Almost commutative Terwilliger algebras

Almost commutative Terwilliger algebras

Nicholas Bastian and Stephen Humphries

Brigham Young University, USA

Terwilligerfest 2025

Origin story

- KG 8? years ago: talk by Paul on subconstituent algebra
- Nick Bastian asks to work on MSc thesis
- NB produces MSc thesis referenced
- NB continues with work on Terwillger algebra

Context

Algebra - c.f Allen's talk

Goal

Goals:

- 1. To characterize those finite groups that have an almost commutative (AC) Terwilliger algebra.
- 2. To characterize those strong Gelfand pairs (G, H), $H \leq G$, that have an almost commutative Terwilliger algebra.
- 3. To define all the terms in the above.

Association Schemes

An class d association scheme $\mathcal A$ on a finite set X, r = |X|, is a set of nonzero $r \times r$ commuting 0, 1-matrices $A_0, A_1, \ldots, A_d \in M_{|X|}(\mathbb C)$, where

- $A_0 = I_{|X|};$
- $\{A_0, A_1, \dots, A_d\}$ is invariant under transpose
- for $i, j \in \{0, 1, ..., d\}$ we have $A_i A_j = \sum_{k=0}^{d} p_{ij}^k A_k$;
- lacksquare $\sum_{i=0}^{d} A_i = J_r$ is the all 1 matrix.

 A_0, A_1, \cdots, A_d are the adjacency matrices - rows and columns are indexed by X.

 $\mathcal{M} = \operatorname{Span}_{\mathbb{C}}(A_0, A_1, A_2, \cdots, A_d)$ is the Bose-Mesner algebra

Let E_i be the primitive idempotents of \mathcal{M} ; then $E_i \circ E_j = \sum_{k=0}^d q_{ij}^k E_k$.

$E_i^*(x)$ Matrices

$E_i^*(x)$ Matrices

Let \mathcal{A} be as above. Let $x \in X$ and define

$$(E_i^*(x))_{y,y} = (A_i)_{x,y}$$

The Terwilliger algebra $\mathcal{T}(x)$ of \mathcal{A} with base point x is the subalgebra generated by all the A_i and $E_i^*(x)$.

Proposition [Terwilliger]

If |X| > 1, then $\mathcal{T}(x)$ is non-commutative and semi-simple.

Schur rings

For a group G and $S \subseteq G$, we let $\overline{S} = \sum_{x \in S} x \in \mathbb{C}G$ and $S^{-1} = \{x^{-1} : x \in S\}.$

A Schur-*ring* (or *S-ring*) over a group G is a sub-ring $\mathfrak S$ of $\mathbb C G$ constructed from a partition $\{\Gamma_0,\Gamma_1,\ldots,\Gamma_d\}$ of G with $\Gamma_0=\{id\}$, satisfying:

- (1) invariant under inverse map;
- (2) if $0 \le i, j \le d$, then

$$\overline{\Gamma}_i \overline{\Gamma}_j = \sum_{k=0}^d \lambda_{ijk} \overline{\Gamma}_k,$$

where $\lambda_{ijk} \in \mathbb{Z}^{\geq 0}$ for all i, j, k.

The Γ_i are called the *principal sets* of the S-ring.

Group Association Scheme

Let $C_0 = \{1\}, C_1, \dots, C_d$ be the principal sets for a commutative Schur ring over group G. Define

$$(A_i)_{x,y} = \begin{cases} 1 & yx^{-1} \in C_i \\ 0 & \text{otherwise.} \end{cases}$$

This gives an association scheme over X = G.

Important example: if the C_i are the conjugacy classes of G, then this gives the group association scheme $\mathcal{G}(G)$.

Let $\mathcal{T}(G)$ be the Terwilliger algebra for $\mathcal{G}(G)$, with x = id(G). The choice of $x \in X$ here is not important.

Primary ideal

If $X = G = \{g_1, \dots, g_n\}$ and $R_i = \{g_{i_1}, \dots, g_{i_r}\}, R_j = \{g_{j_1}, \dots, g_{j_s}\}$ are principal sets of a commutative Schur ring \mathfrak{S} , then the matrices $V_{i,j}$ with entry 1 at every i_k, j_m entry is a basis element for the *primary ideal* V of $\mathcal{T}(G, \mathfrak{S})$. So

$$\dim V = (d+1)^2.$$

Motivating Table

Group	Dimension $\mathcal{T}(G)$	Wedderburn Components
<i>S</i> ₃	11	1, 1, 3
D ₈	28	1, 1, 1, 5
Q_8	28	1, 1, 1, 5
A_4	19	1, 1, 1, 4
F ₂₀	29	1, 1, 1, 1, 5
$G_{27,3}=3^{1+2}$	137	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$G_{27,4} = 3^{1+2}$	137	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$G_{32,49} = 2^{1+4}$	304	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$G_{32,50} = 2^{1+4}$	304	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

G is extra special if Z(G) = G' and G/G' is elementary abelian.

Question

Problem of interest: When does the Wedderburn decomposition of the Terwilliger algebra for a group association scheme consist only of the primary component and 1—dimensional components?

Almost Commutative Terwilliger Algebra (Tanaka)

Definition: We say that a Terwilliger algebra $\mathcal{T}(x)$ is almost commutative (AC) if every non-primary irreducible $\mathcal{T}(x)$ -module is 1-dimensional.

ACTerwilliger Algebra

Proposition [Tanaka] Let \mathcal{A} be a commutative association scheme. Let $\mathcal{T}(x)$ be the Terwilliger algebra for \mathcal{A} for some $x \in X$. The following are equivalent:

- $\mathcal{T}(x)$ is AC.
- Every non-primary irreducible $\mathcal{T}(x)$ -module is 1-dimensional for *all* $x \in X$.
- The $p_{i,j}^k$ satisfy: for distinct h, i there is only one j such that $p_{ij}^h \neq 0$.
- The q_{ij}^k satisfy: for distinct h,i there is only one j such that $q_{ij}^h \neq 0$.
- [5] \mathcal{A} is the wreath product of association schemes $\mathcal{A}_1, \dots, \mathcal{A}_w$ where each \mathcal{A}_i is either a trivial (one class) scheme or is the group scheme of a finite abelian group.

Camina Groups

Recall: A *Frobenius group* is $G \leq S_n$ where each non-trivial element fixes at most one element. In fact $G = N \rtimes H$ for non-trivial subgroups N, H. H is called the *Frobenius complement* and N is the *Frobenius kernel*. Say: H acts on N via a *Frobenius action*.

Camina Group

A nonabelian group G is called a Camina group if every conjugacy class of G outside of G' is a coset of G'.

These are a generalization of Frobenius groups and extra-special groups. Note: All the groups in the above table are Camina groups.

Camina groups ctd.

Proposition [Dark and Scoppola]

Let G be a Camina group. Then one of the following is true:

- G is a Frobenius group whose Frobenius complement is cyclic.
- \blacksquare G is a Frobenius group whose Frobenius complement is Q_8 .
- G is a p-group for some prime p where the nilpotency class of G is either 2 or 3.

Useful Property

Theorem

Let G be a group such that $\mathcal{T}(G)$ is AC. Then for all $x, y \in G$ where $x^G \neq (y^{-1})^G$, we have $x^G y^G = (xy)^G$.

Dade and Yadav

G satisfies the useful property if and only if G is isomorphic to one of:

- An abelian group
- A non-abelian Camina *p*—group.
- A Frobenius group of the form $C_p^r \rtimes C_{p^r-1}$.
- The Frobenius group $C_3^2 \times Q_8$.

Solution

Theorem

Then $\mathcal{T}(G)$ is AC if and only if G is one of

- An abelian group
- A Camina *p*-group (nilpotency class 2 or 3)
- A Frobenius group of the form $C_p^r \rtimes C_{p^r-1}$.
- The Frobenius group $C_3^2 \times Q_8$.

Dimensions

G a finite abelian group. Then dim $\mathcal{T}(G) = |G|^2$.

$$G = \mathcal{C}_3^2 \rtimes Q_8$$
. Then dim $\mathcal{T}(G) = 44$.

$$G = \mathcal{C}_p^n \rtimes \mathcal{C}_{p^n-1}, \ n \geq 1.$$
 Then dim $\mathcal{T}(G) = p^{2n} + p^n - 1.$

G a Camina p-group of nilpotency class 2, $|G| = p^n$, $|Z(G)| = p^k$ Then

$$\dim \mathcal{T}(G) = (p^{n-k} - 1 + p^k)^2 + (p^k - 1)(p^{n-k} - 1).$$

Let G be a Camina p-group of nilpotency class 3 where $|Z(G)| = p^k$, $[G: G'] = p^{2n}$ and $[G': Z(G)] = p^n$. Here $n \in 2\mathbb{Z}$. Then

$$\dim \mathcal{T}(G) = (p^{2n} + p^n + p^k - 2)^2 + (p^n - 1)((p^k - 1)p^n + 2p^k + p^{2n} - 3).$$

Summary, so far:

We have:

- lacksquare a classification of all groups G where $\mathcal{T}(G)$ is AC
- found dim $\mathcal{T}(G)$
- we can also give the idempotents of $\mathcal{T}(G)$
- and a description of the association scheme as a wreath product.

END OF PART ONE

END OF PART ONE

PART TWO: STRONG GELFAND PAIRS

Definition: A Gelfand pair (GP) is $(G, H), H \leq G$, where the double coset algebra generated by the double cosets $HgH, g \in G$, is commutative

Definition: A Strong Gelfand pair (SGP) is $(G, H), H \leq G$, where the H-class Schur ring generated by the H-classes $\{g^h : h \in H\}$ is commutative

Results of Travis and Karloff show that this definition is equivalent to the character-theoretic and module-theoretical definitions

Example 1. (G, G) is always a SGP

Example 2. $(S_{n+1}, S_n), (S_n, A_n)$ are SGPs

Example 3. (GL(n+1, F), GL(n, F)) for some fields F.

WREATH PRODUCTS OF ASSOCIATION SCHEMES

Let $C: C_0, C_1, \cdots, C_r$ and $D: D_0, D_1, \cdots, D_s$ be association schemes (C_i are $m \times m$ matrices, D_j are $n \times n$ matrices). Then the wreath product association scheme is determined by

$$D_0 \otimes C_0 = I_{nm}, \quad I_n \otimes C_i, \quad i > 0, \quad D_i \otimes J_m, \quad i > 0.$$

Notation: $C \wr D$.

This is an associative product

Strong Gelfand pair Classification

Theorem Let $H \leq G$. Then (G, H) is a Strong Gelfand pair and $\mathcal{T}(G, \mathbb{C}[G]^H)$ is an AC Terwilliger algebra if and only if

- **11** H = G and $\mathcal{T}(G)$ is AC (see previous result).

$$\dim \mathcal{T}(G,\mathbb{C}[G]^H)=|G|^2.$$

3 $G = H \rtimes \mathcal{C}_k$ is a Frobenius group with Frobenius kernel H and cyclic complement \mathcal{C}_k such that $\mathcal{T}(H)$ is AC . The corresponding association scheme is

$$\mathcal{G}(H) \wr \mathcal{G}(G/H)$$
.

If H has m conjugacy classes then

$$\dim \mathcal{T}(G,\mathbb{C}[G]^H) = \dim \mathcal{T}(H) + (k-1)(k-2+3m).$$

Possibilities for Case 3: *G* is Frobenius

Possibilities for H in Case 3: $G = H \rtimes C_k$ is Frobenius

As $\mathcal{T}(H)$ is AC, H is one of:

- an abelian group;
- 2 a Frobenius group;
- **3** a Camina *p*-group of nilpotency class 2;
- 4 a Camina p-group of nilpotency class 3.

In each case we have to also find an automorphism of H fixing only the identity of H.

So: 2 is not possible by Thompson's theorem - a Frobenius group is not nilpotent.

Extraspecial groups

Extraspecial groups H are Camina and of class 2.

Two types for H: exponent p or p^2 .

Result of Winter implies any automorphism of extraspecial H of exponent p^2 has a non-trivial fixed point in H.

Let $H, |H| = p^3$, be extraspecial of exponent p:

$$H = \langle a, b, c | a^p, b^p, c^p, c = a^{-1}b^{-1}ab, ac = ca, bc = cb \rangle.$$

Then $\varphi: H \to H$,

$$\varphi(a) = a^k, \quad \varphi(b) = b^k, \quad \varphi(c) = c^{k^2},$$

determines an automorphism that only fixes 1_H . Here the order of $k \mod p$ needs to be an odd prime dividing p-1 and $k^2 \not\equiv 1 \mod p$.

Family of Nilpotent Class 2 Camina p-groups that work

Let p > 2 be prime. Let $H = \langle h_1, \dots, h_6 \rangle$ where

$$h_2^{h_1} = h_2 h_4, \quad h_3^{h_1} = h_3 h_5, \quad h_3^{h_2} = h_3 h_6$$

where $h_i^p = 1, 1 \le i \le 6$ and h_4, h_5, h_6 are central so that $\langle h_4, h_5, h_6 \rangle \cong \mathcal{C}_p^3$. Then H has nilpotency class 2 and is a Camina group of order p^6 .

Let $X = (x_{ij}) \in \mathrm{SL}(3,p)$. We want $\varphi \in \mathrm{Aut}(H)$ such that

$$g_4 := \varphi(h_4) = h_4^{x_{11}} h_5^{x_{21}} h_6^{x_{31}} \quad g_5 := \varphi(h_5) = h_4^{x_{12}} h_5^{x_{22}} h_6^{x_{32}}$$
$$g_6 := \varphi(h_6) = h_4^{x_{13}} h_5^{x_{23}} h_6^{x_{33}}.$$

Thus we want to find $a_i, b_i, c_i \in \mathbb{Z}/p\mathbb{Z}$ with

$$g_1 = h_1^{a_1} h_2^{a_2} h_3^{a_3}, \quad g_2 = h_1^{b_1} h_2^{b_2} h_3^{b_3}, \quad g_3 = h_1^{c_1} h_2^{c_2} h_3^{c_3}$$

of order p such that $g_2^{g_1} = g_2g_4, g_3^{g_1} = g_3g_5, g_3^{g_2} = g_3g_6$.

If
$$h_j^{h_i} = h_j h_k$$
, then $h_i^{h_j} = h_i h_k^{-1}$.
Thus

$$g_{2}^{g_{1}} = (h_{1}^{b_{1}} h_{2}^{b_{2}} h_{3}^{b_{3}})^{h_{1}^{a_{1}} h_{2}^{a_{2}} h_{3}^{a_{3}}}$$

$$= (h_{1}^{b_{1}})^{h_{2}^{a_{2}} h_{3}^{a_{3}}} \cdot (h_{2}^{b_{2}})^{h_{1}^{a_{1}} h_{2}^{a_{2}} h_{3}^{a_{3}}} \cdot (h_{3}^{b_{3}})^{h_{1}^{a_{1}} h_{2}^{a_{2}} h_{3}^{a_{3}}}$$

$$= h_{1}^{b_{1}} h_{4}^{a_{1} b_{2} - a_{2} b_{1}} h_{5}^{a_{1} b_{3} - a_{3} b_{1}} h_{6}^{a_{2} b_{3} - a_{3} b_{2}}$$

$$\times \cdots$$

$$= g_{2} g_{4} \times \cdots = g_{2} h_{4}^{x_{11}} h_{5}^{x_{21}} h_{6}^{x_{31}} \times \cdots$$

and so we need to solve (over \mathbb{Z}_p)

$$\begin{bmatrix} a_1b_2 - a_2b_1 & a_1b_3 - a_3b_1 & a_2b_3 - a_3b_2 \\ a_1c_2 - a_2c_1 & a_1c_3 - a_3c_1 & a_2c_3 - a_3c_2 \\ b_1c_2 - b_2c_1 & b_1c_3 - c_1b_3 & b_2c_3 - b_3c_2 \end{bmatrix} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{bmatrix}$$
(1)

Let

$$Y = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Note: LHS of (1) is $\Lambda^2(Y)$.

Let $A = (a_1, a_2, a_3), B = (b_1, b_2, b_3), C = (c_1, c_2, c_3)$. Now letting \times denote the standard cross product on 3-vectors we have:

$$A \times B = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)^T = (x_{31}, -x_{21}, x_{11})^T;$$

$$B \times C = (b_2c_3 - b_3c_2, b_3c_1 - b_1c_3, b_1c_2 - b_2c_1)^T = (x_{33}, -x_{23}, x_{13})^T;$$

$$C \times A = (c_2a_3 - c_3a_2, c_3a_1 - c_1a_3, c_1a_2 - c_2a_1)^T = (-x_{32}, x_{22}, -x_{12})^T.$$

A standard identity is:

$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B).$$

This gives

$$x_{33}a_1 - x_{23}a_2 + x_{13}a_3 = -x_{32}b_1 + x_{22}b_2 - x_{12}b_3$$
 (2)

$$= x_{31}c_1 - x_{21}c_2 + x_{11}c_3. (3)$$

We also have the identities:

$$A \cdot (A \times B) = B \cdot (A \times B) = A \cdot (A \times C) = 0;$$

$$C \cdot (A \times C) = B \cdot (B \times C) = C \cdot (B \times C) = 0.$$

These latter give:

$$x_{31}a_1 - x_{21}a_2 + x_{11}a_3 = 0; (4)$$

$$x_{31}b_1 - x_{21}b_2 + x_{11}b_3 = 0;$$

$$x_{32}a_1 - x_{22}a_2 + x_{12}a_3 = 0$$
;

$$x_{32}c_1 - x_{22}c_2 + x_{12}c_3 = 0; (7)$$

$$x_{33}b_1 - x_{23}b_2 + x_{13}b_3 = 0;$$
 (8)

$$x_{33}c_1 - x_{23}c_2 + x_{13}c_3 = 0. (9)$$

(5)

(6)

Solving this system of eight linear equations Eqs (2)-(9) for the eight variables a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c_1 , c_2 gives

$$a_{1} = -(-x_{11}x_{22} + x_{12}x_{21})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$a_{2} = (x_{11}x_{32} - x_{12}x_{31})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$a_{3} = (x_{21}x_{32} - x_{22}x_{31})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$b_{1} = (x_{11}x_{23} - x_{13}x_{21})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$b_{2} = (x_{11}x_{33} - x_{13}x_{31})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$b_{3} = (x_{21}x_{33} - x_{23}x_{31})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$c_{1} = (x_{12}x_{23} - x_{13}x_{22})/(x_{22}x_{33} - x_{23}x_{32})c_{3},$$

$$c_{2} = (x_{12}x_{33} - x_{13}x_{32})/(x_{22}x_{33} - x_{23}x_{32})c_{3}.$$

$$(10)$$

One then finds that c_3 satisfies

$$c_3^2 = \frac{(x_{22}x_{33} - x_{23}x_{32})^2}{\det X} = (x_{22}x_{33} - x_{23}x_{32})^2,$$

Taking
$$c_3 = x_{22}x_{33} - x_{23}x_{32}$$
 we get
$$a_1 = x_{11}x_{22} - x_{12}x_{21},$$

$$a_2 = x_{11}x_{32} - x_{12}x_{31},$$
(11)

$$a_3 = x_{21}x_{32} - x_{22}x_{31},$$

$$b_1 = x_{11}x_{23} - x_{13}x_{21}$$

etc.

POINT: If we take $X \in SL(3, p)$ with eigenvalues not equal to 1 and of prime order $q \neq p$, then the above gives Y solving the equations.

Then X and Y determine $\varphi \in Aut(H)$ that gives a Frobenius action of $\langle \varphi \rangle \cong \mathcal{C}_a$ on H and so a Frobenius group

$$G = H \rtimes_{\phi} \mathcal{C}_{q}$$

which gives a strong Gelfand pair (G, H) such that $\mathcal{T}(G, \mathbb{C}G^H)$ is AC.

Example of a Nilpotent Class 3 Camina *p*-groups with a Frobenius automorphism

Take $H = G_{11^7,750208}$ - a Camina 11-group of class 3.

Then there is a fixed-point-free automorphism φ of H of order 5 which gives a Frobenius action and so a Frobenius group

$$G = H \rtimes_{\varphi} \mathcal{C}_5$$

with AC Terwilliger algebra - found using Magma.

THE END

THE END