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Introduction

e The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59],
who introduced this object to further the study of designs in statistics.
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e The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59],
who introduced this object to further the study of designs in statistics.

e The notion was expanded by Higman [Higman1970], who introduced a generalisation known as
coherent configurations, which relate to permutation groups.

¢ Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming
scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors
to induce an association scheme structure on the set.

e The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].
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Introduction

e The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59],
who introduced this object to further the study of designs in statistics.

e The notion was expanded by Higman [Higman1970], who introduced a generalisation known as
coherent configurations, which relate to permutation groups.

¢ Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming
scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors
to induce an association scheme structure on the set.

e The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].

¢ Similarly, it is known that one may consider matrices over finite fields and use the rank to induce a
coherent configuration on the set of pairs of matrices: if the difference of two matrices has rank
0, place the pair into relation Ry; else place the pair into R;. This is in fact an association scheme.
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Introduction

e The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59],
who introduced this object to further the study of designs in statistics.

e The notion was expanded by Higman [Higman1970], who introduced a generalisation known as
coherent configurations, which relate to permutation groups.

¢ Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming
scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors
to induce an association scheme structure on the set.

e The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].

¢ Similarly, it is known that one may consider matrices over finite fields and use the rank to induce a
coherent configuration on the set of pairs of matrices: if the difference of two matrices has rank
0, place the pair into relation Ry; else place the pair into R;. This is in fact an association scheme.

¢ We extend this notion using the determinant.
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Coherent Configurations

A coherent configuration C is a set X with a set of binary operations R on X (i.e. relations on X?2)
such that:

‘R is a partition of X x X, that is, any ordered pair of points is in a unique relation R;, ¢ € I.
Thereis a subset H C I suchthat {Ry, : h € H} partitions the diagonal {(z,z): z € X}.
For each R;, its converse {(y,z) : (z,y) € R;} is also one of the relations in R, say R;:.

Fori,j,k € I and (z,y) € Ry, the number of z € X suchthat (z,z) € R; and (z,y) € R;isa
constant pfj, called the intersection number, that does not depend on the choice of z, y.

A AN -
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Association Schemes

Let C be a coherent configuration on X.

1. The sets F' such that {(«, ) : « € F'} belong to C are called the fibres of P. We say that C is
homogeneous if there is only one fibre.

2. The symmetrisation C*¥™ of C is the partition of X2 whose parts are all unions of the parts of C
and their converses. If C*¥"™ is a coherent configuration, we say that C is stratifiable.

3. Cis called commutative if its basis matrices commute with one another. In this case we have
PZ = P?z

4, Cis called symmetric if all the relations are symmetric, that is, if each relation coincides with its
converse, thatis R;; = R;.
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Let C be a coherent configuration on X.

1. The sets F' such that {(«, ) : « € F'} belong to C are called the fibres of P. We say that C is
homogeneous if there is only one fibre.

2. The symmetrisation C*¥™ of C is the partition of X2 whose parts are all unions of the parts of C
and their converses. If C*¥"™ is a coherent configuration, we say that C is stratifiable.

3. Cis called commutative if its basis matrices commute with one another. In this case we have
PZ = P?z

4, Cis called symmetric if all the relations are symmetric, that is, if each relation coincides with its
converse, thatis R;; = R;.

These properties are related as follows:

A symmetric coherent configuration is commutative; a commutative coherent configuration is
stratifiable; and a stratifiable coherent configuration is homogeneous.
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Association Schemes

Let C be a coherent configuration on X.

1. The sets F' such that {(«, ) : « € F'} belong to C are called the fibres of P. We say that C is
homogeneous if there is only one fibre.

2. The symmetrisation C*¥™ of C is the partition of X2 whose parts are all unions of the parts of C
and their converses. If C*¥"™ is a coherent configuration, we say that C is stratifiable.

3. Cis called commutative if its basis matrices commute with one another. In this case we have
PZ = P?z

4, Cis called symmetric if all the relations are symmetric, that is, if each relation coincides with its
converse, thatis R;; = R;.

These properties are related as follows:

A symmetric coherent configuration is commutative; a commutative coherent configuration is
stratifiable; and a stratifiable coherent configuration is homogeneous.

A symmetric coherent configuration is also known as an association scheme.
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Motivating Example: Hamming Scheme

Let X = Fy and 6y (z,y) denote the Hamming weight of z — y. Fori =0, ..., n, set

Ri = {(z,y) € X?: 0y (z,y) =i}

Then Hy = (X, {R;};) is an association scheme.
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R; = {(xay) € X2 : 5H(:C,y) = Z}

Then Hy = (X, {R;};) is an association scheme.

A code in an association scheme is a subset of X with relations inherited from the R;.
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R; = {(xay) € X2 : 5H(:C,y) = Z}

Then Hy = (X, {R;};) is an association scheme.
A code in an association scheme is a subset of X with relations inherited from the R;.

“Block codes of length n over a g-ary alphabet” = “codes in the Hamming scheme H;"".
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Motivating Example: Hamming Scheme

Let X = Fy and 6y (z,y) denote the Hamming weight of z — y. Fori =0, ..., n, set
Ri = {(x,y) € X?: 6y (x,y) =i}

Then Hy = (X, {R;};) is an association scheme.

A code in an association scheme is a subset of X with relations inherited from the R;.

“Block codes of length n over a g-ary alphabet” = “codes in the Hamming scheme H;"".

Closed form solution for pf;:
li+i—k/2]

=S e (O ()

6=0
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Motivating Example: Hamming Scheme

Let X = Fy and 6y (z,y) denote the Hamming weight of z — y. Fori =0, ..., n, set

Ri = {(xay) € X2 : 5H(:C,y) = Z}
Then Hy = (X, {R;};) is an association scheme.
A code in an association scheme is a subset of X with relations inherited from the R;.

“Block codes of length n over a g-ary alphabet” = “codes in the Hamming scheme H;"".

Closed form solution for pf;:

Lit+i—k/2]

=S e (O ()

6=0

Codes in association schemes are useful because of the ‘linear programming bound’, which helps
one to construct codes with desired minimum distance.
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Linear Programming Bound
If (X, R)is an association scheme and Y C X, the distribution vector of Y is the vector with it" entry

(Y x Y) N Ryl
Y]

a; =
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Linear Programming Bound
If (X, R)is an association scheme and Y C X, the distribution vector of Y is the vector with it" entry

(Y x Y) N Ryl
Y]

a; =

[Roman92] Let A be an association scheme with dual eigenmatrix Q, diameter d, and distribution

vectora = (ag, ai,...,aq). Then any code C' with minimum distance r in A satisfies
d
|C] < max (Z ai>
=0
where the maximum is taken over all {aq, . . ., aq} where the a; satisfy

lag=1 2.a;=0for1<i<r, 3.a;>0 V d,and 4.aQ >0
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P- and Q-Polynomiality
Assume A = {X, R} is an association scheme. For each i,0 < ¢ < d, define the matrix A; by

{1 (u,v) € R;

Aiduw =14 (u,0) ¢ R;
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The A; satisfy: 1. Ag =1, 2. ZLO Ai=J, 3. A4A = EZ:O ijAh 4. Linearly independence.
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Assume A = {X, R} is an association scheme. For each i,0 < ¢ < d, define the matrix A; by

1 (w,v) €R;
(Ai)u,v = )
0 (uwv)¢ R
The A; satisfy: 1. Ag =1, 2. ZLO Ai=J, 3. A4A = EZ:O pfﬁjAh 4. Linearly independence.
The product of matrices in the span of the A, is again in the span of the A;, so {4, A1,..., A4}
forms a basis for a commutative algebra M 4 C M, x|(C), the Bose-Mesner Algebra.
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Assume A = {X, R} is an association scheme. For each i,0 < ¢ < d, define the matrix A; by

)1 (wv) e Ry
(Aidu = {o (u,v) & R;

The A; satisfy: 1. Ag =1, 2. ZLO Ai=J, 3. A4A = EZ:O pfﬁjAh 4. Linearly independence.

The product of matrices in the span of the A, is again in the span of the A;, so {4, A1,..., A4}

forms a basis for a commutative algebra M 4 C M, x|(C), the Bose-Mesner Algebra.

M 4 has a 2nd basis: a set of mutually-orthogonal primitive idempotents. Since the A, are real and

symmetric, they satisfy A; = AL, so by spectral theory there exist symmetric Ey, E1,...,Eq € M4 :
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and the \; are the d + 1 distinct eigenvalues of A.
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Assume A = {X, R} is an association scheme. For each i,0 < ¢ < d, define the matrix A; by

(A), = 1 (u,v) €R;
Yur 0 (u,0) ¢ Ry

The A; satisfy: 1. Ag =1, 2. ZLO Ai=J, 3. A4A = EZ:O pfﬁjAh 4. Linearly independence.
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From these definitions, and the relations between the A; and E;, we have PQ = | X|I.



P- and Q-Polynomiality
Assume A = {X, R} is an association scheme. For each i,0 < ¢ < d, define the matrix A; by

(A), = 1 (u,v) €R;
Yur 0 (u,0) ¢ Ry

The A; satisfy: 1. Ag =1, 2. ZLO Ai=J, 3. A4A = EZ:O pfﬁjAh 4, Linearly independence.

The product of matrices in the span of the A, is again in the span of the A;, so {4, A1,..., A4}

forms a basis for a commutative algebra M 4 C M, x|(C), the Bose-Mesner Algebra.

M 4 has a 2nd basis: a set of mutually-orthogonal primitive idempotents. Since the A, are real and

symmetric, they satisfy A; = AL, so by spectral theory there exist symmetric Ey, E1,...,Eq € M4 :
0 i#j d d

1. BE; = B il 22A=%¢ NE, 3.0 E =1 & AE,=\E,,

and the \; are the d + 1 distinct eigenvalues of A.The first and second eigenmatrices P and Q:

(Ao, A1,..., Ag) = (Eo, Er,...,Eq) P, (Eo,Ev,...,Eq) = |X|"" (Ao, A1, ..., 44) Q
From these definitions, and the relations between the A; and E;, we have PQ = | X|I.

We say A is P-polynomial (Q-polynomial) ifin A, = >~ _ pi(k)Er (| X|Ex =Y. ak(i)A;) the
pr (%) (gx (7)) are real polynomials evaluated at real numbers.



Further Properties of Association Schemes

1. Let X be a finite Abelian group and (X, R) an association scheme. If (X, R) is (X, +)-invariant, i.e.
if (x,y) € R;,then (z +z,y+2) € R;

forall z € X, i € I, then (X, R) is a translation scheme with respect to the group (X, +).
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if (x,y) € R;,then (z +z,y+2) € R;

forall z € X, i € I, then (X, R) is a translation scheme with respect to the group (X, +).

2. An association scheme (X, R’) is a fusion of (X, R) if every R’ € Sis aunion of R;. An
association scheme (X, R) is amorphic if every fusion of (X, R) is an association scheme.
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Further Properties of Association Schemes

1. Let X be a finite Abelian group and (X, R) an association scheme. If (X, R) is (X, +)-invariant, i.e.
if (x,y) € R;,then (z +z,y+2) € R;

forall z € X, i € I, then (X, R) is a translation scheme with respect to the group (X, +).

2. An association scheme (X, R’) is a fusion of (X, R) if every R’ € Sis aunion of R;. An
association scheme (X, R) is amorphic if every fusion of (X, R) is an association scheme.

3. An association scheme with fibre R is P-polynomial if for all integers 4, j, k (0 < 4,5,k < |I]),
pfj = 0 whenever one of i, j, k is greater than the sum of the other two.
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1. Let X be a finite Abelian group and (X, R) an association scheme. If (X, R) is (X, +)-invariant, i.e.
if (x,y) € R;,then (z +z,y+2) € R;

forall z € X, i € I, then (X, R) is a translation scheme with respect to the group (X, +).
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association scheme (X, R) is amorphic if every fusion of (X, R) is an association scheme.

3. An association scheme with fibre R is P-polynomial if for all integers 4, j, k (0 < 4,5,k < |I]),
pfj = 0 whenever one of i, j, k is greater than the sum of the other two.

4. A homogeneous coherent configuration is thin if all basis matrices have row and column sums
equal to 1.
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1. Let X be a finite Abelian group and (X, R) an association scheme. If (X, R) is (X, +)-invariant, i.e.
if (x,y) € R;,then (z +z,y+2) € R;

forall z € X, i € I, then (X, R) is a translation scheme with respect to the group (X, +).

2. An association scheme (X, R’) is a fusion of (X, R) if every R’ € Sis aunion of R;. An
association scheme (X, R) is amorphic if every fusion of (X, R) is an association scheme.

3. An association scheme with fibre R is P-polynomial if for all integers 4, j, k (0 < 4,5,k < |I]),
pfj = 0 whenever one of i, j, k is greater than the sum of the other two.

4. A homogeneous coherent configuration is thin if all basis matrices have row and column sums
equal to 1.

5. If G is any permutation group on X, then the partition of X2 into orbits of G is a coherent
configuration, denoted by K(G). A coherent configuration of the form K (G) is called Schurian.
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Further Properties of Association Schemes

1. Let X be a finite Abelian group and (X, R) an association scheme. If (X, R) is (X, +)-invariant, i.e.
if (x,y) € R;,then (z +z,y+2) € R;

forall z € X, i € I, then (X, R) is a translation scheme with respect to the group (X, +).

2. An association scheme (X, R’) is a fusion of (X, R) if every R’ € Sis aunion of R;. An
association scheme (X, R) is amorphic if every fusion of (X, R) is an association scheme.

3. An association scheme with fibre R is P-polynomial if for all integers 4, j, k (0 < 4,5,k < |I]),
pfj = 0 whenever one of i, j, k is greater than the sum of the other two.

4. A homogeneous coherent configuration is thin if all basis matrices have row and column sums
equal to 1.

5. If G is any permutation group on X, then the partition of X2 into orbits of G is a coherent
configuration, denoted by K(G). A coherent configuration of the form K (G) is called Schurian.

A thin homogeneous coherent configuration is Schurian.
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Our Work: A Construction Via the Determinant

Theorem

Let M»(F,) denote the set of two-by-two matrices over a finite field. Define ¢ + 1 relations R; on
M;(F,) x Ms(FF,) as follows:

o Ifie {07 1, g — 1},then set
R; ={(A,B): A# B, and det(A — B) = i},

and
o ifi =gthenset R, = {(A,B): A= B}.
Then (M(F,), R = {Ro, R1, ..., Rq}) is a coherent configuration.
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Our Work: A Construction Via the Determinant

Theorem

Let M»(F,) denote the set of two-by-two matrices over a finite field. Define ¢ + 1 relations R; on
M;(F,) x Ms(FF,) as follows:

o Ifie {07 1, g — 1},then set
R; ={(A,B): A# B, and det(A — B) = i},

and
o ifi =gthenset R, = {(A,B): A= B}.
Then (M(F,), R = {Ro, R1, ..., Rq}) is a coherent configuration.

We denote this coherent configuration by C(2, q).

The first three properties of a coherent configuration can be seen to hold directly:

1 (R is a partition of X) holds as the difference of any two matrices has unique determinant,

2 (the diagonal is partitioned) since R, is the required partition of the diagonal, and

3 (converse relations are relations) since flipping the order of elements of a pair is equivalent to
multiplying the determinant by (—1)2.

Finally, 4 holds by the following proof (sketch).



Proof of Property 4

The p}'; are constants independent of choice of (x,y) € Ry, and:

1 pf;=0ifq#i#j#q
s el

2. pl; =(¢" = 1)qifi =35 #0,q.
3.0}, = (®+q—1)g—1ifi=j=0.
Ll =ifgFi##a
2. p0;=qlg—1)ifi=j#0,q.
3.0, =q(2¢—-1)ifi=j=0.

1 ifk =1, foranyi. -
1 pF, = ’ and similarly for pk ).
R {0 else ( yfor pq.;)
e Forallk ¢ {0,q}, we have pf ; = q(q + € j — 1) where 2> — k= (i + k — jlz+ k~'i =0hase; ;1
solutions mod ¢ (not counting multiplicity) for all ¢, 7 # .



Proof of Property 4

The p}'; are constants independent of choice of (x,y) € Ry, and:

1 pf;=0ifq#i#j#q

2. pf;=(¢° —1)qifi=35#0,q.

3. pgyj:(qz—&-q—l)q—lifi:j:().
1ol =¢fq#i#j#q

2. pl;=qlg—1)ifi=j#0,q
3.0, =q(2¢—-1)ifi=j=0.

o 1 _{1 if k = 4, foranyi.

Pt 0 olse (and similarly for p} ;).
e Forallk ¢ {0,q}, we have pf ; = q(q + € j — 1) where 2> — k= (i + k — jlz+ k~'i =0hase; ;1
solutions mod ¢ (not counting multiplicity) for all ¢, 7 # .

Proof.
p¥ : This is the quantity
{z € M,,(F,): det(z — 2) =iand z = y}|

for some (z,y) € Ry. Since (z,y) is fixed, i = det(x — z) = det(x — y) which is not fulfilled if
(z,y) € R;, and which yields a set of size one if (x,y) € R;, comprising the singleton set {y}.



Proof of Property 4
Set p; j(a,b) = |{z € Ma(F,) : det(a — z) = i,det(z — b) = j}|, for (a,b) € Ry and

pij(c) ={z € Ma(F,) : det(z) = 4,det(z — ¢) = j}|.

Then p; ;j(a,b) = p; j(c) forany (a,b) € R withc = a — b. Let z;;,¢; € Fy and write

_ A1 Z12 _ |G C2
z = ,C=
221 %22 C3 C4



Proof of Property 4
Set p; j(a,b) = |{z € Ma(F,) : det(a — z) = i,det(z — b) = j}|, for (a,b) € Ry and

pij(c) ={z € Ma(F,) : det(z) = 4,det(z — ¢) = j}|.
Then p; ;j(a,b) = p; j(c) forany (a,b) € R withc = a — b. Let z;;,¢; € Fy and write
_ {2’11 2’12} _ [61 Cz]
z = ,C=
221 222 €3 C4

pj ;: this corresponds to the case of ¢ = 0.
If i # j, then p; = 0.
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If i # j, then p; = 0.
Let i = j # 0. Note that z;1, 251 may be freely chosen satisfying (211, z21) # (0,0). Then
211222 — 212221 = 1, SO there are ¢ choices for 242, and the variable z5; is entirely dependent on zs,.
Therefore p?, = (¢*> — 1)g when i # 0.



Proof of Property 4
Set p; j(a,b) = |{z € Ma(F,) : det(a — z) = i,det(z — b) = j}|, for (a,b) € Ry and

pij(c) = {z € My(F,) : det(z) =4,det(z — c) = j}|.

Then p; ;j(a,b) = p; j(c) forany (a,b) € R withc = a — b. Let z;;,¢; € Fy and write

211?12 C1 C2
z = ,C=
|:Z21 222} [03 04}
pj ;: this corresponds to the case of ¢ = 0.
If i # j, then p; = 0.
Let i = j # 0. Note that z;1, 251 may be freely chosen satisfying (211, z21) # (0,0). Then
211222 — 212221 = 1, SO there are ¢ choices for 242, and the variable z5; is entirely dependent on zs,.

Therefore p?, = (¢*> — 1)g when i # 0.
When i = 0, since there are ¢* total matrices in M(F, ), we have pf, = ¢* — (¢ — 1)(¢®> — 1)q.
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Since ¢ # 0, assume ¢; # 0 wlog. Since det(c) = 0 there exists « € F, such that c3 = acy, ¢4 = aco.



Proof of Property 4

py ;- this corresponds to ¢ # 0 with det(c) = 0.

Since ¢ # 0, assume ¢; # 0 wlog. Since det(c) = 0 there exists « € F, such that c3 = acy, ¢4 = aco.
If i = j = 0, then that for any matrix M € My (F,) with det(M) = 1, we have p; ;(c) = p; ;(Mc).
Consider the choice for matrix M and its action on c,

1= 1 |l e
= [ 20 ) e [5G

So we can assume that oo = 0 wlog. Then the conditions det(z) = det(z — ¢) = 0 imply that

211222 = Z12221, ™

(211 — €1)222 — (212 — €2)221 =0 2



Proof of Property 4

py ;- this corresponds to ¢ # 0 with det(c) = 0.

Since ¢ # 0, assume ¢; # 0 wlog. Since det(c) = 0 there exists « € F, such that c3 = acy, ¢4 = aco.
If i = j = 0, then that for any matrix M € My (F,) with det(M) = 1, we have p; ;(c) = p; ;(Mc).
Consider the choice for matrix M and its action on c,

1= 1 _la e
=[] e 3

So we can assume that oo = 0 wlog. Then the conditions det(z) = det(z — ¢) = 0 imply that

211222 = Z12221, ™

(211 — ¢1)2z22 — (212 — €c2)221 =0 2
Equation (2) and substituting back into (1) implies that

-1 -1
—C1222 + Ca201 = 0 <= 292 = c] C2221 <= C1Cy 211221 = 212221



Proof of Property 4

py ;- this corresponds to ¢ # 0 with det(c) = 0.

Since ¢ # 0, assume ¢; # 0 wlog. Since det(c) = 0 there exists « € F, such that c3 = acy, ¢4 = aco.
If i = j = 0, then that for any matrix M € My (F,) with det(M) = 1, we have p; ;(c) = p; ;(Mc).
Consider the choice for matrix M and its action on c,

1= 1 _la e
=[] e 3

So we can assume that oo = 0 wlog. Then the conditions det(z) = det(z — ¢) = 0 imply that

211222 = Z12221, ™

(211 — €1)222 — (212 — €2)221 =0 2
Equation (2) and substituting back into (1) implies that
—C1222 + 2201 = 0 <= 290 = Cf102221 — 01051211221 = 212221

Therefore, z can take the following forms:
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211 %12 211 €1 C2z11

0 o’ —1 221 # 0.
221 €1 C22921



Proof of Property 4

py ;- this corresponds to ¢ # 0 with det(c) = 0.

Since ¢ # 0, assume ¢; # 0 wlog. Since det(c) = 0 there exists « € F, such that c3 = acy, ¢4 = aco.
If i = j = 0, then that for any matrix M € My (F,) with det(M) = 1, we have p; ;(c) = p; ;(Mc).
Consider the choice for matrix M and its action on c,

1= 1 _la e
=[] e 3

So we can assume that oo = 0 wlog. Then the conditions det(z) = det(z — ¢) = 0 imply that

211222 = Z12221, ™

(211 — €1)222 — (212 — €2)221 =0 2
Equation (2) and substituting back into (1) implies that
—C1222 + 2201 = 0 <= 290 = Cf102221 — 01051211221 = 212221

Therefore, z can take the following forms:

-1

211 %12 211 €1 C2z11

0 o’ —1 221 # 0.
221 €1 C22921

In total, there are ¢ + g(q¢ — 1) = q(2¢ — 1) matrices for z, regardless of choice of c.



Proof of Property 4
Next, if i = j # 0, then

211222 = © + 212221, 3

— C1222 — Q211 + €221 + e 212 = 0. (4)



Proof of Property 4
Next, if i = j # 0, then

211222 = © + 212221, 3

— C1202 — aca211 + C2221 + acy 212 = 0. (“)
Now (&) gives
02(221 - 06211) = 01(222 - 04212) < 292 = Q212 + 01_102(2’21 - 06211),
which substituting into (3) implies that

2:11(042"12 + 6;102(221 - 04211)) = 212221 <— (OéZH — 221)(01_102211 — z12) = —1.



Proof of Property 4
Next, if i = j # 0, then

211222 = © + 212221, 3

— 1292 — (211 + a2 + acyz12 = 0. (4)
Now (&) gives
_ _ —1
Ca(z21 — az11) = c1(222 — @z12) <= 222 = Qz12 + 1 ca(z21 — z11),
which substituting into (3) implies that
1 1 .

zi1(azia +¢f ca(zo1 — @z11)) = 212201 <= (211 — 221) (€] “C2211 — 212) = —i.

Since i is nonzero, azy; — 221, ¢; “eaz11 — 212 # 0. Therefore, 2 must be of the following form:

-1
[211 2192 Z99 = azia + €] ca(221 — z11),

, where
221 222

-1 —1
zo1 = az11 +i(ey caz11 — z12)

subject to 01_1622’11 — 212 75 0.



Proof of Property 4
Next, if i = j # 0, then

211222 = © + 212221,

— 1299 — (C211 + 2291 + ac1z12 = 0.
Now (&) gives
_ _ -1
Ca(z21 — az11) = c1(222 — @z12) <= 222 = Qz12 + 1 ca(z21 — z11),
which substituting into (3) implies that
1 1 .
2’11(042212 + Cq 02(221 — 04211)) = 2122921 <— (04211 — 2’21)(61 C2211 — 2:12) = —1.
Since i is nonzero, azy; — 221, ¢; “eaz11 — 212 # 0. Therefore, 2 must be of the following form:

-1
[211 2192 Z99 = azia + €] ca(221 — z11),

, where
221 222

-1 -1
291 = az11 + z(cl C2211 — 212) ,

subject to cl_lcan — 212 # 0. There are ¢(¢ — 1) such matrices, regardless of the choice of ¢
(g choices for z11, and g — 1 for z5 for each zy1).

@)



Proof of Property 4
If i # j, consider the matrix M with det(M) = 1 and its action on ¢,

o] e 5]

—a 1 0 O
Therefore, we can assume that c has the above form wlog. Then
Z11%222 = 1§ + Z12%21,

—ciz2 +Cazo1 =5 — 14

(6)
6)



Proof of Property 4
If i # j, consider the matrix M with det(M) = 1 and its action on ¢,

|l-a 1 _ e e
M_[_a 1], Mc_[o 0]

Therefore, we can assume that c has the above form wlog. Then
211222 = 1 + 212221, (5)
—C1200 t C2221 = J — @ 6)
Now (6) and substituting into (5) gives
292 = 61_1(02221 —(—1) = 211(01_1(62221 —(j—1)) =i+ 212221
211 = —c1(j — i)Y, if 201 =0

We then have the cases .
{212 = 251 (z11(cy H(caz01 — (j — 7)) — i), otherwise



Proof of Property 4
If i # j, consider the matrix M with det(M) = 1 and its action on ¢,

|l-a 1 _ e e
M_[_a 1], Mc_[o 0]

Therefore, we can assume that c has the above form wlog. Then
211222 = & + 212221,
—ciz2 +Cozo1 =5 — 4
Now (6) and substituting into (5) gives
2o = ¢f (caz01 — (j — 1)) <= z11(ci "(cazo1 — (j —4))) =i + 212221
211 = —c1(j — i)Y, if 291 =0

We then have the cases .
{212 = 251 (z11(cy H(caz01 — (j — 7)) — i), otherwise

Therefore, z must take one of the following forms:

[—cl(j — i)l 212 } 7 {211 2 Gunley ooz = (=) =] £ 0.

0 - (i — 1) 221 ¢ H(eazon — (j — 1))

(6)
6)



Proof of Property 4
If i # j, consider the matrix M with det(M) = 1 and its action on ¢,

|l-a 1 _ e e
M_[_a 1], Mc_[o 0]

Therefore, we can assume that c has the above form wlog. Then
211222 = 1 + 212221, (5)
—C1200 t C2221 = J — @ 6)
Now (6) and substituting into (5) gives
292 = 61_1(02221 —(—1) = 211(01_1(62221 —(j—1)) =i+ 212221
211 = —c1(j — i)Y, if 201 =0

We then have the cases .
{212 = 251 (z11(cy H(caz01 — (j — 7)) — i), otherwise

Therefore, z must take one of the following forms:

—c1(j—i)7 212 211 22_11(2’11(61_1(62221 S G—i) - i)
|: 0 _Cfl(j - Z):| ’ |:221 0;1(02221 — (] — Z)) ) 221 # 0.

So there are ¢ + ¢(qg — 1) = ¢? matrices that z can take regardless of choice of c.



Proof of Property 4

The final case is det(c) # 0. Again, since ¢ # 0, we can assume wlog that ¢; # 0. Consider the matrix
M with det(M) = 1 and its action on ¢, where k = det(c):

_ 1 0 |G Co
M= |:Cl_163 1} , Me= [O cl_lk,}
We assume now that c takes has form wlog. The conditions det(z) = ¢, det(z — ¢) = j imply
Z11%22 = 1+ 212221, 7)

(211 — c1)(222 — €1 k) — 291 (212 — ¢2) = . (8)



Proof of Property 4

The final case is det(c) # 0. Again, since ¢ # 0, we can assume wlog that ¢; # 0. Consider the matrix
M with det(M) = 1 and its action on ¢, where k = det(c):

_ 1 0 |G Co
M= |:Cl_163 1}’ Me = [O cl_lk,}

We assume now that ¢ takes has form wlog. The conditions det(z) = i, det(z — ¢) = j imply
Z11222 = i + 2122021, )
(211 — c1)(222 — ¢ k) — 291 (212 — ¢2) = . 8
The equation (8) implies that
—C1229 — cflkzu + o291 +it+ k=37 < 299 = cfl(i +k—j— cflkzu + co291).
Substituting back into (7):

-1 . . -1 .
C1 le(l + k— J]—C sz -+ 62221) =1+ 2122921.



Proof of Property 4

The final case is det(c) # 0. Again, since ¢ # 0, we can assume wlog that ¢; # 0. Consider the matrix

M with det(M) = 1 and its action on ¢, where k = det(c):
_ 1 0 |G Co
M= |:Cl_163 1} , Me= [O cl_lk,}
We assume now that c takes has form wlog. The conditions det(z) = ¢, det(z — ¢) = j imply
Z11222 = 1+ 212221,
(211 — c1)(222 — ¢ k) — 291 (212 — ¢2) = .

The equation (8) implies that

—C1%29 — cflkzll + C22921 +i+k :] = 299 = C;l(i + k —j — cflkzu + 02221).

Substituting back into (7):
ertzii(i+ k= — e tkain + eazo1) = i + 212201
If 221 = 0, then
citen(i+k—j—ci ko) =i = ;228 kT lan(i+k—j)+i=0,

and there are ¢; ; ;. solutions for z1; modulo ¢ to the above polynomial.

7)

©)



Proof of Property 4
If 291 = O, then

etk —g—citkzn) =i = ;28 — kT lan(i+k—j)+i=0, (10)

and there are ¢; ; i, solutions for z1; modulo g to the above polynomial.



Proof of Property 4
If 291 = O, then

etk —g—citkzn) =i = ;28 — kT lan(i+k—j)+i=0, (10)
and there are ¢; ; i, solutions for z1; modulo g to the above polynomial.
If 291 # 0,then 215 = 25" (c; 211 (i + k — j — ¢ 'kz11 + ca221) — 7). So 2 must take one of the forms:
{211 212}
0 29|’

where z1; is any of the ¢; ; ;. solutions to the polynomial (10), and

/ /
z z
11 12
r , 221 7é O,
222

221

Zog = cl_l(i +k—j— cl_lkzn + c2221),

2oy =251 (¢ P2 (i + b — § — ey kg + coz1) — ).



Proof of Property 4
If 291 = O, then

cflzu(i +k—j— cflkzu) =] = CIQZ%I — k_lzu(i +k—j)+i=0, (10)
and there are ¢; ; i, solutions for z1; modulo g to the above polynomial.

If 291 # 0,then 215 = 25" (c; 211 (i + k — j — ¢ 'kz11 + ca221) — 7). So 2 must take one of the forms:

211 %12
0 Z99 ’

where z1; is any of the ¢; ; ;. solutions to the polynomial (10), and

/ /
z z
11 12
r , 221 7é O,
222

221

Zog = cl_l(i +k—j— cl_lkzn + c2221),

2oy =251 (¢ P2 (i + b — § — ey kg + coz1) — ).

Therearee; ; g+ q(q — 1) = q(q + € ; » — 1) matrices that z can be regardless of choice of ¢ (¢; ; 1
choices for z;1, ¢ for z15 in the first matrix type, ¢ for 21, and ¢ — 1 for z5; in the second type). O



Properties: the Size of Relations

The relations R; of C(2, q) satisfy
q*, i=q
|Rl|: qS(qul)a Z':].,...,Q7].
@ +¢*—q—1), i=0
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Properties: the Size of Relations
The relations R; of C(2, q) satisfy

q* i=gq

|Rl| = qS(qul)a Z:]-v

P+ —q—1), i=0

Proof.
R, hassize |R,| = |[M2(F,)| = ¢*.
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Properties: the Size of Relations
The relations R; of C(2, q) satisfy

q* i=gq
|Rl|: qS(q271)a Z':].,...,Q7].
P+ —q—1), i=0

Proof.

R, hassize |R,| = |[M2(F,)| = ¢*.

Recall fori = 1,...,q — 1 each R; consists of pairs (z,y) such that det(x — y) = i. Foreachi € F
there are (¢ + 1)(¢* — ¢) matrices of determinant i, and so for each fixed x there are (¢ + 1)(¢*> — q)
possible y such that det(z — y) = i; since there are ¢* choices for z, we arrive at

g+ 1) —q) = —1).
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Properties: the Size of Relations

The relations R; of C(2, q) satisfy

q* i=gq

|Rl|: q5(q271)’ i=1,..,q-1
¢ +q*—q—1), i=0

Proof.
R, hassize |R,| = |[M2(F,)| = ¢*.
Recall fori = 1,...,q — 1 each R; consists of pairs (z,y) such that det(x — y) = i. Foreachi € F
there are (¢ + 1)(¢* — ¢) matrices of determinant i, and so for each fixed x there are (¢ + 1)(¢*> — q)
possible y such that det(z — y) = i; since there are ¢* choices for z, we arrive at
¢' (g +1)(¢* —q) = ¢°(¢* - 1).
The size of R is then
|Ro| = [Ma(Fo)|* — (¢ = 1)|Ri| — |Ryl,

since the relations partition M(F,)?, which yields the recorded value. O
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Properties: Relations among Intersection Numbers
Forany A € F and i, j, k # q the intersection numbers of C(2, q) satisfy
2
pz] = p)\21>\]€2
p/\%,\z = |{z € M,,(F,): det(x — 2) = A\*i and det(z — y) = \?j, some (z,y) € Ry—2;}|
= {7tz € M, (F,): det(z — A"'2) = A%iand det(\" 'z — y) = A\?j, some x,y : det(x — y) = A2k}
= {7tz € M, (F,): det(Ax — 2) =i and det(z — \y) = j, some z,y : A det(z — y) = k}| = pfj



Properties: Relations among Intersection Numbers
Forany A € F and i, j, k # q the intersection numbers of C(2, q) satisfy
2
pz] = p)\21>\]€2
p/\%,\z = |{z € M,,(F,): det(x — 2) = A\*i and det(z — y) = \?j, some (z,y) € Ry—2;}|
= {7tz € M, (F,): det(z — A"'2) = A%iand det(\" 'z — y) = A\?j, some x,y : det(x — y) = A2k}
= {7tz € M, (F,): det(Ax — 2) =i and det(z — \y) = j, some z,y : A det(z — y) = k}| = pfj

Forany \ € I and k # ¢ the intersection numbers of C(2, ¢) satisfy
Pi’cj = P/A\f,\j
Let M € My(F,) satisfy det(M) = A. Then
pﬁi&j = |{z € M,(q): det(z — z) = Miand det(z — y) = \j for some (x,y) € Rxx}|
=|{Mz e M,(q): det(zx — Mz) = Xiand det(Mz — y) = Aj for some (z,y) € Ry }|
=|{Mz € M,(q): det(M 'z — z) =iand det(z — M~ 'y) = j forsome (M 'z, M~ 'y) € R;}| = pfj



Properties: Algebraic Properties
C(2, q) is a symmetric coherent configuration.

Proof.
A coherent configuration is symmetric if all relations are symmetric. Clearly R, is symmetric. Let
i€{0,1,...,q—1}.ThenR; = {(A,B): A # Band det(A — B) = i}, and the R; are symmetric since

det(A — B) = det(—(B — A) = (=1)*det(B — A) = det(B — A) [

Thatis, C(2, q) is an association scheme.



Properties: Algebraic Properties
C(2, q) is a symmetric coherent configuration.

Proof.
A coherent configuration is symmetric if all relations are symmetric. Clearly R, is symmetric. Let
i€{0,1,...,q—1}.ThenR; = {(A,B): A # Band det(A — B) = i}, and the R; are symmetric since

det(A — B) = det(—(B — A) = (=1)*det(B — A) = det(B — A) [

Thatis, C(2, q) is an association scheme.
So C(2, q) is a homogeneous, stratifiable, commutative translation scheme:

det(z + z — (y + 2)) = det(x — y)



Properties: Algebraic Properties
C(2, q) is a symmetric coherent configuration.

Proof.
A coherent configuration is symmetric if all relations are symmetric. Clearly R, is symmetric. Let
i€{0,1,...,q—1}.ThenR; = {(A,B): A # Band det(A — B) = i}, and the R; are symmetric since

det(A — B) = det(—(B — A) = (=1)*det(B — A) = det(B — A) [

Thatis, C(2, q) is an association scheme.
So C(2, q) is a homogeneous, stratifiable, commutative translation scheme:

det(z + z — (y + 2)) = det(x — y)

C(2,q) is not P-polynomial for ¢ > 3.

Proof.

Relabel the indices such that the fibre of C(2, q) is Ry, so that we may use the definition given above.

Then observe that p?_, , , # 0 by our Theorem, and that ;1 + 451 < ¢. O
2 02



Properties: Thinness

C(2,q) is not thin.

Proof.
Consider relation Ry and the matrices x = (é 8) Y1 = ( ) and yo = (1 8) Then
det(z —y1) =det(z —y2) =0
so the zth row of A(Ry) contains ones in both the y;th and y»th positions. O
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Properties: Thinness

C(2,q) is not thin.

Proof.
Consider relation Ry and the matrices x = (é 8) Y1 = ( ) and yo = (1 8) Then
det(z —y1) =det(z —y2) =0
so the zth row of A(Ry) contains ones in both the y;th and y»th positions. O

It is therefore unclear if C(2, ¢) is Schurian.

Note furthermore that C(2, ¢) gets ‘further’ away from being thin as ¢ increases, since non-zero
scalar multiples of y; and y» (to name just two matrices) also yield ones in the (z, y;) locations in
A(Rg),i =1,2.
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Properties of C(2, 3)

When ¢ = 3 we have a three-class association scheme. In this case the following result holds:

[XiaTanLiangKoolen] Let X = (X, {Ri}?:o) be a three-class scheme. Then exactly one of the

following holds:
1. X is polynomial; 2. X is amorphic; 3. X is degenerate.

We can prove: C(2, 3) is amorphic (tedious proof by exhaustion).



Properties of C(2, 3)

When ¢ = 3 we have a three-class association scheme. In this case the following result holds:

[XiaTanLiangKoolen] Let X = (X, {Ri}?:o) be a three-class scheme. Then exactly one of the

following holds:
1. X is polynomial; 2. X is amorphic; 3. X is degenerate.

We can prove: C(2, 3) is amorphic (tedious proof by exhaustion).
Using

Theorem
[XiaTanLiangKoolen] Let X be a Q-polynomial association scheme. Then X is polynomial.

We thus conclude

Theorem
C(2,3) is not Q-polynomial.

Proof.
By [XiaTanLiangKoolen], a Q-polynomial association scheme is polynomial, so an association

scheme which is not polynomial is not Q-polynomial. We know C(2, 3) is amorphic, and hence by
[¥iaTanl ianaKoolanl ic nat nalvnamial 1



Open Questions

e Disproof of Property 4 for C(n, q), n > 2?
e Tweak C(n,q), n > 2, to get a scheme?
e C(2,q) Q-polynomial for ¢ > 3? Use translation scheme properties?
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IMPERIAL

Thank you. Questions?

Association Schemes From Matrix Rings Over Finite Fields
27/06/2025



