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Origin story

• KG 8? years ago: talk by Paul on subconstituent algebra

• Nick Bastian asks to work on MSc thesis

• NB produces MSc thesis - referenced

• NB continues with work on Terwillger algebra

N. Bastian, S. Humphries Almost commutative Terwilliger algebras on Schur rings June 26, 2025 2 / 33



Context

Algebra - c.f Allen’s talk

N. Bastian, S. Humphries Almost commutative Terwilliger algebras on Schur rings June 26, 2025 3 / 33



Goal

Goals:

1. To characterize those finite groups that have an almost commutative
(AC) Terwilliger algebra.

2. To characterize those strong Gelfand pairs (G ,H),H ≤ G , that have an
almost commutative Terwilliger algebra.

3. To define all the terms in the above.
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Association Schemes

An class d association scheme A on a finite set X , r = |X |, is a set of
nonzero r × r commuting 0, 1-matrices A0,A1, . . . ,Ad ∈ M|X |(C), where

A0 = I|X |;

{A0,A1, . . . ,Ad} is invariant under transpose

for i , j ∈ {0, 1, . . . , d} we have AiAj =
∑d

k=0 p
k
ijAk ;∑d

i=0 Ai = Jr is the all 1 matrix.

A0,A1, · · · ,Ad are the adjacency matrices - rows and columns are indexed
by X .

M = SpanC(A0,A1,A2, · · · ,Ad) is the Bose-Mesner algebra

Let Ei be the primitive idempotents of M; then Ei ◦ Ej =
∑d

k=0 q
k
ijEk .
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E ∗
i (x) Matrices

E ∗
i (x) Matrices

Let A be as above. Let x ∈ X and define

(E ∗
i (x))y ,y = (Ai )x ,y

The Terwilliger algebra T (x) of A with base point x is the subalgebra
generated by all the Ai and E ∗

i (x).

Proposition [Terwilliger]

If |X | > 1, then T (x) is non-commutative and semi-simple.
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Schur rings

For a group G and S ⊆ G , we let S =
∑

x∈S x ∈ CG and
S−1 = {x−1 : x ∈ S}.

A Schur-ring (or S-ring) over a group G is a sub-ring S of CG constructed
from a partition {Γ0, Γ1, . . . , Γd} of G with Γ0 = {id}, satisfying:

(1) invariant under inverse map;
(2) if 0 ≤ i , j ≤ d , then

Γ iΓ j =
d∑

k=0

λijkΓ k ,

where λijk ∈ Z≥0 for all i , j , k.

The Γi are called the principal sets of the S-ring.
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Group Association Scheme

Let C0 = {1},C1, . . . ,Cd be the principal sets for a commutative Schur
ring over group G . Define

(Ai )x ,y =

{
1 yx−1 ∈ Ci

0 otherwise.

This gives an association scheme over X = G .

Important example: if the Ci are the conjugacy classes of G , then this
gives the group association scheme G(G ).

Let T (G ) be the Terwilliger algebra for G(G ), with x = id(G ).
The choice of x ∈ X here is not important.
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Primary ideal

If X = G = {g1, · · · , gn} and Ri = {gi1 , · · · , gir },Rj = {gj1 , · · · , gjs} are
principal sets of a commutative Schur ring S, then the matrices Vi ,j with
entry 1 at every ik , jm entry is a basis element for the primary ideal V of
T (G ,S). So

dimV = (d + 1)2.
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Motivating Table

Group Dimension T (G ) Wedderburn Components

S3 11 1, 1, 3

D8 28 1, 1, 1, 5

Q8 28 1, 1, 1, 5

A4 19 1, 1, 1, 4

F20 29 1, 1, 1, 1, 5

G27,3 = 31+2 137 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11

G27,4 = 31+2 137 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11

G32,49 = 21+4 304 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17

G32,50 = 21+4 304 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17

G is extra special if Z (G ) = G ′ and G/G ′ is elementary abelian.
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Question

Problem of interest: When does the Wedderburn decomposition of the
Terwilliger algebra for a group association scheme consist only of the
primary component and 1−dimensional components?

Almost Commutative Terwilliger Algebra (Tanaka)

Definition: We say that a Terwilliger algebra T (x) is almost commutative
(AC) if every non-primary irreducible T (x)−module is 1−dimensional.
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ACTerwilliger Algebra

Proposition [Tanaka] Let A be a commutative association scheme. Let
T (x) be the Terwilliger algebra for A for some x ∈ X . The following are
equivalent:

(1) T (x) is AC.

(2) Every non-primary irreducible T (x)−module is 1−dimensional for all
x ∈ X .

(3) The pki ,j satisfy: for distinct h, i there is only one j such that phij ̸= 0.

(4) The qkij satisfy: for distinct h, i there is only one j such that qhij ̸= 0.

(5) A is the wreath product of association schemes A1, · · · ,Aw where
each Ai is either a trivial (one class) scheme or is the group scheme
of a finite abelian group.
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Camina Groups

Recall: A Frobenius group is G ≤ Sn where each non-trivial element fixes
at most one element. In fact G = N ⋊ H for non-trivial subgroups N,H.
H is called the Frobenius complement and N is the Frobenius kernel.
Say: H acts on N via a Frobenius action.

Camina Group

A nonabelian group G is called a Camina group if every conjugacy class of
G outside of G ′ is a coset of G ′.

These are a generalization of Frobenius groups and extra-special groups.
Note: All the groups in the above table are Camina groups.
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Camina groups ctd.

Proposition [Dark and Scoppola]

Let G be a Camina group. Then one of the following is true:

G is a Frobenius group whose Frobenius complement is cyclic.

G is a Frobenius group whose Frobenius complement is Q8.

G is a p−group for some prime p where the nilpotency class of G is
either 2 or 3.
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Useful Property

Theorem

Let G be a group such that T (G ) is AC. Then for all x , y ∈ G where
xG ̸= (y−1)G , we have xGyG = (xy)G .

Dade and Yadav

G satisfies the useful property if and only if G is isomorphic to one of:

An abelian group

A non-abelian Camina p−group.

A Frobenius group of the form Cr
p ⋊ Cpr−1.

The Frobenius group C2
3 ⋊ Q8.
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Solution

Theorem

Then T (G ) is AC if and only if G is one of

An abelian group

A Camina p−group (nilpotency class 2 or 3)

A Frobenius group of the form Cr
p ⋊ Cpr−1.

The Frobenius group C2
3 ⋊ Q8.
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Dimensions

G a finite abelian group. Then dim T (G ) = |G |2.

G = C2
3 ⋊ Q8. Then dim T (G ) = 44.

G = Cn
p ⋊ Cpn−1, n ≥ 1. Then dim T (G ) = p2n + pn − 1.

G a Camina p−group of nilpotency class 2, |G | = pn, |Z (G )| = pk Then

dim T (G ) = (pn−k − 1 + pk)2 + (pk − 1)(pn−k − 1).

Let G be a Camina p−group of nilpotency class 3 where
|Z (G )| = pk , [G : G ′] = p2n and [G ′ : Z (G )] = pn.
Here n ∈ 2Z. Then

dim T (G ) = (p2n + pn + pk − 2)2 + (pn − 1)((pk − 1)pn + 2pk + p2n − 3).
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Summary, so far:

We have:

a classification of all groups G where T (G ) is AC

found dim T (G )

we can also give the idempotents of T (G )

and a description of the association scheme as a wreath product.
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END OF PART ONE

END OF PART ONE
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PART TWO: STRONG GELFAND PAIRS

Definition: A Gelfand pair (GP) is (G ,H),H ≤ G , where the double coset
algebra generated by the double cosets HgH, g ∈ G , is commutative

Definition: A Strong Gelfand pair (SGP) is (G ,H),H ≤ G , where the
H-class Schur ring generated by the H-classes {gh : h ∈ H} is
commutative

Results of Travis and Karloff show that this definition is equivalent to the
character-theoretic and module-theoretical definitions

Example 1. (G ,G ) is always a SGP

Example 2. (Sn+1, Sn), (Sn,An) are SGPs

Example 3. (GL(n + 1,F ),GL(n,F )) for some fields F .
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WREATH PRODUCTS OF ASSOCIATION SCHEMES

Let C : C0,C1, · · · ,Cr and D : D0,D1, · · · ,Ds be association schemes (Ci

are m ×m matrices, Dj are n × n matrices). Then the wreath product
association scheme is determined by

D0 ⊗ C0 = Inm, In ⊗ Ci , i > 0, Di ⊗ Jm, i > 0.

Notation: C ≀ D.

This is an associative product
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Strong Gelfand pair Classification

Theorem Let H ≤ G . Then (G ,H) is a Strong Gelfand pair and
T (G ,C[G ]H) is an AC Terwilliger algebra if and only if

1 H = G and T (G ) is AC (see previous result).

2 G is an abelian group with H < G . In this case,

dim T (G ,C[G ]H) = |G |2.

3 G = H ⋊ Ck is a Frobenius group with Frobenius kernel H and cyclic
complement Ck such that T (H) is AC . The corresponding
association scheme is

G(H) ≀ G(G/H).

If H has m conjugacy classes then

dim T (G ,C[G ]H) = dimT (H) + (k − 1)(k − 2 + 3m).
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Possibilities for Case 3: G is Frobenius

Possibilities for H in Case 3: G = H ⋊ Ck is Frobenius

As T (H) is AC, H is one of:

1 an abelian group;

2 a Frobenius group;

3 a Camina p-group of nilpotency class 2;

4 a Camina p-group of nilpotency class 3.

In each case we have to also find an automorphism of H fixing only the
identity of H.

So: 2 is not possible by Thompson’s theorem - a Frobenius group is not
nilpotent.
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Extraspecial groups

Extraspecial groups H are Camina and of class 2.
Two types for H: exponent p or p2.
Result of Winter implies any automorphism of extraspecial H of exponent
p2 has a non-trivial fixed point in H.
Let H, |H| = p3, be extraspecial of exponent p:

H = ⟨a, b, c|ap, bp, cp, c = a−1b−1ab, ac = ca, bc = cb⟩.

Then φ : H → H,

φ(a) = ak , φ(b) = bk , φ(c) = ck
2
,

determines an automorphism that only fixes 1H . Here the order of k mod
p needs to be an odd prime dividing p − 1 and k2 ̸≡ 1 mod p.
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Family of Nilpotent Class 2 Camina p-groups that work

Let p > 2 be prime. Let H = ⟨h1, · · · , h6⟩ where

hh12 = h2h4, hh13 = h3h5, hh23 = h3h6

where hpi = 1, 1 ≤ i ≤ 6 and h4, h5, h6 are central so that ⟨h4, h5, h6⟩ ∼= C3
p .

Then H has nilpotency class 2 and is a Camina group of order p6.

Let X = (xij) ∈ SL(3, p). We want φ ∈ Aut(H) such that

g4 := φ(h4) = hx114 hx215 hx316 g5 := φ(h5) = hx124 hx225 hx326

g6 := φ(h6) = hx134 hx235 hx336 .

Thus we want to find ai , bi , ci ∈ Z/pZ with

g1 = ha11 ha22 ha33 , g2 = hb11 hb22 hb33 , g3 = hc11 hc22 hc33

of order p such that gg1
2 = g2g4, g

g1
3 = g3g5, g

g2
3 = g3g6.
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Family of Nilpotent Class 2 Camina p-groups

If hhij = hjhk , then h
hj
i = hih

−1
k .

Thus

gg1
2 = (hb11 hb22 hb33 )h

a1
1 h

a2
2 h

a3
3

= (hb11 )h
a2
2 h

a3
3 · (hb22 )h

a1
1 h

a2
2 h

a3
3 · (hb33 )h

a1
1 h

a2
2 h

a3
3

= hb11 ha1b2−a2b1
4 ha1b3−a3b1

5 ha2b3−a3b2
6

× · · ·
= g2g4 × · · · = g2h

x11
4 hx215 hx316 × · · ·
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Family of Nilpotent Class 2 Camina p-groups (ctd)

and so we need to solve (over Zp)a1b2 − a2b1 a1b3 − a3b1 a2b3 − a3b2
a1c2 − a2c1 a1c3 − a3c1 a2c3 − a3c2
b1c2 − b2c1 b1c3 − c1b3 b2c3 − b3c2

 =

x11 x21 x31
x12 x22 x32
x13 x23 x33

 (1)

Let

Y =

a1 a2 a3
b1 b2 b3
c1 c2 c3


Note: LHS of (1) is Λ2(Y ).
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Family of Nilpotent Class 2 Camina p-groups (ctd)

Let A = (a1, a2, a3),B = (b1, b2, b3),C = (c1, c2, c3). Now letting ×
denote the standard cross product on 3-vectors we have:

A× B = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T = (x31,−x21, x11)

T ;

B × C = (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1)
T = (x33,−x23, x13)

T ;

C × A = (c2a3 − c3a2, c3a1 − c1a3, c1a2 − c2a1)
T = (−x32, x22,−x12)

T .

A standard identity is:

A · (B × C ) = B · (C × A) = C · (A× B).

This gives

x33a1 − x23a2 + x13a3 = −x32b1 + x22b2 − x12b3 (2)

= x31c1 − x21c2 + x11c3. (3)
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Family of Nilpotent Class 2 Camina p-groups (ctd)

We also have the identities:

A · (A× B) = B · (A× B) = A · (A× C ) = 0;

C · (A× C ) = B · (B × C ) = C · (B × C ) = 0.

These latter give:

x31a1 − x21a2 + x11a3 = 0; (4)

x31b1 − x21b2 + x11b3 = 0; (5)

x32a1 − x22a2 + x12a3 = 0; (6)

x32c1 − x22c2 + x12c3 = 0; (7)

x33b1 − x23b2 + x13b3 = 0; (8)

x33c1 − x23c2 + x13c3 = 0. (9)
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Family of Nilpotent Class 2 Camina p-groups (ctd)

Solving this system of eight linear equations Eqs (2)-(9) for the eight
variables a1, a2, a3, b1, b2, b3, c1, c2 gives

a1 = −(−x11x22 + x12x21)/(x22x33 − x23x32)c3, (10)

a2 = (x11x32 − x12x31)/(x22x33 − x23x32)c3,

a3 = (x21x32 − x22x31)/(x22x33 − x23x32)c3,

b1 = (x11x23 − x13x21)/(x22x33 − x23x32)c3,

b2 = (x11x33 − x13x31)/(x22x33 − x23x32)c3,

b3 = (x21x33 − x23x31)/(x22x33 − x23x32)c3,

c1 = (x12x23 − x13x22)/(x22x33 − x23x32)c3,

c2 = (x12x33 − x13x32)/(x22x33 − x23x32)c3.

One then finds that c3 satisfies

c23 =
(x22x33 − x23x32)

2

detX
= (x22x33 − x23x32)

2,
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Family of Nilpotent Class 2 Camina p-groups (ctd)

Taking c3 = x22x33 − x23x32 we get

a1 = x11x22 − x12x21, (11)

a2 = x11x32 − x12x31,

a3 = x21x32 − x22x31,

b1 = x11x23 − x13x21, etc.

POINT: If we take X ∈ SL(3, p) with eigenvalues not equal to 1 and of
prime order q ̸= p, then the above gives Y solving the equations.

Then X and Y determine φ ∈ Aut(H) that gives a Frobenius action of
⟨φ⟩ ∼= Cq on H and so a Frobenius group

G = H ⋊ϕ Cq

which gives a strong Gelfand pair (G ,H) such that T (G ,CGH) is AC .
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Example of a Nilpotent Class 3 Camina p-groups with a
Frobenius automorphism

Take H = G117,750208 - a Camina 11-group of class 3.

Then there is a fixed-point-free automorphism φ of H of order 5 which
gives a Frobenius action and so a Frobenius group

G = H ⋊φ C5

with AC Terwilliger algebra - found using Magma.
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THE END

THE END
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