, that is, any ordered pair of points is in a unique relationRi, i ∈ I .
2. There is a subsetH ⊂ I such that {Rh : h ∈ H} partitions the diagonal {(x, x) : x ∈ X}.
3. For eachRi, its converse {(y, x) : (x, y) ∈ Ri} is also one of the relations inR, sayRi′ .
4. For i, j, k ∈ I and (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is a

constant ρkij , called the intersection number, that does not depend on the choice of x, y.
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Association Schemes
Let C be a coherent configuration onX .
1. The sets F such that {(α, α) : α ∈ F} belong to C are called the fibres of P . We say that C is
homogeneous if there is only one fibre.

2. The symmetrisation Csym of C is the partition ofX2 whose parts are all unions of the parts of C
and their converses. If Csym is a coherent configuration, we say that C is stratifiable.

3. C is called commutative if its basis matrices commute with one another. In this case we have
ρkij = ρkji.

4. C is called symmetric if all the relations are symmetric, that is, if each relation coincides with its
converse, that isRi′ = Ri.

These properties are related as follows:

A symmetric coherent configuration is commutative; a commutative coherent configuration is
stratifiable; and a stratifiable coherent configuration is homogeneous.

A symmetric coherent configuration is also known as an association scheme.
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Motivating Example: Hamming Scheme

LetX = Fn
q and δH(x, y) denote the Hamming weight of x− y. For i = 0, ..., n, set

Ri = {(x, y) ∈ X2 : δH(x, y) = i}

ThenHn
q = (X, {Ri}i) is an association scheme.

A code in an association scheme is a subset ofX with relations inherited from theRi.

“Block codes of length n over a q-ary alphabet” = “codes in the Hamming schemeHn
q ”.

Closed form solution for ρkij :

ρki,j =

⌊i+j−k/2⌋∑
δ=0

(q − 2)i+j−k−2δ

(
k

j − δ

)(
j − δ

k − i+ δ

)(
n− k

(i+ j − w)/2

)

Codes in association schemes are useful because of the ‘linear programming bound’, which helps
one to construct codes with desired minimum distance.
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Linear Programming Bound

If (X,R) is an association scheme and Y ⊂ X , the distribution vector of Y is the vector with ith entry

ai =
|(Y × Y ) ∩Ri|

|Y |

[Roman92] LetA be an association scheme with dual eigenmatrixQ, diameter d, and distribution
vector a = (a0, a1, . . . , ad). Then any code C with minimum distance r inA satisfies

|C| ≤ max
(

d∑
i=0

ai

)

where the maximum is taken over all {a0, . . . , ad}where the ai satisfy
1. a0 = 1, 2. ai = 0 for 1 ≤ i ≤ r, 3. ai ≥ 0 ∀ i, and 4. aQ ≥ 0
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P- and Q-Polynomiality
AssumeA = {X,R} is an association scheme. For each i, 0 ≤ i ≤ d, define the matrixAi by

(Ai)u,v =

{
1 (u, v) ∈ Ri

0 (u, v) /∈ Ri

TheAi satisfy: 1. A0 = I , 2.
∑d

i=0 Ai = J , 3. AjAi =
∑d

h=0 p
h
i,jAh 4. Linearly independence.

The product of matrices in the span of theAi is again in the span of theAi, so {A0, A1, . . . , Ad}
forms a basis for a commutative algebraMA ⊆ M|X|(C), the Bose-Mesner Algebra.
MA has a 2nd basis: a set of mutually-orthogonal primitive idempotents. Since theAi are real and
symmetric, they satisfyAi = At

i , so by spectral theory there exist symmetricE0, E1, . . . , Ed ∈ MA :

1. EiEj =

{
0 i ̸= j
Ei i = j

, 2. A =
∑d

i=0 λiEi, 3.
∑d

i=0 Ei = I , 4. AEi = λiEi,

and the λi are the d+ 1 distinct eigenvalues ofA.The first and second eigenmatrices P andQ:

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P, (E0, E1, . . . , Ed) = |X|−1 (A0, A1, . . . , Ad)Q

From these definitions, and the relations between theAi andEi, we have PQ = |X|I .
We sayA is P -polynomial (Q-polynomial) if inAi =

∑n
k=0 pi(k)Ek (|X|Ek =

∑n
i=0 qk(i)Ai) the

pk(i) (qk(i)) are real polynomials evaluated at real numbers.
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Further Properties of Association Schemes

1. LetX be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if (x, y) ∈ Ri, then (x+ z, y + z) ∈ Ri

for all z ∈ X, i ∈ I , then (X,R) is a translation schemewith respect to the group (X,+).

2. An association scheme (X,R′) is a fusion of (X,R) if everyR′ ∈ S is a union ofRi. An
association scheme (X,R) is amorphic if every fusion of (X,R) is an association scheme.

3. An association scheme with fibreR0 is P -polynomial if for all integers i, j, k (0 ≤ i, j, k ≤ |I|),
pkij = 0whenever one of i, j, k is greater than the sum of the other two.

4. A homogeneous coherent configuration is thin if all basis matrices have row and column sums
equal to 1.

5. IfG is any permutation group onX , then the partition ofX2 into orbits ofG is a coherent
configuration, denoted byK(G). A coherent configuration of the formK(G) is called Schurian.

A thin homogeneous coherent configuration is Schurian.
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equal to 1.

5. IfG is any permutation group onX , then the partition ofX2 into orbits ofG is a coherent
configuration, denoted byK(G). A coherent configuration of the formK(G) is called Schurian.

A thin homogeneous coherent configuration is Schurian.
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OurWork: A Construction Via the Determinant
Theorem
LetM2(Fq) denote the set of two-by-two matrices over a finite field. Define q + 1 relationsRi on
M2(Fq)×M2(Fq) as follows:

l If i ∈ {0, 1, ..., q − 1}, then set

Ri = {(A,B) : A ̸= B, and det(A−B) = i},

and
l if i = q then setRq = {(A,B) : A = B}.
Then (M2(Fq),R = {R0, R1, ..., Rq}) is a coherent configuration.

We denote this coherent configuration by C(2, q).

The first three properties of a coherent configuration can be seen to hold directly:
1 (R is a partition ofX) holds as the difference of any two matrices has unique determinant,
2 (the diagonal is partitioned) sinceRq is the required partition of the diagonal, and
3 (converse relations are relations) since flipping the order of elements of a pair is equivalent to
multiplying the determinant by (−1)2.
Finally, 4 holds by the following proof (sketch).
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Proof of Property 4
The ρki,j are constants independent of choice of (x, y) ∈ Rk , and:

l 1. ρqi,j = 0 if q ̸= i ̸= j ̸= q.
2. ρqi,j = (q2 − 1)q if i = j ̸= 0, q.
3. ρqi,j = (q2 + q − 1)q − 1 if i = j = 0.

l 1. ρ0i,j = q2 if q ̸= i ̸= j ̸= q.
2. ρ0i,j = q(q − 1) if i = j ̸= 0, q.
3. ρ0i,j = q(2q − 1) if i = j = 0.

l 1. ρki,q =

{
1 if k = i, for any i.
0 else

(and similarly for ρkq,j ).

l For all k ̸∈ {0, q}, we have ρki,j = q(q + ϵi,j,k − 1)where x2 − k−1(i+ k − j)x+ k−1i = 0 has ϵi,j,k
solutions mod q (not counting multiplicity) for all i, j ̸= q.

Proof.
ρki,q : This is the quantity

|{z ∈ Mn(Fq) : det(x− z) = i and z = y}|

for some (x, y) ∈ Rk. Since (x, y) is fixed, i = det(x− z) = det(x− y)which is not fulfilled if
(x, y) ̸∈ Ri, and which yields a set of size one if (x, y) ∈ Ri, comprising the singleton set {y}.
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Proof of Property 4
Set ρi,j(a, b) = |{z ∈ M2(Fq) : det(a− z) = i, det(z − b) = j}|, for (a, b) ∈ Rk and

ρi,j(c) = |{z ∈ M2(Fq) : det(z) = i, det(z − c) = j}|.

Then ρi,j(a, b) = ρi,j(c) for any (a, b) ∈ Rk with c = a− b. Let zij , ci ∈ Fq and write

z =

[
z11 z12
z21 z22

]
, c =

[
c1 c2
c3 c4

]

ρqi,j : this corresponds to the case of c = 0.
If i ̸= j, then ρqij = 0.
Let i = j ̸= 0. Note that z11, z21 may be freely chosen satisfying (z11, z21) ̸= (0, 0). Then
z11z22 − z12z21 = i, so there are q choices for z22, and the variable z21 is entirely dependent on z22.
Therefore ρqii = (q2 − 1)q when i ̸= 0.
When i = 0, since there are q4 total matrices inM2(Fq), we have ρk00 = q4 − (q − 1)(q2 − 1)q.
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Proof of Property 4
ρ0i,j : this corresponds to c ̸= 0with det(c) = 0.
Since c ̸= 0, assume c1 ̸= 0wlog. Since det(c) = 0 there exists α ∈ Fq such that c3 = αc1, c4 = αc2.

If i = j = 0, then that for any matrixM ∈ M2(Fq)with det(M) = 1, we have ρi,j(c) = ρi,j(Mc).
Consider the choice for matrixM and its action on c,

M =

[
1− α 1
−α 1

]
, Mc =

[
c1 c2
0 0

]
So we can assume that α = 0wlog. Then the conditions det(z) = det(z − c) = 0 imply that

z11z22 = z12z21, (1)
(z11 − c1)z22 − (z12 − c2)z21 = 0 (2)

Equation (2) and substituting back into (1) implies that

−c1z22 + c2z21 = 0 ⇐⇒ z22 = c−1
1 c2z21 ⇐⇒ c1c

−1
2 z11z21 = z12z21

Therefore, z can take the following forms:[
z11 z12
0 0

]
,

[
z11 c−1

1 c2z11
z21 c−1

1 c2z21

]
, z21 ̸= 0.

In total, there are q2 + q(q − 1) = q(2q − 1)matrices for z, regardless of choice of c.
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Proof of Property 4
Next, if i = j ̸= 0, then

z11z22 = i+ z12z21, (3)
− c1z22 − αc2z11 + c2z21 + αc1z12 = 0. (4)

Now (4) gives

c2(z21 − αz11) = c1(z22 − αz12) ⇐⇒ z22 = αz12 + c−1
1 c2(z21 − αz11),

which substituting into (3) implies that

z11(αz12 + c−1
1 c2(z21 − αz11)) = z12z21 ⇐⇒ (αz11 − z21)(c

−1
1 c2z11 − z12) = −i.

Since i is nonzero, αz11 − z21, c
−1
1 c2z11 − z12 ̸= 0. Therefore, z must be of the following form:[

z11 z12
z21 z22

]
, where

z22 = αz12 + c−1
1 c2(z21 − αz11),

z21 = αz11 + i(c−1
1 c2z11 − z12)

−1,

subject to c−1
1 c2z11 − z12 ̸= 0. There are q(q − 1) such matrices, regardless of the choice of c

(q choices for z11, and q − 1 for z12 for each z11).
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Proof of Property 4
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Proof of Property 4
The final case is det(c) ̸= 0. Again, since c ̸= 0, we can assume wlog that c1 ̸= 0. Consider the matrix
M with det(M) = 1 and its action on c, where k = det(c):

M =

[
1 0

−c−1
1 c3 1

]
, Mc =

[
c1 c2
0 c−1

1 k,

]
We assume now that c takes has form wlog. The conditions det(z) = i, det(z − c) = j imply

z11z22 = i+ z12z21, (7)
(z11 − c1)(z22 − c−1

1 k)− z21(z12 − c2) = j. (8)

The equation (8) implies that

−c1z22 − c−1
1 kz11 + c2z21 + i+ k = j ⇐⇒ z22 = c−1

1 (i+ k − j − c−1
1 kz11 + c2z21).

Substituting back into (7):

c−1
1 z11(i+ k − j − c−1

1 kz11 + c2z21) = i+ z12z21.

If z21 = 0, then

c−1
1 z11(i+ k − j − c−1

1 kz11) = i ⇐⇒ c−2
1 z211 − k−1z11(i+ k − j) + i = 0, (9)

and there are ϵi,j,k solutions for z11 modulo q to the above polynomial.
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Proof of Property 4
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If z21 ̸= 0, then z12 = z−1
21 (c−1

1 z11(i+ k − j − c−1
1 kz11 + c2z21)− i). So z must take one of the forms:[

z11 z12
0 z22

]
, or

[
z′11 z′12
z21 z22

]
, z21 ̸= 0,

where z11 is any of the ϵi,j,k solutions to the polynomial (10), and

z22 = c−1
1 (i+ k − j − c−1

1 kz11 + c2z21),

z′12 = z−1
21 (c−1

1 z′11(i+ k − j − c−1
1 kz′11 + c2z21)− i).

There are ϵi,j,kq + q(q − 1) = q(q + ϵi,j,k − 1)matrices that z can be regardless of choice of c (ϵi,j,k
choices for z11, q for z12 in the first matrix type, q for z′11, and q − 1 for z21 in the second type).
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Properties: the Size of Relations

The relationsRi of C(2, q) satisfy

|Ri| =


q4, i = q

q5(q2 − 1), i = 1, ..., q − 1

q4(q3 + q2 − q − 1), i = 0

Proof.
Rq has size |Rq| = |M2(Fq)| = q4.
Recall for i = 1, ..., q − 1 eachRi consists of pairs (x, y) such that det(x− y) = i. For each i ∈ F×

q

there are (q + 1)(q2 − q)matrices of determinant i, and so for each fixed x there are (q + 1)(q2 − q)
possible y such that det(x− y) = i; since there are q4 choices for x, we arrive at
q4 · (q + 1)(q2 − q) = q5(q2 − 1).
The size ofR0 is then

|R0| = |M2(Fq)|2 − (q − 1)|R1| − |Rq|,

since the relations partitionM2(Fq)
2, which yields the recorded value.
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Properties: Relations among Intersection Numbers
For any λ ∈ F×

q and i, j, k ̸= q the intersection numbers of C(2, q) satisfy

ρkij = ρλ
−2k

λ2iλ2j

ρλ
−2k

λ2iλ2j = |{z ∈ Mn(Fq) : det(x− z) = λ2i and det(z − y) = λ2j, some (x, y) ∈ Rλ−2k}|
= |{λ−1z ∈ Mn(Fq) : det(x− λ−1z) = λ2i and det(λ−1z − y) = λ2j, some x, y : det(x− y) = λ−2k}|
= |{λ−1z ∈ Mn(Fq) : det(λx− z) = i and det(z − λy) = j, some x, y : λ2 det(x− y) = k}| = ρkij

For any λ ∈ F×
q and k ̸= q the intersection numbers of C(2, q) satisfy

ρkij = ρλkλiλj

LetM ∈ M2(Fq) satisfy det(M) = λ. Then

ρλkλiλj = |{z ∈ Mn(q) : det(x− z) = λi and det(z − y) = λj for some (x, y) ∈ Rλk}|
= |{Mz ∈ Mn(q) : det(x−Mz) = λi and det(Mz − y) = λj for some (x, y) ∈ Rλk}|
= |{Mz ∈ Mn(q) : det(M−1x− z) = i and det(z −M−1y) = j for some (M−1x,M−1y) ∈ Rk}| = ρkij
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Properties: Algebraic Properties
C(2, q) is a symmetric coherent configuration.

Proof.
A coherent configuration is symmetric if all relations are symmetric. ClearlyRq is symmetric. Let
i ∈ {0, 1, ..., q− 1}. ThenRi = {(A,B) : A ̸= B and det(A−B) = i}, and theRi are symmetric since

det(A−B) = det(−(B −A) = (−1)2 det(B −A) = det(B −A)

That is, C(2, q) is an association scheme.

So C(2, q) is a homogeneous, stratifiable, commutative translation scheme:

det(x+ z − (y + z)) = det(x− y)

C(2, q) is not P -polynomial for q ≥ 3.

Proof.
Relabel the indices such that the fibre of C(2, q) isR0, so that we may use the definition given above.
Then observe that ρqq−1

2 , q−1
2

̸= 0 by our Theorem, and that q−1
2 + q−1

2 < q.
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Properties: Thinness

C(2, q) is not thin.

Proof.
Consider relationR0 and the matrices x =

(
1 0
0 0

)
, y1 =

(
0 1
0 0

)
, and y2 =

(
0 0
1 0

)
. Then

det(x− y1) = det(x− y2) = 0

so the xth row ofA(R0) contains ones in both the y1th and y2th positions.

It is therefore unclear if C(2, q) is Schurian.

Note furthermore that C(2, q) gets ‘further’ away from being thin as q increases, since non-zero
scalar multiples of y1 and y2 (to name just two matrices) also yield ones in the (x, yi) locations in
A(R0), i = 1, 2.
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Properties of C(2, 3)
When q = 3we have a three-class association scheme. In this case the following result holds:

[XiaTanLiangKoolen] Let X =
(
X, {Ri}3i=0

)
be a three-class scheme. Then exactly one of the

following holds:
1. X is polynomial; 2. X is amorphic; 3. X is degenerate.

We can prove: C(2, 3) is amorphic (tedious proof by exhaustion).

Using
Theorem
[XiaTanLiangKoolen] Let X be aQ-polynomial association scheme. ThenX is polynomial.

We thus conclude
Theorem
C(2, 3) is notQ-polynomial.

Proof.
By [XiaTanLiangKoolen], aQ-polynomial association scheme is polynomial, so an association
scheme which is not polynomial is notQ-polynomial. We know C(2, 3) is amorphic, and hence by
[XiaTanLiangKoolen] is not polynomial.



Properties of C(2, 3)
When q = 3we have a three-class association scheme. In this case the following result holds:

[XiaTanLiangKoolen] Let X =
(
X, {Ri}3i=0

)
be a three-class scheme. Then exactly one of the

following holds:
1. X is polynomial; 2. X is amorphic; 3. X is degenerate.

We can prove: C(2, 3) is amorphic (tedious proof by exhaustion).

Using
Theorem
[XiaTanLiangKoolen] Let X be aQ-polynomial association scheme. ThenX is polynomial.

We thus conclude
Theorem
C(2, 3) is notQ-polynomial.

Proof.
By [XiaTanLiangKoolen], aQ-polynomial association scheme is polynomial, so an association
scheme which is not polynomial is notQ-polynomial. We know C(2, 3) is amorphic, and hence by
[XiaTanLiangKoolen] is not polynomial.



Open Questions

l Disproof of Property 4 for C(n, q), n > 2?
l Tweak C(n, q), n > 2, to get a scheme?
l C(2, q)Q-polynomial for q > 3? Use translation scheme properties?
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Thank you. Questions?

Association Schemes FromMatrix Rings Over Finite Fields
27/06/2025


