From cyclotomic to orthogonal polynomials: Sturm meets Ramanujan

Alexei Zhedanov

School of Mathematics, Renmin University, Beijing, China

dedicated to Paul Terwilliger on the occasion of his 70th birthday

Motivation

- 1. Study inverse Sturm problem for polynomials orthogonal on the real line and on the unit circle
- 2. Relate objects from abstract algebra and number theory (cyclotomic polynomals, Ramanujan's trigonometric sums) to OPRL and OPUC
- 3. Construct new explicit families of OPRL and OPUC
- 4. Apply Sylvester duality property to derive some basic results

Key publications

- (i) AZ, $Classical\ Sturmian\ sequences,\ \mathbf{arXiv:1904.03789}.$
- (ii) AZ, Para-orthogonal polynomials on the unit circle generated by Kronecker polynomials, arXiv:2107.11430.
- (iii) AZ, Ramanujan's trigonometric sums and para-orthogonal polynomials on the unit circle, arXiv:2107.12543.

Starting point: inverse Sturm problem on the real line

Classical Sturm problem.

Polynomial $P_{N+1}(x) = x^{N+1} + a_N x^N + \cdots + a_1 x + a_0$ with **prescribed real** coefficients a_i . Choose $P_N(x) = (N+1)^{-1} P'_N(x)$ and compute sequence of monic polynomials by Euclidean algorithm.

First step

$$P_{N+1}(x) = q_N(x)P_N(x) - u_N P_{N-1}(x), \quad \deg(q_N(x)) = 1$$

Further steps

$$P_{n+1}(x) = q_n(x)P_n(x) + u_nP_{n-1}(x), \quad n = N, N-1, N-2, \dots,$$

$$deg(P_n(x)) \le n, \quad deg(q_n(x)) \ge 1$$

Final polynomial $P_{N+1-M}(x)=1, M$ - number of members of Sturm sequence. Use sequence $P_{N+1}(x), P_N(x), \ldots, P_{N+1-M}(x)$ to find number of zeros of $P_{N+1}(x)$ on [a,b].

Inverse Sturm problem.

Start with **prescribed zeros** of $P_{N+1}(x)$. What are properties of Sturmian sequence?

If all zeros x_0, x_1, \ldots, x_N of $P_{N+1}(x)$ are **real and simple** then Sturmian sequence $P_0(x) = 1, P_1(x), \ldots, P_{N+1}(x)$ is a set of finite orthogonal polynomials:

$$\sum_{s=0}^{N} w_s P_n(x_s) P_m(x_s) = h_n \delta_{nm}$$

weights

$$w_s = \frac{h_N}{P'_{N+1}(x_s)^2}$$

Recurrence relation

$$P_{n+1}(x) + b_n P_n(x) + u_n P_{n-1}(x) = x P_n(x), \quad \deg(P_n(x)) = n$$

What are explicit polynomials $P_n(x)$ if one start with "classical" grid x_s ?

Simplest example - uniform grid

$$x_s = s, \ s = 0, 1, 2, \dots N$$

Corresponding Sturmian sequence - Hahn polynomials

$$P_n(x) = H_n(x, \alpha, \beta, N), \quad \alpha = \beta = -N - 1$$

Similarly, for quadratic grid $x_s = s(s+1)$ the Sturmian sequence is a special case of Racah polynomials (AZ, 2019)

Mirror (Sylvester) duality

Let $P_n(x)$ be the Sturmian chain on prescribed grid x_s with recurrence coefficients b_n, u_n .

Let $P_n^*(x)$ be "mirror-dual" orthogonal polynomials with recurrence coefficients b_{N-n}, u_{N+1-n} .

Then $P_n^*(x)$ are of **Legendre type** with **equal weights** $w_s = 1, s = 0, 1, 2, ..., N$

$$\sum_{s=0}^{N} P_n(x_s) P_m(x_s) = h_n^* \delta_{nm}$$

In implicit form (i.e. for continued fractions, not for OP) this result goes back to Sylvester (1853).

Examples

For uniform grid $x_s = 0, 1, 2, ...N$ the Legendre-type polynomials are special case of **Hahn polynomials**

$$P_n^*(x) = H_n(x; \alpha, \beta, N)$$

with $\alpha = \beta = 0$. Discovered by Chebyshev (1864).

$$P_n^*(x) = {}_{3}F_2\left({-n, -x, n+1 \atop -N, 1}; 1 \right)$$

For quadratic grid $x_s = s(s+1)$ the Legendre-type polynomials are special case of **Racah polynomials** (AZ, 2019).

Sylvester triple

Start with given points x_0, x_1, \ldots, x_N . Characteristic polynomials $P_{N+1}(x) = \prod_{i=0}^{N} (x - x_i)$.

Consider the weight functions depending on integer parameter \boldsymbol{k}

$$w_s^{(k)} = |P'_{N+1}(x_s)|^{-k}, \ s = 0, 1, 2, \dots, N$$

Then we have the **Sylvester triple** of polynomials:

- weight $w_s^{(0)} = 1$ corresponds to Legendre case (equal weights) = type L
- weight $w_s^{(1)}$ corresponds to persymmetric Jacobi matrices of orthogonal polynomials, i.e. $u_{N+1-n} = u_n, b_{N-n} = b_n = \text{type P}$
- weight $w_s^{(2)}$ corresponds to Sturmian orthogonal polynomials = type S

Sylvester triple graph

Jacobi matrices for types L and and S are dual with respect to antidiagonal (reflection) matrix. Jacobi matrix for the polynomials of type P are self-dual with respect to this symmetry (persymmetric).

What are explicit 3 families of Sylvester triple for some known grids x_s on real line?

Examples:

- linear grid; P type Krawtchouk, L and S types two special Hahn polynomials
- $\bullet\,$ quadratic grid; P type special dual Hahn, L and S types special Racah
- q-quadratic grid; P type special q-Racah, L and S types unknown
- bi-lattice; P type para-Krawtchouk, L and S types unknown
- Sylvetser triples for other grids???

Non-real zeros

If some of zeros x_s of $P_{N+1}(x)$ are non-real then the Sturmian sequence $P_n(x)$ does not belong to OP.

Example

Take

$$P_{N+1}(x) = \frac{x^{N+2} - 1}{x - 1} = x^{N+1} + x^N + \dots + x + 1$$

Zeros - roots of unity

$$x_s = \exp\left(\frac{2\pi i(s+1)}{N+2}\right), \ s = 0, 1, \dots, N$$

Sturmian sequence consists of only four members:

$$P_{N+1}(x), P_N(x) = (N+1)^{-1}P_{N+1}(x),$$

$$P_{N-1}(x) = x^{N-1} + 2x^{N-2} + 3x^{N-3} + \dots + (N-1)x + N, \quad P_{N-2}(x) = 1$$

Complete Sturm sequences with non-real zeros

The Sturm sequence is **complete** if $deg(P_n(x)) = n$ and n = N, N - 1, N - 2, ..., 1, 0.

Equivalently, the complete Sturm sequence consists of N+2 members

$$P_{N+1}(x), P_N(x), P_{N-1}(x), \dots, P_0(x) = 1$$

Then $P_k(k)$, $k = 0, 1, ..., P_N(x)$ is a sequence of **formal** orthogonal polynomials with rr

$$P_{n+1}(x) + b_n P_n(x) + u_n P_{n-1}(x) = x P_n(x),$$

where $u_n \neq 0$ but NOT necessary $u_n > 0$.

In general, if roots of $P_{N+1}(x)$ are not real then the Sturm sequence is **incomplete**

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 Q で

Example of complete Sturm sequence with complex zeros

Consider

$$P_{N+1}(x) = (x^2 + (1/2)^2)(x^2 + (3/2)^2)\dots(x^2 + (N/2)^2)$$

where $N = 1, 3, 5, \ldots$ All zeros are complex

$$x_s = \pm \left(\frac{k}{2}\right)i, \ k = 1, 3, \dots, N$$

Nevertheless, teh Sturm sequence is **complete**. Coincides with special Hahn polynomials $H_n(ix, \alpha, \alpha; N)$

Complete Sturm sequences of cyclotomic polynomials

Cyclotomic polynomial

$$C_N(x) = \prod_{k=1}^{J} (x - \tau_k) = \prod_{k=1}^{J} (x - \zeta^k),$$

where τ_k are all **primitive** N-th roots of unity and ζ is one of these roots

$$\zeta = \exp\left(\frac{2\pi j}{N}i\right)$$

with j coprime with N.

$$J = \varphi(N)$$

is totient Euler function.

Example. N = 6. Primitive roots 1, 5. $C_6(x) = (x - \zeta)(x - \zeta^5) = x^2 - x + 1$

◆□▶◆□▶◆豆▶◆豆▶ 豆 めのの

Properties of cyclotomic polynomials

- C_n monic polynomials with integer coefficients
- even degree, $C_n(0) = 1$ for all n > 1
- ullet irreducible over field ${\mathbb Q}$
- $C_p(x) = x^{p-1} + x^{p-2} + \dots + 1$
- $C_{2p}(x) = C_p(-x)$
- if $n = rp^m$ then $C_n(x) = C_{pr}\left(x^{p^{m-1}}\right)$
- if $n = p_1 p_2$ then coefficients of $C_n(x)$ are 0, 1, -1

Alexei Zhedanov (School of Mathematic From cyclotomic to orthogonal polynomi

Mirror duals and Ramanujan sums

Assume that Sturmian sequence $P_0, P_1(x), \ldots, P_N(x), P_{N+1}(x) = C_M(x)$ of a cyclotomic polynomial $C_M(x)$ is **complete**. In this case $N = \varphi(M)$. Then mirror dual sequence $P_0, P_1^*(x), \ldots, P_N^*(x), P_{N+1}^*(x) = C_M(x)$ is **complete** as well.

Orthognality for dual sequence

$$\sum_{s=1}^{N} P_n^*(\tau_s) P_m^*(\tau_s) = h_n^* \delta_{nm}$$

Moments for duals

$$c_n^* = \sum_{s=1}^N \tau_s^n = \sum_{(s,M)=1} \exp\left(\frac{2\pi i s n}{M}\right) = c_M(n)$$

 $c_M(n)$ - trigonometric Ramanujan sum.

Conditions of complete Sturm sequence

Sturm sequence is complete iff $u_n \neq 0$, n = 1, 2, ..., N. Equivalently iff $u_n^* \neq 0$, n = 1, 2, ..., N because $u_n^* = u_{N+1-n}$. Equivalently iff

$$\Delta_n^* \neq 0, \ n = 1, 2, \dots, N$$

where Hankel determinants

$$\Delta_n^* = \begin{vmatrix} c_M(0) & c_M(1) & \dots & c_M(n-1) \\ c_M(1) & c_M(2) & \dots & c_M(n) \\ \dots & \dots & \dots & \dots \\ c_M(n-1) & c_M(n) & \dots & c_M(2n-2) \end{vmatrix}, \quad n = 1, 2, \dots$$

Theorem. Sturm sequence of cyclotomic polynomial $C_M(x)$ is complete iff Hankel determinants of Ramanujan sums are nonzero: $\Delta_n^* \neq 0, n = 1, 2, ..., N$

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

First 100 M

Among first 100 only the following cyclotomic polynomials $C_M(x)$ produce complete Sturm sequences:

$$M = 2, 3, 4, 6, 12, 15, 30, 60$$

What about recurrence coefficients?

$$P_{n+1}(x) + b_n P_n(x) + u_n P_{n-1}(x) = 0$$

For M = 15 N = 8 and

$$u_1 = -\frac{5}{4}, \ u_2 = \frac{24}{25}, \ u_3 = -\frac{25}{144}, \ u_4 = -\frac{216}{25}, \ u_5 = \frac{35}{36}, \ u_6 = -\frac{240}{49}, \ u_7 = \frac{7}{64}$$

and

$$b_0 = \frac{3}{2}, b_1 = -\frac{7}{10}, b_2 = \frac{7}{60}, b_3 = \frac{137}{60}, b_4 = -\frac{71}{30}, b_5 = \frac{109}{42}, b_6 = -\frac{143}{56}, b_7 = \frac{1}{8}.$$

Examples of Hankel determinants

Case
$$M=15=3\cdot 5$$
 $(N=8)$ is complete. Hankel sequence is
$$\Delta_1=8,\ \Delta_2=7,\ \Delta_3=-30,\ \Delta_4=125,\ \Delta_5=4500,$$

$$\Delta_6=-28125,\ \Delta_7=168750,\ \Delta_8=1265625$$

Case
$$M = 21 = 3 \cdot 7$$
 $(N = 12)$ is **incomplete**. Hankel sequence is

$$\Delta_1 = 12, \ \Delta_2 = 11, \ \Delta_3 = -42, \ \Delta_4 = 0.$$

Main conjecture

For bigger M complete Sturm sequences become more rare. E.g. for $100 \le M \le 200$ there are only 3: M = 105, 165, 195. For $200 \le M \le 1000$ there are 7: M = 210, 255, 330, 390, 420, 510, 660, 780.

Experimentally supposed the complete Sturm sequences:

- finite ternary sequence $M_K = 3 \cdot 5 \cdot 7$, $3 \cdot 5 \cdot 11$, $3 \cdot 5 \cdot 13$, $3 \cdot 5 \cdot 17$
- **principal** infinite sequence $M_K = p_1 p_2 \dots p_K$ of odd primes , i.e. $M = 1, 3, 3 \cdot 5, 3 \cdot 5 \cdot 7, 3 \cdot 5 \cdot 7 \cdot 11, \dots$
- infinite quaternary sequence $M_K = 3 \cdot 5 \cdot 7 \cdot p_K$, where $p_K > 7$ i.e. $M_K = 3 \cdot 5 \cdot 7 \cdot 11, \ 3 \cdot 5 \cdot 7 \cdot 13, \ 3 \cdot 5 \cdot 7 \cdot 17, \dots$
- infinite quaternary sequence $M_K = 3 \cdot 5 \cdot 11 \cdot p_K$, where $p_K > 11$
- infinite quaternary sequence $M_K = 3 \cdot 5 \cdot 13 \cdot p_K$, where $p_K > 13$
- infinite quaternary sequence $M_K = 3 \cdot 5 \cdot 17 \cdot p_K$, where $p_K > 17$
- ...??? ...
- all previous M_K multiplied by 2 or 4, i.e. $2M_K$ and $4M_K$

Sturmian sequence for orthogonal polynomials on the unit circle

What is an analog of Sturm problem for the unit circle? Let $\zeta_0, \zeta_1, \ldots, \zeta_N$ be distinct points on unit circle $|\zeta_i| = 1$. Define

$$\Phi_{N+1}(z) = (z - \zeta_0)(z - \zeta_1) \dots (z - \zeta_N)$$

and

$$\Phi_N(z) = (N+1)\Phi'_{N+1}(z)$$

By Gauss-Lucas theorem, all zeros of $\Phi_N(z)$ lie inside unite circle.

Then one can define the Sturmian sequence $\Phi_n(z)$, $n=N-1,N-2,\ldots,0$ by Szegő formula

$$\Phi_n(z) = \frac{\Phi_{n+1}(z) + \bar{a}_n \Phi_{n+1}^*(z)}{z(1 - |a_n|^2)}$$

4□ > 4個 > 4 種 > 4 種 > 種 ● 9 Q (*)

where

$$\Phi_n^*(z) = z^n \bar{\Phi}_n(1/z), \quad a_n = -\bar{\Phi}_{n+1}(0)$$

It is easy to show that $|a_n| < 1$ for n = 0, 1, ..., N - 1 and $|a_N| = 1$.

The sequence $\Phi_n(z)$ is **unique**. Szegő recurrence

$$\Phi_{n+1}(z) = z\Phi_n(z) - \bar{a}_n\Phi_n^*(z)$$

means that $\Phi_n(z)$ is a finite sequence of polynomials orthogonal on the unit circle (OPUC).

$$\sum_{s=0}^{N} w_s \Phi_n(\zeta_s) \bar{\Phi}_m(\zeta_s^{-1}) = h_n \delta_{nm}$$

weights

$$w_s = \frac{h_N}{\left|\Phi'_{N+1}(\zeta_s)\right|^2} > 0$$

very similar to real Sturmian sequence!

Normalization coefficients are expressed in terms of Verblunsky parameters

$$h_n = (1 - |a_0|^2)(1 - |a_1|^2)\dots(1 - |a_{n-1}|^2) > 0$$

What are possible "nice" grids for the points $\zeta_0, \zeta_1, \ldots, \zeta_N$?

Main idea: use Kronecker polynomials

Kronecker polynomials

Kronecker in 1857 defined a special class of monic polynomials

$$K(z) = z^{n} + A_{n-1}z^{n-1} + A_{n-2}z^{n-2} + \dots + A_{1}z + A_{0}$$

with **integer** coefficients A_i and with condition $A_0 \neq 0$. Main condition: all zeros of K(z) should lie in the unit disk $|z| \leq 1$.

Then it is trivially seen that all zeros belong to unit circle $|\zeta_i| = 1$:

$$A_0 = (-1)^n \zeta_0 \zeta_1 \dots \zeta_{n-1}$$

Hence $|A_0| \leq 1$. But A_0 is integer. Hence $A_0 = \pm 1$. And for all zeros $|\zeta_i| = 1$

Alexei Zhedanov (School of Mathematic From cyclotomic to orthogonal polynomi

Less trivial property (Kronecker): all zeros are roots of unity. Explicit formula

$$K(z) = C_{m_1}^{j_1}(z)C_{m_2}^{j_2}(z)\dots C_{m_k}^{j_k}(z)$$

where $C_k(z)$ are **cyclotomic** polynomials.

Simplest examples

(i) Trivial $\Phi_{N+1}(z) = z^{N+1} - 1$. All zeros are N-th roots of unity

$$\Phi_n(z) = z^n, \quad n = 0, 1, \dots, N$$

This is "free" system of OPUC. All Verblunsky parameters are zero: $a_n = 0$ apart from $a_N = 1$.

(ii) Less trivial $\Phi_{N+1}(z) = \frac{z^{N+1}-1}{z-1}$. All zeros are N-th roots of unity apart from z=1.

"Single momentum" OPUC (Simon)

$$\Phi_n(z) = \frac{1}{n+1} \sum_{k=0}^{n} (k+1)z^k, \quad n = N, N-1, \dots, 0$$

with

$$a_n = -\frac{1}{n+2}$$
, $n = 0, 1, 2, \dots, N-1$, $a_N = -1$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めの○

Toeplitz determinants

$$\Delta_n = \begin{vmatrix} \sigma_0 & \sigma_1 & \dots & \sigma_n \\ \sigma_{-1} & \sigma_0 & \dots & \sigma_{n-2} \\ \dots & \dots & \dots & \dots \\ \sigma_{-n} & \sigma_{1-n} & \dots & \sigma_0 \end{vmatrix}, \quad n = 1, 2, \dots$$

Main property:

$$h_n = 1 - |a_n|^2 = \frac{\Delta_n}{\Delta_{n-1}} > 0$$

Hence condition $\Delta_n > 0$, n = 0, 1, ..., is equivalent to condition $|a_n| < 1$, n = 0, 1, ..., N - 1.

Main theorem for Toeplitz determinants of RS: for every M

$$\begin{vmatrix} c_M(0) & c_M(1) & \dots & c_M(n) \\ c_M(1) & c_M(0) & \dots & c_M(n-1) \\ \dots & \dots & \dots & \dots \\ c_M(n) & c_M(n-1) & \dots & c_M(0) \end{vmatrix} > 0, \quad n = 1, 2, \dots, M-1$$

Open problems

- \bullet Find explicit expressions for binary and ternary cyclotomic Sturmian OPUC
- Find more explicit examples of Sturmian Kronecker OPUC
- Find limiting cyclotomic and Kronecker OPUC when $N \to \infty$
- Find polynomials on the real line by Szegő map of Sturmian Kronecker OPUC
- Possible bispectrality of Sturmian (Legendre) OPUC