IMPERIAL

Association Schemes From Matrix Rings Over Finite Fields

Andrew Mendelsohn, Christian Porter 27/06/2025

• The study of association schemes dates back to the work of Bose and Mesner [**BoseMesner59**], who introduced this object to further the study of designs in statistics.

- The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59], who introduced this object to further the study of designs in statistics.
- The notion was expanded by Higman [Higman1970], who introduced a generalisation known as coherent configurations, which relate to permutation groups.

- The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59], who introduced this object to further the study of designs in statistics.
- The notion was expanded by Higman [Higman1970], who introduced a generalisation known as coherent configurations, which relate to permutation groups.
- Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors to induce an association scheme structure on the set.
- The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].

- The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59], who introduced this object to further the study of designs in statistics.
- The notion was expanded by Higman [Higman1970], who introduced a generalisation known as coherent configurations, which relate to permutation groups.
- Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors to induce an association scheme structure on the set.
- The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].
- Similarly, it is known that one may consider matrices over finite fields and use the rank to induce a coherent configuration on the set of pairs of matrices: if the difference of two matrices has rank 0, place the pair into relation R_0 ; else place the pair into R_1 . This is in fact an association scheme.

- The study of association schemes dates back to the work of Bose and Mesner [BoseMesner59], who introduced this object to further the study of designs in statistics.
- The notion was expanded by Higman [Higman1970], who introduced a generalisation known as coherent configurations, which relate to permutation groups.
- Delsarte [Delsarte1973] later connected association schemes to coding theory via the Hamming scheme, which takes as an underlying set vectors over a finite field and uses the rank of vectors to induce an association scheme structure on the set.
- The applications to coding theory have been greatly explored, such as by Sloane [SLOANE1975].
- Similarly, it is known that one may consider matrices over finite fields and use the rank to induce a coherent configuration on the set of pairs of matrices: if the difference of two matrices has rank 0, place the pair into relation R_0 ; else place the pair into R_1 . This is in fact an association scheme.
- We extend this notion using the determinant.

Overview

1	Assoc	iation	Scl	nemes
---	-------	--------	-----	-------

- **02** Examples
- **03** Properties
- **04** Schemes from Matrices over Finite Fields
- **05** Properties of our Construction
- **06** Open Questions

Coherent Configurations

A coherent configuration C is a set X with a set of binary operations R on X (i.e. relations on X^2) such that:

- 1. \mathcal{R} is a partition of $X \times X$, that is, any ordered pair of points is in a unique relation $R_i, i \in I$.
- 2. There is a subset $H \subset I$ such that $\{R_h : h \in H\}$ partitions the diagonal $\{(x, x) : x \in X\}$.
- 3. For each R_i , its converse $\{(y,x):(x,y)\in R_i\}$ is also one of the relations in \mathcal{R} , say $R_{i'}$.
- 4. For $i, j, k \in I$ and $(x, y) \in \mathcal{R}_k$, the number of $z \in X$ such that $(x, z) \in R_i$ and $(z, y) \in R_j$ is a constant ρ_{ij}^k , called the intersection number, that does not depend on the choice of x, y.

Association Schemes

Let C be a coherent configuration on X.

- 1. The sets F such that $\{(\alpha, \alpha) : \alpha \in F\}$ belong to C are called the fibres of P. We say that C is **homogeneous** if there is only one fibre.
- 2. The symmetrisation \mathcal{C}^{sym} of \mathcal{C} is the partition of X^2 whose parts are all unions of the parts of \mathcal{C} and their converses. If \mathcal{C}^{sym} is a coherent configuration, we say that \mathcal{C} is **stratifiable**.
- 3. C is called **commutative** if its basis matrices commute with one another. In this case we have $\rho_{ij}^k = \rho_{ji}^k$.
- 4. C is called **symmetric** if all the relations are symmetric, that is, if each relation coincides with its converse, that is $R_{i'} = R_i$.

Association Schemes

Let C be a coherent configuration on X.

- 1. The sets F such that $\{(\alpha, \alpha) : \alpha \in F\}$ belong to C are called the fibres of P. We say that C is **homogeneous** if there is only one fibre.
- 2. The symmetrisation \mathcal{C}^{sym} of \mathcal{C} is the partition of X^2 whose parts are all unions of the parts of \mathcal{C} and their converses. If \mathcal{C}^{sym} is a coherent configuration, we say that \mathcal{C} is **stratifiable**.
- 3. C is called **commutative** if its basis matrices commute with one another. In this case we have $\rho_{ij}^k = \rho_{ji}^k$.
- 4. C is called **symmetric** if all the relations are symmetric, that is, if each relation coincides with its converse, that is $R_{i'} = R_i$.

These properties are related as follows:

A symmetric coherent configuration is commutative; a commutative coherent configuration is stratifiable; and a stratifiable coherent configuration is homogeneous.

Association Schemes

Let C be a coherent configuration on X.

- 1. The sets F such that $\{(\alpha, \alpha) : \alpha \in F\}$ belong to C are called the fibres of P. We say that C is **homogeneous** if there is only one fibre.
- 2. The symmetrisation \mathcal{C}^{sym} of \mathcal{C} is the partition of X^2 whose parts are all unions of the parts of \mathcal{C} and their converses. If \mathcal{C}^{sym} is a coherent configuration, we say that \mathcal{C} is **stratifiable**.
- 3. C is called **commutative** if its basis matrices commute with one another. In this case we have $\rho_{ij}^k = \rho_{ji}^k$.
- 4. C is called **symmetric** if all the relations are symmetric, that is, if each relation coincides with its converse, that is $R_{i'} = R_i$.

These properties are related as follows:

A symmetric coherent configuration is commutative; a commutative coherent configuration is stratifiable; and a stratifiable coherent configuration is homogeneous.

A symmetric coherent configuration is also known as an association scheme.

Let $X=\mathbb{F}_q^n$ and $\delta_H(x,y)$ denote the Hamming weight of x-y. For i=0,...,n, set

$$R_i = \{(x, y) \in X^2 : \delta_H(x, y) = i\}$$

Then $H_a^n = (X, \{R_i\}_i)$ is an association scheme.

Let $X = \mathbb{F}_q^n$ and $\delta_H(x,y)$ denote the Hamming weight of x-y. For i=0,...,n, set

$$R_i = \{(x, y) \in X^2 : \delta_H(x, y) = i\}$$

Then $H_q^n = (X, \{R_i\}_i)$ is an association scheme.

A **code** in an association scheme is a subset of X with relations inherited from the R_i .

Let $X=\mathbb{F}_q^n$ and $\delta_H(x,y)$ denote the Hamming weight of x-y. For i=0,...,n, set

$$R_i = \{(x, y) \in X^2 : \delta_H(x, y) = i\}$$

Then $H_q^n = (X, \{R_i\}_i)$ is an association scheme.

A **code** in an association scheme is a subset of X with relations inherited from the R_i .

"Block codes of length n over a q-ary alphabet" = "codes in the Hamming scheme H_q^n ".

Let $X=\mathbb{F}_q^n$ and $\delta_H(x,y)$ denote the Hamming weight of x-y. For i=0,...,n, set

$$R_i = \{(x, y) \in X^2 : \delta_H(x, y) = i\}$$

Then $H_q^n = (X, \{R_i\}_i)$ is an association scheme.

A **code** in an association scheme is a subset of X with relations inherited from the R_i .

"Block codes of length n over a q-ary alphabet" = "codes in the Hamming scheme H_q^n ".

Closed form solution for ρ_{ij}^k :

$$\rho_{i,j}^k = \sum_{\delta=0}^{\lfloor i+j-k/2\rfloor} (q-2)^{i+j-k-2\delta} \binom{k}{j-\delta} \binom{j-\delta}{k-i+\delta} \binom{n-k}{(i+j-w)/2}$$

Let $X=\mathbb{F}_q^n$ and $\delta_H(x,y)$ denote the Hamming weight of x-y. For i=0,...,n, set

$$R_i = \{(x, y) \in X^2 : \delta_H(x, y) = i\}$$

Then $H_q^n = (X, \{R_i\}_i)$ is an association scheme.

A **code** in an association scheme is a subset of X with relations inherited from the R_i .

"Block codes of length n over a q-ary alphabet" = "codes in the Hamming scheme H_q^n ".

Closed form solution for ρ_{ij}^k :

$$\rho_{i,j}^k = \sum_{\delta=0}^{\lfloor i+j-k/2\rfloor} (q-2)^{i+j-k-2\delta} \binom{k}{j-\delta} \binom{j-\delta}{k-i+\delta} \binom{n-k}{(i+j-w)/2}$$

Codes in association schemes are useful because of the 'linear programming bound', which helps one to construct codes with desired minimum distance.

Linear Programming Bound

If (X, \mathcal{R}) is an association scheme and $Y \subset X$, the distribution vector of Y is the vector with i^{th} entry

$$a_i = \frac{|(Y \times Y) \cap R_i|}{|Y|}$$

Linear Programming Bound

If (X, \mathcal{R}) is an association scheme and $Y \subset X$, the distribution vector of Y is the vector with i^{th} entry

$$a_i = \frac{|(Y \times Y) \cap R_i|}{|Y|}$$

[Roman92] Let $\mathcal A$ be an association scheme with dual eigenmatrix Q, diameter d, and distribution vector $\mathbf a=(a_0,a_1,\ldots,a_d)$. Then any code C with minimum distance r in $\mathcal A$ satisfies

$$|C| \le \max\left(\sum_{i=0}^d a_i\right)$$

where the maximum is taken over all $\{a_0,\ldots,a_d\}$ where the a_i satisfy

1.
$$a_0 = 1$$
, **2.** $a_i = 0$ for $1 \le i \le r$, **3.** $a_i \ge 0$ \forall *i*, and **4.** $aQ \ge \mathbf{0}$

Assume $A = \{X, \mathcal{R}\}$ is an association scheme. For each i, $0 \le i \le d$, define the matrix A_i by

$$(A_i)_{u,v} = \begin{cases} 1 & (u,v) \in R_i \\ 0 & (u,v) \notin R_i \end{cases}$$

Assume $A = \{X, \mathcal{R}\}$ is an association scheme. For each i, $0 \le i \le d$, define the matrix A_i by

$$(A_i)_{u,v} = \begin{cases} 1 & (u,v) \in R_i \\ 0 & (u,v) \notin R_i \end{cases}$$

The A_i satisfy: 1. $A_0=I$, 2. $\sum_{i=0}^d A_i=J$, 3. $A_jA_i=\sum_{h=0}^d p_{i,j}^hA_h$ 4. Linearly independence.

Assume $A = \{X, \mathcal{R}\}$ is an association scheme. For each i, $0 \le i \le d$, define the matrix A_i by

$$(A_i)_{u,v} = \begin{cases} 1 & (u,v) \in R_i \\ 0 & (u,v) \notin R_i \end{cases}$$

The A_i satisfy: 1. $A_0 = I$, 2. $\sum_{i=0}^d A_i = J$, 3. $A_j A_i = \sum_{h=0}^d p_{i,j}^h A_h$ 4. Linearly independence. The product of matrices in the span of the A_i is again in the span of the A_i , so $\{A_0, A_1, \ldots, A_d\}$ forms a basis for a commutative algebra $\mathcal{M}_{\mathcal{A}} \subseteq \mathrm{M}_{|X|}(\mathbb{C})$, the Bose-Mesner Algebra.

Assume $A = \{X, \mathcal{R}\}$ is an association scheme. For each i, $0 \le i \le d$, define the matrix A_i by

$$(A_i)_{u,v} = \begin{cases} 1 & (u,v) \in R_i \\ 0 & (u,v) \notin R_i \end{cases}$$

The A_i satisfy: 1. $A_0=I$, 2. $\sum_{i=0}^d A_i=J$, 3. $A_jA_i=\sum_{h=0}^d p_{i,j}^hA_h$ 4. Linearly independence. The product of matrices in the span of the A_i is again in the span of the A_i , so $\{A_0,A_1,\ldots,A_d\}$ forms a basis for a commutative algebra $\mathcal{M}_{\mathcal{A}}\subseteq \mathrm{M}_{|X|}(\mathbb{C})$, the Bose-Mesner Algebra. $\mathcal{M}_{\mathcal{A}}$ has a 2nd basis: a set of mutually-orthogonal primitive idempotents. Since the A_i are real and symmetric, they satisfy $A_i=\overline{A_i^t}$, so by spectral theory there exist symmetric $E_0,E_1,\ldots,E_d\in\mathcal{M}_{\mathcal{A}}$:

1. $E_i E_j = \begin{cases} 0 & i \neq j \\ E_i & i = j \end{cases}$, 2. $A = \sum_{i=0}^d \lambda_i E_i$, 3. $\sum_{i=0}^d E_i = I$, 4. $AE_i = \lambda_i E_i$,

and the λ_i are the d+1 distinct eigenvalues of A.

Assume $A = \{X, \mathcal{R}\}$ is an association scheme. For each i, $0 \le i \le d$, define the matrix A_i by

$$(A_i)_{u,v} = \begin{cases} 1 & (u,v) \in R_i \\ 0 & (u,v) \notin R_i \end{cases}$$

The A_i satisfy: 1. $A_0 = I$, 2. $\sum_{i=0}^d A_i = J$, 3. $A_j A_i = \sum_{h=0}^d p_{i,j}^h A_h$ 4. Linearly independence. The product of matrices in the span of the A_i is again in the span of the A_i , so $\{A_0, A_1, \ldots, A_d\}$ forms a basis for a commutative algebra $\mathcal{M}_{\mathcal{A}} \subseteq \mathrm{M}_{|X|}(\mathbb{C})$, the Bose-Mesner Algebra. $\mathcal{M}_{\mathcal{A}}$ has a 2nd basis: a set of mutually-orthogonal primitive idempotents. Since the A_i are real and symmetric, they satisfy $A_i = \overline{A_i^t}$, so by spectral theory there exist symmetric $E_0, E_1, \ldots, E_d \in \mathcal{M}_{\mathcal{A}}$:

1. $E_i E_j = \begin{cases} 0 & i \neq j \\ E_i & i = j \end{cases}$, **2.** $A = \sum_{i=0}^d \lambda_i E_i$, **3.** $\sum_{i=0}^d E_i = I$, **4.** $AE_i = \lambda_i E_i$,

and the λ_i are the d+1 distinct eigenvalues of A. The first and second eigenmatrices P and Q:

$$(A_0, A_1, \dots, A_d) = (E_0, E_1, \dots, E_d) P, \quad (E_0, E_1, \dots, E_d) = |X|^{-1} (A_0, A_1, \dots, A_d) Q$$

From these definitions, and the relations between the A_i and E_i , we have PQ = |X|I.

Assume $A = \{X, \mathcal{R}\}$ is an association scheme. For each $i, 0 \leq i \leq d$, define the matrix A_i by

$$(A_i)_{u,v} = \begin{cases} 1 & (u,v) \in R_i \\ 0 & (u,v) \notin R_i \end{cases}$$

The A_i satisfy: 1. $A_0=I$, 2. $\sum_{i=0}^d A_i=J$, 3. $A_jA_i=\sum_{h=0}^d p_{i,j}^hA_h$ 4. Linearly independence. The product of matrices in the span of the A_i is again in the span of the A_i , so $\{A_0,A_1,\ldots,A_d\}$ forms a basis for a commutative algebra $\mathcal{M}_{\mathcal{A}}\subseteq \mathrm{M}_{|X|}(\mathbb{C})$, the Bose-Mesner Algebra. $\mathcal{M}_{\mathcal{A}}$ has a 2nd basis: a set of mutually-orthogonal primitive idempotents. Since the A_i are real and symmetric, they satisfy $A_i=\overline{A_i^t}$, so by spectral theory there exist symmetric $E_0,E_1,\ldots,E_d\in\mathcal{M}_{\mathcal{A}}$:

1. $E_iE_j=\left\{ egin{array}{ll} 0 & i \neq j \\ E_i & i=j \end{array} \right.$, 2. $A=\sum_{i=0}^d \lambda_i E_i$, 3. $\sum_{i=0}^d E_i=I$, 4. $AE_i=\lambda_i E_i$, and the λ_i are the d+1 distinct eigenvalues of A. The first and second eigenmatrices P and Q:

$$(A_0, A_1, \dots, A_d) = (E_0, E_1, \dots, E_d) P, \quad (E_0, E_1, \dots, E_d) = |X|^{-1} (A_0, A_1, \dots, A_d) Q$$

From these definitions, and the relations between the A_i and E_i , we have PQ = |X|I. We say \mathcal{A} is P-polynomial (Q-polynomial) if in $A_i = \sum_{k=0}^n p_i(k)E_k \quad (|X|E_k = \sum_{i=0}^n q_k(i)A_i)$ the $p_k(i)$ ($q_k(i)$) are real polynomials evaluated at real numbers.

1. Let X be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if
$$(x,y) \in R_i$$
, then $(x+z,y+z) \in R_i$

1. Let X be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if
$$(x,y) \in R_i$$
, then $(x+z,y+z) \in R_i$

for all $z \in X, i \in I$, then (X, R) is a **translation scheme** with respect to the group (X, +).

2. An association scheme (X, \mathcal{R}') is a **fusion** of (X, \mathcal{R}) if every $R' \in \mathcal{S}$ is a union of R_i . An association scheme (X, \mathcal{R}) is **amorphic** if every fusion of (X, \mathcal{R}) is an association scheme.

1. Let X be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if
$$(x,y) \in R_i$$
, then $(x+z,y+z) \in R_i$

- 2. An association scheme (X, \mathcal{R}') is a **fusion** of (X, \mathcal{R}) if every $R' \in \mathcal{S}$ is a union of R_i . An association scheme (X, \mathcal{R}) is **amorphic** if every fusion of (X, \mathcal{R}) is an association scheme.
- 3. An association scheme with fibre R_0 is P-polynomial if for all integers $i, j, k \ (0 \le i, j, k \le |I|)$, $p_{ij}^k = 0$ whenever one of i, j, k is greater than the sum of the other two.

1. Let X be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if
$$(x,y) \in R_i$$
, then $(x+z,y+z) \in R_i$

- 2. An association scheme (X, \mathcal{R}') is a **fusion** of (X, \mathcal{R}) if every $R' \in \mathcal{S}$ is a union of R_i . An association scheme (X, \mathcal{R}) is **amorphic** if every fusion of (X, \mathcal{R}) is an association scheme.
- 3. An association scheme with fibre R_0 is P-polynomial if for all integers $i, j, k \ (0 \le i, j, k \le |I|)$, $p_{ij}^k = 0$ whenever one of i, j, k is greater than the sum of the other two.
- 4. A homogeneous coherent configuration is **thin** if all basis matrices have row and column sums equal to 1.

1. Let X be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if
$$(x,y) \in R_i$$
, then $(x+z,y+z) \in R_i$

- 2. An association scheme (X, \mathcal{R}') is a **fusion** of (X, \mathcal{R}) if every $R' \in \mathcal{S}$ is a union of R_i . An association scheme (X, \mathcal{R}) is **amorphic** if every fusion of (X, \mathcal{R}) is an association scheme.
- 3. An association scheme with fibre R_0 is P-polynomial if for all integers $i, j, k \ (0 \le i, j, k \le |I|)$, $p_{ij}^k = 0$ whenever one of i, j, k is greater than the sum of the other two.
- 4. A homogeneous coherent configuration is **thin** if all basis matrices have row and column sums equal to 1.
- 5. If G is any permutation group on X, then the partition of X^2 into orbits of G is a coherent configuration, denoted by K(G). A coherent configuration of the form K(G) is called **Schurian**.

1. Let X be a finite Abelian group and (X,R) an association scheme. If (X,R) is (X,+)-invariant, i.e.

if
$$(x,y) \in R_i$$
, then $(x+z,y+z) \in R_i$

for all $z \in X, i \in I$, then (X, R) is a **translation scheme** with respect to the group (X, +).

- 2. An association scheme (X, \mathcal{R}') is a **fusion** of (X, \mathcal{R}) if every $R' \in \mathcal{S}$ is a union of R_i . An association scheme (X, \mathcal{R}) is **amorphic** if every fusion of (X, \mathcal{R}) is an association scheme.
- 3. An association scheme with fibre R_0 is P-polynomial if for all integers $i, j, k \ (0 \le i, j, k \le |I|)$, $p_{ij}^k = 0$ whenever one of i, j, k is greater than the sum of the other two.
- 4. A homogeneous coherent configuration is **thin** if all basis matrices have row and column sums equal to 1.
- 5. If G is any permutation group on X, then the partition of X^2 into orbits of G is a coherent configuration, denoted by K(G). A coherent configuration of the form K(G) is called **Schurian**.

A thin homogeneous coherent configuration is Schurian.

Our Work: A Construction Via the Determinant

Theorem

Let $M_2(\mathbb{F}_q)$ denote the set of two-by-two matrices over a finite field. Define q+1 relations R_i on $M_2(\mathbb{F}_q) \times M_2(\mathbb{F}_q)$ as follows:

• If $i \in \{0, 1, ..., q-1\}$, then set

$$R_i = \{(A, B) : A \neq B, \text{ and } \det(A - B) = i\},\$$

and

• if i = q then set $R_q = \{(A, B) : A = B\}$.

Then $(M_2(\mathbb{F}_q),\mathcal{R}=\{R_0,R_1,...,R_q\})$ is a coherent configuration.

Our Work: A Construction Via the Determinant

Theorem

Let $M_2(\mathbb{F}_q)$ denote the set of two-by-two matrices over a finite field. Define q+1 relations R_i on $M_2(\mathbb{F}_q) \times M_2(\mathbb{F}_q)$ as follows:

• If $i \in \{0, 1, ..., q-1\}$, then set

$$R_i = \{(A, B) : A \neq B, \text{ and } \det(A - B) = i\},\$$

and

• if i = q then set $R_q = \{(A, B) : A = B\}$.

Then $(M_2(\mathbb{F}_q), \mathcal{R} = \{R_0, R_1, ..., R_q\})$ is a coherent configuration.

We denote this coherent configuration by C(2, q).

Our Work: A Construction Via the Determinant

Theorem

Let $M_2(\mathbb{F}_q)$ denote the set of two-by-two matrices over a finite field. Define q+1 relations R_i on $M_2(\mathbb{F}_q) \times M_2(\mathbb{F}_q)$ as follows:

• If $i \in \{0, 1, ..., q - 1\}$, then set

$$R_i = \{(A, B) : A \neq B, \text{ and } \det(A - B) = i\},\$$

and

• if i = q then set $R_q = \{(A, B) : A = B\}$.

Then $(M_2(\mathbb{F}_q), \mathcal{R} = \{R_0, R_1, ..., R_q\})$ is a coherent configuration.

We denote this coherent configuration by C(2, q).

The first three properties of a coherent configuration can be seen to hold directly: $1(\mathcal{R})$ is a partition of X) holds as the difference of any two matrices has unique determinant. 2 (the diagonal is partitioned) since R_a is the required partition of the diagonal, and 3 (converse relations are relations) since flipping the order of elements of a pair is equivalent to multiplying the determinant by $(-1)^2$.

Finally, 4 holds by the following proof (sketch).

Proof of Property 4

The $\rho_{i,j}^k$ are constants independent of choice of $(x,y) \in R_k$, and:

- 1. $\rho_{i,j}^q = 0 \text{ if } q \neq i \neq j \neq q.$
- 2. $\rho_{i,j}^q = (q^2 1)q$ if $i = j \neq 0, q$.
- 3. $\rho_{i,j}^q = (q^2 + q 1)q 1$ if i = j = 0.
- 1. $\rho_{i,j}^0 = q^2$ if $q \neq i \neq j \neq q$. 2. $\rho_{i,j}^0 = q(q-1)$ if $i = j \neq 0, q$.
 - 3. $\rho_{i,j}^0 = q(q-1)$ if $i = j \neq 0$.
- 1. $\rho_{i,q}^k = \begin{cases} 1 & \text{if } k=i, \text{ for any } i. \\ 0 & \text{else} \end{cases}$ (and similarly for $\rho_{q,j}^k$).
- For all $k \not\in \{0,q\}$, we have $\rho^k_{i,j} = q(q+\epsilon_{i,j,k}-1)$ where $x^2-k^{-1}(i+k-j)x+k^{-1}i=0$ has $\epsilon_{i,j,k}$ solutions mod q (not counting multiplicity) for all $i,j\neq q$.

Proof of Property 4

The $\rho_{i,j}^k$ are constants independent of choice of $(x,y) \in R_k$, and:

- 1. $\rho_{i,j}^q = 0$ if $q \neq i \neq j \neq q$.
- 2. $\rho_{i,j}^q = (q^2 1)q$ if $i = j \neq 0, q$.
- 3. $\rho_{i,j}^q = (q^2 + q 1)q 1$ if i = j = 0. • 1. $\rho_{i,j}^0 = q^2$ if $q \neq i \neq j \neq q$.
 - 2. $\rho_{i,j}^0 = q$ if $i = j \neq 0, q$.
 - 3. $\rho_{i,j}^0 = q(2q-1)$ if i = j = 0.
- 1. $\rho_{i,q}^k = \begin{cases} 1 & \text{if } k=i, \text{ for any } i. \\ 0 & \text{else} \end{cases}$ (and similarly for $\rho_{q,j}^k$).
- For all $k \not\in \{0,q\}$, we have $\rho^k_{i,j} = q(q+\epsilon_{i,j,k}-1)$ where $x^2-k^{-1}(i+k-j)x+k^{-1}i=0$ has $\epsilon_{i,j,k}$ solutions mod q (not counting multiplicity) for all $i,j\neq q$.

Proof.

 $\rho_{i,q}^k$: This is the quantity

$$|\{z \in M_n(\mathbb{F}_q) : \det(x-z) = i \text{ and } z = y\}|$$

for some $(x,y) \in R_k$. Since (x,y) is fixed, $i = \det(x-z) = \det(x-y)$ which is not fulfilled if $(x,y) \notin R_i$, and which yields a set of size one if $(x,y) \in R_i$, comprising the singleton set $\{y\}$.

Proof of Property 4

Set $ho_{i,j}(a,b)=|\{z\in M_2(\mathbb{F}_q): \det(a-z)=i, \det(z-b)=j\}|$, for $(a,b)\in R_k$ and

$$\rho_{i,i}(c) = |\{z \in M_2(\mathbb{F}_q) : \det(z) = i, \det(z-c) = i\}|.$$

Then $\rho_{i,j}(a,b)=\rho_{i,j}(c)$ for any $(a,b)\in R_k$ with c=a-b. Let $z_{ij},c_i\in \mathbb{F}_q$ and write

$$z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}, c = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

If $i \neq j$, then $\rho_{i,i}^q = 0$.

Set $\rho_{i,j}(a,b) = |\{z \in M_2(\mathbb{F}_q) : \det(a-z) = i, \det(z-b) = j\}|$, for $(a,b) \in R_k$ and

$$\rho_{i,j}(c) = |\{z \in M_2(\mathbb{F}_q) : \det(z) = i, \det(z-c) = j\}|.$$

Then $\rho_{i,j}(a,b) = \rho_{i,j}(c)$ for any $(a,b) \in R_k$ with c = a - b. Let $z_{ij}, c_i \in \mathbb{F}_q$ and write

$$z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}, c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

 $\rho_{i,j}^q$: this corresponds to the case of c=0.

$$z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}, c = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

Set $\rho_{i,j}(a,b)=|\{z\in M_2(\mathbb{F}_q): \det(a-z)=i, \det(z-b)=j\}|$, for $(a,b)\in R_k$ and

$$\rho_{i,j}(c) = |\{z \in M_2(\mathbb{F}_q) : \det(z) = i, \det(z-c) = j\}|.$$

Then $\rho_{i,j}(a,b) = \rho_{i,j}(c)$ for any $(a,b) \in R_k$ with c = a - b. Let $z_{ij}, c_i \in \mathbb{F}_q$ and write

$$z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}, c = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

$$ho_{i,j}^q$$
: this corresponds to the case of $c=0$. If $i \neq j$, then $ho_{ij}^q = 0$. Let $i=j \neq 0$. Note that z_{11}, z_{21} may be freely chosen satisfying $(z_{11}, z_{21}) \neq (0,0)$. Then $z_{11}z_{22}-z_{12}z_{21}=i$, so there are q choices for z_{22} , and the variable z_{21} is entirely dependent on z_{22} . Therefore $ho_{ii}^q = (q^2-1)q$ when $i \neq 0$.

Set $\rho_{i,j}(a,b) = |\{z \in M_2(\mathbb{F}_q) : \det(a-z) = i, \det(z-b) = j\}|$, for $(a,b) \in R_k$ and

$$\rho_{i,j}(c) = |\{z \in M_2(\mathbb{F}_q) : \det(z) = i, \det(z-c) = j\}|.$$

Then $\rho_{i,j}(a,b) = \rho_{i,j}(c)$ for any $(a,b) \in R_k$ with c = a - b. Let $z_{ij}, c_i \in \mathbb{F}_q$ and write

$$z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}, c = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

 $\rho_{i,j}^q$: this corresponds to the case of c=0.

If $i \neq j$, then $\rho_{ij}^q = 0$.

Let $i = j \neq 0$. Note that z_{11}, z_{21} may be freely chosen satisfying $(z_{11}, z_{21}) \neq (0, 0)$. Then $z_{11}z_{22} - z_{12}z_{21} = i$, so there are q choices for z_{22} , and the variable z_{21} is entirely dependent on z_{22} . Therefore $z_{11}^q = (z_{11}^q - z_{12}^q) = (z_{11}^q - z_{12}^q)$.

Therefore $\rho_{ii}^q = (q^2 - 1)q$ when $i \neq 0$.

When i=0, since there are q^4 total matrices in $M_2(\mathbb{F}_q)$, we have $\rho_{00}^k=q^4-(q-1)(q^2-1)q$.

 $\rho_{i,j}^0$: this corresponds to $c \neq 0$ with $\det(c) = 0$.

Since $c \neq 0$, assume $c_1 \neq 0$ wlog. Since $\det(c) = 0$ there exists $\alpha \in \mathbb{F}_q$ such that $c_3 = \alpha c_1, c_4 = \alpha c_2$.

 $ho_{i,j}^0$: this corresponds to $c \neq 0$ with $\det(c) = 0$. Since $c \neq 0$, assume $c_1 \neq 0$ wlog. Since $\det(c) = 0$ there exists $\alpha \in \mathbb{F}_q$ such that $c_3 = \alpha c_1, c_4 = \alpha c_2$. If i = j = 0, then that for any matrix $M \in M_2(\mathbb{F}_q)$ with $\det(M) = 1$, we have $\rho_{i,j}(c) = \rho_{i,j}(Mc)$.

Consider the choice for matrix M and its action on c,

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}$$

So we can assume that $\alpha=0$ wlog. Then the conditions $\det(z)=\det(z-c)=0$ imply that

$$z_{11}z_{22} = z_{12}z_{21},$$
 (1) $(z_{11} - c_1)z_{22} - (z_{12} - c_2)z_{21} = 0$ (2)

 $\rho_{i,j}^0$: this corresponds to $c \neq 0$ with $\det(c) = 0$.

Since $c \neq 0$, assume $c_1 \neq 0$ wlog. Since $\det(c) = 0$ there exists $\alpha \in \mathbb{F}_q$ such that $c_3 = \alpha c_1, c_4 = \alpha c_2$. If i = j = 0, then that for any matrix $M \in M_2(\mathbb{F}_q)$ with $\det(M) = 1$, we have $\rho_{i,j}(c) = \rho_{i,j}(Mc)$.

Consider the choice for matrix ${\cal M}$ and its action on c,

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}$$

So we can assume that $\alpha=0$ wlog. Then the conditions $\det(z)=\det(z-c)=0$ imply that

$$z_{11}z_{22} = z_{12}z_{21}, \tag{1}$$

$$(z_{11} - c_1)z_{22} - (z_{12} - c_2)z_{21} = 0 (2)$$

Equation (2) and substituting back into (1) implies that

$$-c_1 z_{22} + c_2 z_{21} = 0 \iff z_{22} = c_1^{-1} c_2 z_{21} \iff c_1 c_2^{-1} z_{11} z_{21} = z_{12} z_{21}$$

 $\rho_{i,j}^0$: this corresponds to $c \neq 0$ with $\det(c) = 0$.

Since $c \neq 0$, assume $c_1 \neq 0$ wlog. Since $\det(c) = 0$ there exists $\alpha \in \mathbb{F}_q$ such that $c_3 = \alpha c_1, c_4 = \alpha c_2$. If i = j = 0, then that for any matrix $M \in M_2(\mathbb{F}_q)$ with $\det(M) = 1$, we have $\rho_{i,j}(c) = \rho_{i,j}(Mc)$. Consider the choice for matrix M and its action on c.

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}$$

So we can assume that $\alpha=0$ wlog. Then the conditions $\det(z)=\det(z-c)=0$ imply that

$$z_{11}z_{22} = z_{12}z_{21}, (1)$$

$$(z_{11} - c_1)z_{22} - (z_{12} - c_2)z_{21} = 0 (2$$

Equation (2) and substituting back into (1) implies that

$$-c_1 z_{22} + c_2 z_{21} = 0 \iff z_{22} = c_1^{-1} c_2 z_{21} \iff c_1 c_2^{-1} z_{11} z_{21} = z_{12} z_{21}$$

Therefore, z can take the following forms:

$$\begin{bmatrix} z_{11} & z_{12} \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} z_{11} & c_1^{-1}c_2z_{11} \\ z_{21} & c_1^{-1}c_2z_{21} \end{bmatrix}, z_{21} \neq 0.$$

 $\rho_{i,i}^0$: this corresponds to $c \neq 0$ with $\det(c) = 0$. Since $c \neq 0$, assume $c_1 \neq 0$ wlog. Since $\det(c) = 0$ there exists $\alpha \in \mathbb{F}_q$ such that $c_3 = \alpha c_1, c_4 = \alpha c_2$. If i=j=0, then that for any matrix $M\in M_2(\mathbb{F}_q)$ with $\det(M)=1$, we have $\rho_{i,j}(c)=\rho_{i,j}(Mc)$. Consider the choice for matrix M and its action on c.

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}$$

So we can assume that $\alpha=0$ wlog. Then the conditions $\det(z)=\det(z-c)=0$ imply that

$$z_{11}z_{22} = z_{12}z_{21},$$

 $(z_{11} - c_1)z_{22} - (z_{12} - c_2)z_{21} = 0$

Equation (2) and substituting back into (1) implies that

$$-c_1 z_{22} + c_2 z_{21} = 0 \iff z_{22} = c_1^{-1} c_2 z_{21} \iff c_1 c_2^{-1} z_{11} z_{21} = z_{12} z_{21}$$

Therefore, z can take the following forms:

$$\begin{bmatrix} z_{11} & z_{12} \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} z_{11} & c_1^{-1}c_2z_{11} \\ z_{01} & c_1^{-1}c_2z_{01} \end{bmatrix}, z_{21} \neq 0.$$

In total, there are $q^2 + q(q-1) = q(2q-1)$ matrices for z, regardless of choice of c.

(1)

(2)

Next, if $i = j \neq 0$, then

$$z_{11}z_{22} = i + z_{12}z_{21},$$

$$-c_1z_{22} - \alpha c_2z_{11} + c_2z_{21} + \alpha c_1z_{12} = 0.$$
(3)

$$-c_1 z_{22} - \alpha c_2 z_{11} + c_2 z_{21} + \alpha c_1 z_{12} = 0.$$

Next, if $i = j \neq 0$, then

$$z_{11}z_{22} = i + z_{12}z_{21},$$

(3)

(4)

$$-c_1z_{22} - \alpha c_2z_{11} + c_2z_{21} + \alpha c_1z_{12} = 0.$$

Now (4) gives

$$c_2(z_{21} - \alpha z_{11}) = c_1(z_{22} - \alpha z_{12}) \iff z_{22} = \alpha z_{12} + c_1^{-1}c_2(z_{21} - \alpha z_{11}),$$

which substituting into (3) implies that

$$z_{11}(\alpha z_{12} + c_1^{-1}c_2(z_{21} - \alpha z_{11})) = z_{12}z_{21} \iff (\alpha z_{11} - z_{21})(c_1^{-1}c_2z_{11} - z_{12}) = -i.$$

Proof of Property 4 Next, if $i = j \neq 0$, then

Now (4) gives
$$c_2(z_{21}-\alpha z_{11})=c_1(z_{22}-\alpha z_{12}) \iff z_{22}=\alpha z_{12}+c_1^{-1}c_2(z_{21}-\alpha z_{11}),$$

 $-c_1z_{22} - \alpha c_2z_{11} + c_2z_{21} + \alpha c_1z_{12} = 0.$

 $z_{11}z_{22}=i+z_{12}z_{21}$.

$$r_{11}(\alpha r_{12} + c^{-1}c_{2}(r_{21} - \alpha r_{11}))$$

$$z_{11}(\alpha z_{12} + c_1^{-1}c_2(z_{21} - \alpha z_{11})) = z_{12}z_{21} \iff (\alpha z_{11} - z_{21})(c_1^{-1}c_2z_{11} - z_{12}) = -i.$$

$$z_{11}(\alpha z_{12} + c_1 + c_2(z_{21} - \alpha z_{11})) = 0$$

nonzero,
$$\alpha z_{11} - z_{21}, c_1^{-1} c_2 z_{11} - z_1$$

re
$$z_{22} = \alpha z_{12} + c_1^{-1} c_2 (z_{21} - \alpha z_{11}),$$

$$z_{21} = \alpha z_{11} + i (c_1^{-1} c_2 z_{11} - z_{12})^{-1}$$

subject to
$$c_1^{-1}c_2z_{11} - z_{12} \neq 0$$
.

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}, \quad \text{where} \quad \begin{aligned} z_{22} &= \alpha z_{12} + c_1^{-1} c_2 (z_{21} - \alpha z_{11}), \\ z_{21} &= \alpha z_{11} + i (c_1^{-1} c_2 z_{11} - z_{12})^{-1}, \end{aligned}$$

$$z_{11}(\alpha z_{12} + c_1 \ ^*c_2(z_{21} - \alpha z_{11})) = z_{12}z_{21} \iff (\alpha z_{11} - z_{21})(c_1 \ ^*c_2z_{11} - z_{12}) = -i.$$
 Since i is nonzero, $\alpha z_{11} - z_{21}, c_1^{-1}c_2z_{11} - z_{12} \neq 0$. Therefore, z must be of the following form:

$$\Rightarrow z_{22} = \alpha z_{12} + c_1 \ \ c_2(z_{21} - \alpha z_{11}),$$

(3)

(4)

Next, if $i = j \neq 0$, then

Proof of Property 4

$$z_{11}z_{22} = i + z_{12}z_{21},$$

- $c_1z_{22} - \alpha c_2z_{11} + c_2z_{21} + \alpha c_1z_{12} = 0.$

$$c_2(z_{21} - \alpha z_{11}) = c_1(z_{22} - \alpha z_{12}) \iff z_{22} = \alpha z_{12} + c_1^{-1}c_2(z_{21} - \alpha z_{11}),$$

which substituting into (3) implies that

$$\alpha$$
 (or α α

$$z_{11}(\alpha z_{12} + c_{*}^{-1}c_{2}(z_{21} - \alpha z_{11})$$

$$z_{11}(\alpha z_{12} + c_1^{-1}c_2(z_{21} - \alpha z_{11})) = z_{12}z_{21} \iff (\alpha z_{11} - z_{21})(c_1^{-1}c_2z_{11} - z_{12}) = -i.$$

$$_{1}(\alpha z_{12}+c_{1}^{-1}c_{2}(z_{21}-\alpha z_{11})$$

(q choices for z_{11} , and q-1 for z_{12} for each z_{11}).

$$-2^{-1}c_2(z_1-z_2)$$

Since
$$i$$
 is nonzero, $\alpha z_{11}-z_{21}, c_1^{-1}c_2z_{11}-z_{12}\neq 0$. Therefore, z must be of the following form:

$$z_{12} \neq 0$$
. The

subject to $c_1^{-1}c_2z_{11}-z_{12}\neq 0$. There are q(q-1) such matrices, regardless of the choice of c

fore,
$$z$$
 mus

$$egin{array}{ccccc} z_{11}-z_{21}, c_1 & c_2z_{11}-z_{12}
eq 0. & ext{Therefore, z must be of the recover} \ & z_{11}-z_{12} \ & z_{21}-z_{21} \ & z_{22} \ & z_{21}-z_{21}+c_1^{-1}c_2(z_{21}-lpha z_{11}), \ & z_{21}=lpha z_{11}+i(c_1^{-1}c_2z_{11}-z_{12})^{-1}, \end{array}$$

$$\alpha z_{11}),$$

$$z_{11} - z_{12}) = -i.$$

(3)

(4)

If $i \neq j$, consider the matrix M with $\det(M) = 1$ and its action on c,

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}.$$

Therefore, we can assume that c has the above form wlog. Then

$$z_{11}z_{22} = i + z_{12}z_{21},$$
 (5)
 $-c_1z_{22} + c_2z_{21} = j - i$ (6)

If $i \neq j$, consider the matrix M with $\det(M) = 1$ and its action on c,

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}.$$

Therefore, we can assume that c has the above form wlog. Then

$$z_{11}z_{22} = i + z_{12}z_{21}, (5)$$

(6)

$$-c_1 z_{22} + c_2 z_{21} = j - i$$

Now (6) and substituting into (5) gives

$$z_{22} = c_1^{-1}(c_2 z_{21} - (j-i)) \iff z_{11}(c_1^{-1}(c_2 z_{21} - (j-i))) = i + z_{12} z_{21}$$

We then have the cases
$$\begin{cases} z_{11} = -c_1(j-i)^{-1}i, & \text{if } z_{21} = 0 \\ z_{12} = z_{21}^{-1}(z_{11}(c_1^{-1}(c_2z_{21} - (j-i))) - i), & \text{otherwise} \end{cases}$$

If $i \neq j$, consider the matrix M with det(M) = 1 and its action on c,

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}.$$

Therefore, we can assume that c has the above form wlog. Then

$$z_{11}z_{22} = i + z_{12}z_{21}, (5)$$

(6)

$$-c_1 z_{22} + c_2 z_{21} = j - i$$

Now (6) and substituting into (5) gives

$$z_{22} = c_1^{-1}(c_2 z_{21} - (j-i)) \iff z_{11}(c_1^{-1}(c_2 z_{21} - (j-i))) = i + z_{12} z_{21}$$

We then have the cases
$$\begin{cases} z_{11} = -c_1(j-i)^{-1}i, & \text{if } z_{21} = 0 \\ z_{12} = z_{21}^{-1}(z_{11}(c_1^{-1}(c_2z_{21} - (j-i))) - i), & \text{otherwise} \end{cases}$$

Therefore, z must take one of the following forms:

$$\begin{bmatrix} -c_1(j-i)^{-1}i & z_{12} \\ 0 & -c_1^{-1}(j-i) \end{bmatrix}, \begin{bmatrix} z_{11} & z_{21}^{-1}(z_{11}(c_1^{-1}(c_2z_{21}-(j-i)))-i) \\ z_{21} & c_1^{-1}(c_2z_{21}-(j-i)) \end{bmatrix}, z_{21} \neq 0.$$

If $i \neq j$, consider the matrix M with det(M) = 1 and its action on c,

$$M = \begin{bmatrix} 1 - \alpha & 1 \\ -\alpha & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & 0 \end{bmatrix}.$$

Therefore, we can assume that c has the above form wlog. Then

$$\gamma_{i+1}\gamma_{i+2} = i \perp \gamma_{i+2}\gamma_{i+3}$$

$$z_{11}z_{22} = i + z_{12}z_{21},$$

 $-c_{1}z_{22} + c_{2}z_{21} = i - i$

We then have the cases
$$\begin{cases} z_{11} = -c_1(j-i)^{-1}i, & \text{if } z_{21} = 0 \\ z_{12} = z_{21}^{-1}(z_{11}(c_1^{-1}(c_2z_{21} - (j-i))) - i), & \text{otherwise} \end{cases}$$

Therefore, z must take one of the following forms:

efore,
$$z$$
 must take one of the following forms:
$$\begin{bmatrix} -c_1(j-i)^{-1}i & z_{12} \\ 0 & -c_2^{-1}(j-i) \end{bmatrix}, \quad \begin{bmatrix} z_{11} & z_{21}^{-1}(z_{11}(c_1^{-1}(c_2z_{21}-(j-i)))-i) \\ z_{21} & c_2^{-1}(c_2z_{21}-(j-i)) \end{bmatrix}, z_{21} \neq 0.$$

So there are $q + q(q - 1) = q^2$ matrices that z can take regardless of choice of c.

$$(c_2z_{21}-(j-i)))-i),$$
 otherwise

$$-(j-i)) = i + z_{12}z_{21}$$
if $z_{22} = 0$

$$z_{22} = c_1^{-1}(c_2 z_{21} - (j-i)) \iff z_{11}(c_1^{-1}(c_2 z_{21} - (j-i))) = i + z_{12} z_{21}$$

$$) = i + z_{12}z_{21}$$

$$) = i + z_{12}z_{21}$$

$$z_{21}$$

(5)

(6)

The final case is $\det(c) \neq 0$. Again, since $c \neq 0$, we can assume wlog that $c_1 \neq 0$. Consider the matrix M with $\det(M) = 1$ and its action on c, where $k = \det(c)$:

$$M = \begin{bmatrix} 1 & 0 \\ -c_1^{-1}c_3 & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & c_1^{-1}k, \end{bmatrix}$$

We assume now that c takes has form wlog. The conditions $\det(z)=i, \det(z-c)=j$ imply

$$z_{11}z_{22} = i + z_{12}z_{21},$$

$$(z_{11} - c_1)(z_{22} - c_1^{-1}k) - z_{21}(z_{12} - c_2) = j.$$
(8)

The final case is $\det(c) \neq 0$. Again, since $c \neq 0$, we can assume wlog that $c_1 \neq 0$. Consider the matrix M with $\det(M) = 1$ and its action on c, where $k = \det(c)$:

$$M = \begin{bmatrix} 1 & 0 \\ -c_1^{-1}c_3 & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & c_1^{-1}k, \end{bmatrix}$$

We assume now that c takes has form wlog. The conditions $\det(z)=i, \det(z-c)=j$ imply

$$z_{11}z_{22} = i + z_{12}z_{21}, (7)$$

$$(z_{11} - c_1)(z_{22} - c_1^{-1}k) - z_{21}(z_{12} - c_2) = j.$$
(8)

The equation (8) implies that

$$-c_1 z_{22} - c_1^{-1} k z_{11} + c_2 z_{21} + i + k = j \iff z_{22} = c_1^{-1} (i + k - j - c_1^{-1} k z_{11} + c_2 z_{21}).$$

Substituting back into (7):

$$c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}+c_2z_{21})=i+z_{12}z_{21}.$$

The final case is $\det(c) \neq 0$. Again, since $c \neq 0$, we can assume wlog that $c_1 \neq 0$. Consider the matrix M with det(M) = 1 and its action on c, where k = det(c):

$$M = \begin{bmatrix} 1 & 0 \\ -c_1^{-1}c_3 & 1 \end{bmatrix}, \quad Mc = \begin{bmatrix} c_1 & c_2 \\ 0 & c_1^{-1}k, \end{bmatrix}$$

We assume now that c takes has form wlog. The conditions $\det(z) = i$, $\det(z - c) = j$ imply

$$z_{11}z_{22}=i+z_{12}z_{21}$$

$$(z_{11}-c_1)(z_{22}-c_1^{-1}k)-z_{21}(z_{12}-c_2)=j.$$
 So implies that

The equation (8) implies that

$$-c_1 z_{22} - c_1^{-1} k z_{11} + c_2 z_{21} + i + k = j \iff z_{22} = c_1^{-1} (i + k - j - c_1^{-1} k z_{11} + c_2 z_{21}).$$

If
$$z_{21}=0$$
, then

$$z_{21} = 0$$
, the

$$c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}+c_2z_{21})=i+z_{12}z_{21}.$$

$$c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11})=i\iff c_1^{-2}z_{11}^2-k^{-1}z_{11}(i+k-j)+i=0,$$
 and there are $\epsilon_{i,j,k}$ solutions for z_{11} modulo q to the above polynomial.

(7)

(8)

If $z_{21} = 0$, then

$$c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}) = i \iff c_1^{-2}z_{11}^2 - k^{-1}z_{11}(i+k-j) + i = 0,$$
(10)

and there are $\epsilon_{i,j,k}$ solutions for z_{11} modulo q to the above polynomial.

If $z_{21} = 0$, then

$$c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}) = i \iff c_1^{-2}z_{11}^2 - k^{-1}z_{11}(i+k-j) + i = 0,$$
(10)

and there are $\epsilon_{i,j,k}$ solutions for z_{11} modulo q to the above polynomial.

If
$$z_{21} \neq 0$$
, then $z_{12} = z_{21}^{-1}(c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}+c_2z_{21})-i)$. So z must take one of the forms:

$$\begin{bmatrix} z_{11} & z_{12} \\ 0 & z_{22} \end{bmatrix}, \quad \text{or } \begin{bmatrix} z'_{11} & z'_{12} \\ z_{21} & z_{22} \end{bmatrix}, z_{21} \neq 0,$$

where z_{11} is any of the $\epsilon_{i,j,k}$ solutions to the polynomial (10), and

$$z_{22} = c_1^{-1}(i+k-j-c_1^{-1}kz_{11}+c_2z_{21}),$$

$$z'_{12} = z_{21}^{-1}(c_1^{-1}z'_{11}(i+k-j-c_1^{-1}kz'_{11}+c_2z_{21})-i).$$

If $z_{21}=0$, then

$$c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}) = i \iff c_1^{-2}z_{11}^2 - k^{-1}z_{11}(i+k-j) + i = 0,$$
(10)

and there are $\epsilon_{i,j,k}$ solutions for z_{11} modulo q to the above polynomial.

If
$$z_{21} \neq 0$$
, then $z_{12} = z_{21}^{-1}(c_1^{-1}z_{11}(i+k-j-c_1^{-1}kz_{11}+c_2z_{21})-i)$. So z must take one of the forms:

$$\begin{bmatrix} z_{11} & z_{12} \\ 0 & z_{22} \end{bmatrix}, \quad \text{ or } \begin{bmatrix} z'_{11} & z'_{12} \\ z_{21} & z_{22} \end{bmatrix}, z_{21} \neq 0,$$

where z_{11} is any of the $\epsilon_{i,j,k}$ solutions to the polynomial (10), and

$$z_{22} = c_1^{-1}(i+k-j-c_1^{-1}kz_{11}+c_2z_{21}),$$

$$z'_{12} = z_{21}^{-1}(c_1^{-1}z'_{11}(i+k-j-c_1^{-1}kz'_{11}+c_2z_{21})-i).$$

There are $\epsilon_{i,j,k}q+q(q-1)=q(q+\epsilon_{i,j,k}-1)$ matrices that z can be regardless of choice of c ($\epsilon_{i,j,k}$ choices for z_{11} , q for z_{12} in the first matrix type, q for z'_{11} , and q-1 for z_{21} in the second type).

The relations R_i of C(2, q) satisfy

$$|R_i| = \begin{cases} q^4, & i = q\\ q^5(q^2 - 1), & i = 1, ..., q - 1\\ q^4(q^3 + q^2 - q - 1), & i = 0 \end{cases}$$

The relations R_i of C(2, q) satisfy

$$|R_i| = \begin{cases} q^4, & i = q\\ q^5(q^2 - 1), & i = 1, ..., q - 1\\ q^4(q^3 + q^2 - q - 1), & i = 0 \end{cases}$$

Proof.

$$R_q$$
 has size $|R_q|=|M_2(\mathbb{F}_q)|=q^4$.

The relations R_i of $\mathcal{C}(2,q)$ satisfy

$$|R_i| = \begin{cases} q^4, & i = q \\ q^5(q^2 - 1), & i = 1, ..., q - 1 \\ q^4(q^3 + q^2 - q - 1), & i = 0 \end{cases}$$

Proof.

 R_a has size $|R_a| = |M_2(\mathbb{F}_a)| = q^4$.

Recall for i=1,...,q-1 each R_i consists of pairs (x,y) such that $\det(x-y)=i$. For each $i\in\mathbb{F}_q^\times$ there are $(q+1)(q^2-q)$ matrices of determinant i, and so for each fixed x there are $(q+1)(q^2-q)$ possible y such that det(x - y) = i; since there are q^4 choices for x, we arrive at $a^4 \cdot (a+1)(a^2-a) = a^5(a^2-1)$.

The relations R_i of C(2,q) satisfy

$$|R_i| = \begin{cases} q^4, & i = q\\ q^5(q^2 - 1), & i = 1, ..., q - 1\\ q^4(q^3 + q^2 - q - 1), & i = 0 \end{cases}$$

Proof.

 R_q has size $|R_q| = |M_2(\mathbb{F}_q)| = q^4$.

Recall for i=1,...,q-1 each R_i consists of pairs (x,y) such that $\det(x-y)=i$. For each $i\in\mathbb{F}_q^\times$ there are $(q+1)(q^2-q)$ matrices of determinant i, and so for each fixed x there are $(q+1)(q^2-q)$ possible y such that $\det(x-y)=i$; since there are q^4 choices for x, we arrive at $q^4\cdot(q+1)(q^2-q)=q^5(q^2-1)$.

The size of R_0 is then

$$|R_0| = |M_2(\mathbb{F}_q)|^2 - (q-1)|R_1| - |R_q|,$$

since the relations partition $M_2(\mathbb{F}_q)^2$, which yields the recorded value.

Properties: Relations among Intersection Numbers

For any $\lambda \in \mathbb{F}_q^{\times}$ and $i, j, k \neq q$ the intersection numbers of $\mathcal{C}(2, q)$ satisfy

$$\rho_{ij}^k = \rho_{\lambda^2 i \lambda^2 j}^{\lambda^{-2} k}$$

 $=|\{\lambda^{-1}z\in M_n(\mathbb{F}_q): \det(\lambda x-z)=i \text{ and } \det(z-\lambda y)=j, \text{ some } x,y:\lambda^2\det(x-y)=k\}|=\rho_{ij}^k$

$$\rho_{\lambda^2 i \lambda^2 j}^{\lambda^{-2} k} = |\{z \in M_n(\mathbb{F}_q) \colon \det(x-z) = \lambda^2 i \text{ and } \det(z-y) = \lambda^2 j, \text{ some } (x,y) \in R_{\lambda^{-2} k}\}|$$

$$o_{\lambda^2 i \lambda^2 j}^k = |\{z \in M_n(\mathbb{F}_q) : \det(x-z) = \lambda^2 i \text{ and } \det(z-y) = \lambda^2 j, \text{ some } (x,y) \in R_{\lambda^{-2} k}\}|$$

$$egin{aligned} &
ho_{\lambda^2 i \lambda^2 j} = |\{z \in M_n(\mathbb{F}_q): \det(x-z) \equiv \lambda \mid \text{and } \det(z-y) \equiv \lambda \mid j, \text{ some } (x,y) \in R_{\lambda^{-2}k}\}| \ &= |\{\lambda^{-1}z \in M_n(\mathbb{F}_q): \det(x-\lambda^{-1}z) = \lambda^2 i \text{ and } \det(\lambda^{-1}z-y) = \lambda^2 j, \text{ some } x,y: \det(x-y) = \lambda^{-2}k\}| \end{aligned}$$

Properties: Relations among Intersection Numbers

For any $\lambda \in \mathbb{F}_q^{\times}$ and $i, j, k \neq q$ the intersection numbers of $\mathcal{C}(2, q)$ satisfy

$$\rho_{ij}^k = \rho_{\lambda^2 i \lambda^2 j}^{\lambda^{-2} k}$$

 $=|\{\lambda^{-1}z\in M_n(\mathbb{F}_q): \det(\lambda x-z)=i \text{ and } \det(z-\lambda y)=j, \text{ some } x,y:\lambda^2\det(x-y)=k\}|=\rho_{ij}^k$

$$\begin{split} & \rho_{\lambda^{-2}k^{2}}^{\lambda^{-2}k} = |\{z \in M_{n}(\mathbb{F}_{q}) : \det(x-z) = \lambda^{2}i \text{ and } \det(z-y) = \lambda^{2}j, \text{ some } (x,y) \in R_{\lambda^{-2}k}\}| \\ & = |\{\lambda^{-1}z \in M_{n}(\mathbb{F}_{q}) : \det(x-\lambda^{-1}z) = \lambda^{2}i \text{ and } \det(\lambda^{-1}z-y) = \lambda^{2}j, \text{ some } x,y : \det(x-y) = \lambda^{-2}k\}| \end{split}$$

$$\rho_{ij}^k = \rho_{\lambda i \lambda j}^{\lambda k}$$

Let
$$M \in M_2(\mathbb{F}_q)$$
 satisfy $\det(M) = \lambda$. Then

 $\rho_{\lambda i \lambda i}^{\lambda k} = |\{z \in M_n(q) : \det(x-z) = \lambda i \text{ and } \det(z-y) = \lambda j \text{ for some } (x,y) \in R_{\lambda k}\}|$ $= |\{Mz \in M_n(q) : \det(x - Mz) = \lambda i \text{ and } \det(Mz - y) = \lambda j \text{ for some } (x, y) \in R_{\lambda k}\}|$

 $= |\{Mz \in M_n(q) : \det(M^{-1}x - z) = i \text{ and } \det(z - M^{-1}y) = j \text{ for some } (M^{-1}x, M^{-1}y) \in R_k\}| = \rho_{ij}^k$

For any $\lambda \in \mathbb{F}_q^{\times}$ and $k \neq q$ the intersection numbers of $\mathcal{C}(2,q)$ satisfy

Properties: Algebraic Properties

 $\mathcal{C}(2,q)$ is a symmetric coherent configuration.

Proof.

A coherent configuration is symmetric if all relations are symmetric. Clearly R_q is symmetric. Let $i \in \{0,1,...,q-1\}$. Then $R_i = \{(A,B): A \neq B \text{ and } \det(A-B) = i\}$, and the R_i are symmetric since

$$\det(A - B) = \det(-(B - A)) = (-1)^2 \det(B - A) = \det(B - A) \quad \Box$$

That is, $\mathcal{C}(2,q)$ is an association scheme.

Properties: Algebraic Properties

 $\mathcal{C}(2,q)$ is a symmetric coherent configuration.

Proof.

A coherent configuration is symmetric if all relations are symmetric. Clearly R_q is symmetric. Let $i \in \{0,1,...,q-1\}$. Then $R_i = \{(A,B): A \neq B \text{ and } \det(A-B) = i\}$, and the R_i are symmetric since

$$\det(A - B) = \det(-(B - A)) = (-1)^2 \det(B - A) = \det(B - A) \quad \Box$$

That is, $\mathcal{C}(2,q)$ is an association scheme.

So $\mathcal{C}(2,q)$ is a homogeneous, stratifiable, commutative translation scheme:

$$\det(x+z-(y+z)) = \det(x-y)$$

Properties: Algebraic Properties

 $\mathcal{C}(2,q)$ is a symmetric coherent configuration.

Proof.

A coherent configuration is symmetric if all relations are symmetric. Clearly R_q is symmetric. Let $i \in \{0,1,...,q-1\}$. Then $R_i = \{(A,B): A \neq B \text{ and } \det(A-B) = i\}$, and the R_i are symmetric since

$$\det(A - B) = \det(-(B - A)) = (-1)^2 \det(B - A) = \det(B - A) \quad \Box$$

That is, C(2,q) is an association scheme.

So $\mathcal{C}(2,q)$ is a homogeneous, stratifiable, commutative translation scheme:

$$\det(x + z - (y + z)) = \det(x - y)$$

C(2,q) is not P-polynomial for $q \geq 3$.

Proof.

Relabel the indices such that the fibre of $\mathcal{C}(2,q)$ is R_0 , so that we may use the definition given above. Then observe that $\rho^q_{\frac{q-1}{2},\frac{q-1}{2}} \neq 0$ by our Theorem, and that $\frac{q-1}{2} + \frac{q-1}{2} < q$.

Properties: Thinness

 $\mathcal{C}(2,q)$ is not thin.

Proof.

Consider relation
$$R_0$$
 and the matrices $x=\begin{pmatrix}1&0\\0&0\end{pmatrix}$, $y_1=\begin{pmatrix}0&1\\0&0\end{pmatrix}$, and $y_2=\begin{pmatrix}0&0\\1&0\end{pmatrix}$. Then

$$\det(x - y_1) = \det(x - y_2) = 0$$

so the xth row of $A(R_0)$ contains ones in both the y_1 th and y_2 th positions.

Properties: Thinness

 $\mathcal{C}(2,q)$ is not thin.

Proof.

Consider relation
$$R_0$$
 and the matrices $x=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $y_1=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, and $y_2=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Then

$$\det(x - y_1) = \det(x - y_2) = 0$$

so the xth row of $A(R_0)$ contains ones in both the y_1 th and y_2 th positions.

It is therefore unclear if C(2,q) is Schurian.

Note furthermore that $\mathcal{C}(2,q)$ gets 'further' away from being thin as q increases, since non-zero scalar multiples of y_1 and y_2 (to name just two matrices) also yield ones in the (x,y_i) locations in $A(R_0)$, i=1,2.

Properties of C(2,3)

When q=3 we have a three-class association scheme. In this case the following result holds:

[XiaTanLiangKoolen] Let $\mathfrak{X}=\left(X,\left\{R_i\right\}_{i=0}^3\right)$ be a three-class scheme. Then exactly one of the following holds:

1. $\mathfrak X$ is polynomial; 2. $\mathfrak X$ is amorphic; 3. $\mathfrak X$ is degenerate.

We can prove: C(2,3) is amorphic (tedious proof by exhaustion).

Properties of C(2,3)

When q=3 we have a three-class association scheme. In this case the following result holds:

[XiaTanLiangKoolen] Let $\mathfrak{X} = \left(X, \left\{R_i\right\}_{i=0}^3\right)$ be a three-class scheme. Then exactly one of the following holds:

1. \mathfrak{X} is polynomial; 2. \mathfrak{X} is amorphic; 3. \mathfrak{X} is degenerate.

We can prove: C(2,3) is amorphic (tedious proof by exhaustion).

Using

Theorem

[XiaTanLiangKoolen] Let $\mathfrak X$ be a Q-polynomial association scheme. Then $\mathfrak X$ is polynomial.

We thus conclude

Theorem

 $\mathcal{C}(2,3)$ is not Q-polynomial.

Proof.

By [**XiaTanLiangKoolen**], a Q-polynomial association scheme is polynomial, so an association scheme which is not polynomial is not Q-polynomial. We know $\mathcal{C}(2,3)$ is amorphic, and hence by [**XiaTanLiangKoolen**] is not polynomial

Open Questions

- Disproof of Property 4 for C(n,q), n>2?
- Tweak C(n,q), n>2, to get a scheme?
- C(2,q) Q-polynomial for q>3? Use translation scheme properties?

IMPERIAL

Thank you. Questions?

Association Schemes From Matrix Rings Over Finite Fields 27/06/2025