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I would like to apologize that I will give more speculations and personal
views, rather than presenting rigorous and completed results. Also, I
apologize that I may have to use many terminologies without giving the
exact definitions. I will mainly talk on the following three topics.

(i) Commutative association schemes and finite Gelfand pairs. (Note that
a finite Gelfand pair means a Schurian commutative association scheme,
and is also equivalent to a multiplicity-free finite permutation groups.) In
addition, we recall P-polynomial, Q-polynomial, and P-and Q-polynomial
association schemes, as well as the concept of multivariate version of P-
and/or Q-polynomial association schemes.

(ii) We discuss for each compact symmetric space, are there any finite
Gelfand pairs naturally attached to it?

(iii) How we can approach the classification of general finite Gelfand pairs,
in particular, toward the classification of primitive P-and Q-polynomial
finite Gelfand pairs?
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The classification problem of P-and Q-polynomial association schemes
has been (and still is) a central problem in algebraic combinatorics, since
around 1980.

It is known that the spherical functions (and the character table) of
P-and Q-polynomial association schemes are described by Askey-Wilson
orthogonal polynomials (of one variable), including their special cases and
limiting cases. See D. Leonard (SIAM J. Math. Anal.,1982). See also
Bannai-Ito’s book: Algebraic Combinatorics, I (Benjamin/Cummings,
1984) and the new book: Algebraic Combinatorics (De Gruyter, 2021)
by Bannai-Bannai-Ito-Tanaka, and also the papers by Terwilliger (LAA,
2001 and Graphs and Comb., 2021).

The recent study of multivariate P-polynomial (and Q-polynomial) as-
sociation scheme was first started by Bernard–Crampé-d’Andecy-Vinet-
Zaimi (Alg. Comb., 2024). Then the concept was extended by Bannai-
Kurihara-Zhao-Zhu (JCT(A),2025).

The orthogonal polynomials appearing here are multivariable orthog-
onal polynomials.
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Let us recall that, roughly speaking, compact symmetric spaces were
classified by E. Cartan (1926). Compact symmetric spaces are all Gelfand
pairs. There is a weaker concept called ”weakly symmetric spaces” de-
fined by Selberg (1956) and are also shown to be Gelfand pairs. Also,
weakly symmetric spaces are classified (Akhiezer-Vinberg, 1999; Nguyen,
2000). On the other hand, under some mild additional conditions such
as compact, connected, G being a simple Lie group, the compact Gelfand
pairs were already classified (cf. Krämer, 1979).

So, we basically have the list of compact Gelfand pairs (for Lie groups).
We were not aware of this fact until very recently.
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We first remark that it seems that any compact symmetric space of
rank ℓ (if necessary, under the additional assumption of simply connected-
ness) has the property of multivariate (ℓ-variate) Q-polynomial property
similar to the concept of multivariate (ℓ-variate) Q-polynomial property
in our sense. This claim is obtained from the work of Vretare (1976)
where the spherical functions of the compact symmetric spaces were ob-
tained. In passing, it seems that these compact symmetric spaces also
have the property similar to ℓ-variate P-polynomial property. This claim
is obtained by using the concept of invariant differential operators (on
the symmetric space) which corresponds to adjacency matrices Ai in the
Bose-Mesner algebra (=Hecke algebra) in the (finite) association scheme
situation. So, the compact symmetric spaces can be regarded as to have
the multivariate (ℓ-variate) P-and Q-polynomial property. To know this
was a real surprise for us, because this means that the compact symmet-
ric spaces (so almost all the compact Gelfand pairs) have the property of
the multivariate (ℓ-variate) P-and Q-polynomial property.
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The classification of irreducible compact symmetric spaces is due to E.
Cartan. If we exclude the cases where Lie group itself become so, there
are the following 7 series (for the cases where infinite family appear).
Here we describe only simply connected ones.)
AI SU(n)/SO(n),
AII SU(2n)/Sp(n),
AIII SU(p + q)/S(U(p) × U(q)),
BDI SO(p + q)/(SO(p) × SO(q)),
DIII SO(2n)/U(n),
CI Sp(n)/U(n),
CII Sp(p + q)/(Sp(p) × Sp(q)).

The cases AIII, BDI, CII are Grassmannian spaces. Let us discuss for
other 4 remaining cases AI, AII, DIII, CI in the first place.



6

• To AI SU(n)/SO(n), GL(n, q2)/GL(n, q) is a corresponding finite
Gelfand pair (see Gow (1984).)

• To AII SU(2n)/Sp(n), GL(2n, q)/Sp(2n, q) is a corresponding finite
Gelfand pair (see Kliyachko (1984) and Bannai-Kawanaka-Song (1990).）

• To DIII SO(2n)/U(n), GL(2n, q)/GL(n, q2) is a corresponding finite
Gelfand pair (see Bannai-Tanaka (2003) and Henderson (2003).)

• To CI Sp(n)/U(n), Sp(2n, q)/GU(n, q) is a strong candidate of the
finite version of the Siegel upper half plane Sp(n)/U(n). (This is due to
Pantoja, Soto-Andrade and Vargas: On the construction of a finite Siegel
space (J. Lie Theory, 2015).）Their claim is very convincing.

On the other hand, it is very delicate whether Sp(2n, q)/GU(n, q) be-
comes a Gelfand pair or not. In fact we showed that there are some
special cases (perhaps this is the general case) that we cannot get any
Gelfand pair attached to Sp(2n, q)/GU(n, q) even if we consider the ad-
ditional action of automorphism.)
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For the cases of Grassmannian spaces AIII, BDI, CII, what should
be their finite versions? The cases of acting on isotropic subspaces are
very much studied and well known. On the other hand, actions on non-
isotropic subspaces seems to be more natural and appropriate, but it
seems difficult to determine when they are actually multiplicity-free. So,
I would like to propose the following problem.

Problem 1. Let us consider a classical form on the vector space over a
finite field. If we consider the transitive action on the spaces of non-
singular k-dim subspaces, how much can the multiplicities of irreducible
representations become large? Is there any good upper bound? Is it
bounded by a function depending only on k?

Also, we are interested in the following problem.

Problem 2. How large the multiplicities of the irreducible representa-
tions appearing in the permutation character of Sp(2n, q)/GU(n, q) can
become? How close they are to be a Gelfand pair, although they are not
Gelfand pairs in general.
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There are some works try to study finite version of compact symmetric
spaces.

Finite symmetric spaces. (Cf. G. Lusztig: Symmetric spaces over a finite
field (1990).)

Quandles. (Cf. D. Joyce: Simple quandles, J. Alg. (1982).)

But we will not discuss these today. Instead, Now, we want to discuss
the classification problem of finite Gelfand pairs (G,K), in particular, of
finite primitive Gelfand pairs.

The classification of maximal subgroups, in particular for finite (al-
most) simple groups has been developed extensively using the classifica-
tion of finite simple groups. Notably, the O’Nan-Scott theorem and the
work of Aschbacher: On the maximal subgroups of the finite classsical
groups (1984). (These results are very involved and very difficult. Here,
we briefly review this situation.
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We can use the classification of finite simple groups extensively for the
study of Gelfand pairs. One model example of the use of classification of
finite simple groups is the following theorem. (Praeger-Saxl-Yokoyama
(1987). For a primitive distance transitive graph and group (i.e., for
a primitive P-polynomial Gelfand pair (G,H)) only the following three
cases must occur:
(i) The graph is the Hamming graph.
(ii) Almost simple case. I.e., there is a nonabelian simple group G0 such
that G0 ≤ G ≤ Aut(G0).
(iii) Affine case. I.e., there is a regular normal subgroup N (of G) that
is an elementary abelian p group.

It seems that the case (iii) is now settled. Cf. survey paper of van Bon
(Europ. J. Comb., 2015). So, only the case (ii) Almost simple case, is
open. The case of G0 being alternating group and sporadic simple group
cases are settled. So, the case of classical or exceptional type Lie type
simple group case are open. It seems that the situation is close to the
goal, but it seems that it is not yet settled completely.
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Toward the classification of primitive finite Gelfand pairs.

We are interested in knowing the following objects.

(i) Maximal subgroups of a finite group.
(ii) Multiplicity-free maximal subgroups of a finite group (= finite prim-
itive Gelfand pairs).
(iii) P-polynomial maximal subgroups of a finite group. (Distance tran-
sitive groups).
(iv) Q-polynomial maximal subgroups of a finite group.
(v) P-and Q-polynomial maximal subgroups of a finite group (= finite
primitive P-and Q-polynomial Gelfand pairs).

The Problem (i) was studied by O’Nan-Scott, by Aschbacher and also
by many others. (These are general theory of classifications of maximal
subgroups of finite simple (or almost simple) groups, using the classifica-
tion of finite simple groups.

Now, let us consider the case of the classical Lie type simple groups.
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Liebeck: On the orders of maximal subgroups of finite classical groups
(Proc. London Math. Soc.,1985).
Let G be a group with G0 ≤ G ≤ Aut(G0) where G0 is a classical type
Lie type simple group. Let H be a maximal subgroup of G. Then we
have either
(1) The pair (G,H) is in the known list,
or
(2) |H|3 ≤ |G|.

This result is obtained by using Aschbacher (1984) which depends on the
classification of finite simple groups. The list for (1) is described explicitly
for the special case G = G0 = PSp(2m, q) in the paper of Liebeck, but
not for all other cases. I believe to obtain the complete listing for all
cases may not be easy, but will not be completely impossible. We were
able to considerably shorten the list in (1) assuming additionally that
(G,H) is a Gelfand pair, i.e., H is a multiplicity-free subgroup of G.

For this purpose, the following paper is useful.



12

Liebeck-Pyber: Upper bounds for the number of conjugacy classes of a
finite group (J. Algebra, 1997). Let G be a simple Lie type group of un-
twisted type of rank ℓ over the field of q elements, then the number of con-
jugacy classes of G is at most (6q)ℓ. (Some modifications for the twisted
case.) If we assume that if (G,K) is a P-polynomial Gelfand pair, then,
we can make the list of maximal subgroups of G = G0 = PSp(2m, q)
by Liebeck(1985) shorter. (For other types, we can consult book of
Kleidman-Liebeck (1990).)

If q is even,
(1) stabilizers of totally isotropic or non-singular subspaces of V ,
(2) (Sp(4m, q), Sp(2m, q) ≀ S2),
(3) (Sp(2m, q), GL(m, q).2),
(4) (Sp(2m, q), GU(m, q).2),
(5) (Sp(4m, q), Sp(2m, q2).2),
(6) (Sp(2m, q2), Sp(2m, q).2),
(7) (Sp(2m, q), O+(2m, q)), (Sp(2m, q), O−(2m, q)).
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If q is odd,
(1) the stabilizers of totally isotropic or non-singular subspaces of V ,
(2) (PSp(4m, q), 2.PSp(2m, q) ≀ S2),
(3) (PSp(2m, q), GL(m, q).2/Z) where Z = {±I},
(4) (PSp(2m, q), GU(m, q).2/Z) where Z = {±I},
(5) (PSp(2m, q2), PSp(2m, q).2).

(Details need to be worked our more carefully, but this certainly works,
at least if both q and ℓ are large.) The above is the short list of such
possible maximal subgroups of G = G0 = PSp(2m, q) where multiplicity-
free maximal subgroups are in this list. (Some of them are actually not
multiplicity-free.)

The case of fixing totally isotropic subspace was studied very com-
pletely. Exactly speaking, we can know when they are multiplicity-free,
as well as when they are P- or Q-polynomial, etc..)
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As it was mentioned already, the case of fixing non-singular spaces is
more delicate.

We note that the subfield case: (Sp(2m, q2), Sp(2m, q)) was studied
by Kawanaka: On subfield symmetric spaces over a finite field (Osaka J.
Math.,1990). They are generally not multiplicity-free (at least if both q

and m are not small). For other classical groups, it seems that it was
studied by Lusztig (Representation Theory, 2000).
On the other hand, for the case (Sp(4m, q), Sp(2m, q2), it is actually
shown by Lei Zhang (J. Algebra, 2013) that this is indeed multiplicity-
free. It is very likely judging from various consideration that they are
generally not P-polynomial nor Q-polynomial. (Basically all the irre-
ducible representations of Sp(2m, q) are known essentially by Deligne
and Lusztig (although it is not so easy to use that result). I believe it is
essentially possible to determine when each pair of the above list (of max-
imal subgroup of G = PSp(2m, q)) becomes Gelfand pair, or P-(and/or)
Q-polynomial Gelfand pair or not should be possible. (But I have to
say that I have not yet succeeded.) When we consider the P-polynomial
property, we can use some more additional properties, such as
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the unimodality of the subdegrees ki. For the P-and Q-polynomial case,
we can use the additional properties that some weaker unimodality for the
mi holds and all the irreducible representations appearing in the permu-
tation character are rational. So, I believe it should be possible, at least
in principle, to determine primitive P-and Q-polynomial Gelfand pairs.
Then the ambitious thinking is to try to proceed to (i) non-primitive
case, and proceed to (ii) multivariate P-and Q-polynomial case.

Conclusions. As for compact symmetric spaces vs. finite Gelfand pairs,
roughly speaking, compact symmetric spaces are almost equivalent to
general compact Gelfand pairs, and they seem always to have a similar
property of multivariate P-and Q-polynomial property. So, we want to
study finite Gefand pairs (or commutative association schemes) from the
viewpoint of multivariate P-and Q-polynomial Gelfand pairs. I think it
is important to try to understand the character tables of (known) finite
simple groups from the viewpoint of multivariate P-and Q-polynomial
association schemes. As the first step, how about for the character ta-
ble of, say (the group association scheme of) PSL(2, q) or other small
controlling commutative association schemes?
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Thank you very much
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Appendix. Summary of the paper of Pantoja, Soto-Andrade, and Vargas
[PSV] (2015).
Let q be odd, and let

J =

(
0 In
−In 0

)
, and Sp(2n, q2) =

{
X =

(
A B
C D

) ∣∣∣ tXJX = −J
}
.

Let L2n,q2 be the set of all the totally isotropic subspaces of V = F 2n
q2

with respect to this symplectic form. Then Sp(2n, q2) has the subgroup

Sp0(2n, q) such that Sp0(2n, q) =
{(

A B

B̄ Ā

)
∈ Sp(2n, q2)

}
. (This group

is isomorphic to Sp(2n, q) as an abstract group.) Then L2n,q2 is decom-
posed into the orbits O0,O1, ...,On by the action of Sp0(2n, q). The action
of Sp0(2n, q) on the orbit On s isomorphic to Sp(2n, q)/GU(n, q). Note
that [PSV] call L2n,q2 the finite version of Siegel upper half space, and we
regard the action of Sp0(2n, q) on On the finite version of Siegel upper
half space.

Note that h0 =

(
−In 0
0 In

)
be the hermitian form on V = F 2n

q2 . Then

Oi is the set of elements of L2n,q2 such that the restriction of h0 is of rank
i. Also, note that Sp0(2n, q) is the the intersection of the unitary group
w.r.t. h0 and Sp(2n, q2).
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Possible finite version.
The following is a list of possible finite version of compact symmetric
spaces. Here we assume q = odd.

SU(n)/SO(n)

GL(n, q2)/GL(n.q), GL(n, q2)/GU(n, q), GU(n, q2)/GL(n, q),
GU(n, q2)/GU(n, q). (They are multiplicity-free.) Also, GL(n, q)/O∗(n, q)
(3 kinds), GU(n, q)/O∗(n, q) (3 kinds), Sp(2n, q2)/Sp(2n, q),
O∗(n, q2)/O∗(n, q) (3 kinds) could be candidates. (It seems they are not
multiplicity-free in general.)

SU(2n)/Sp(n)
GL(2n, q)/Sp(2n, q), GU(2n, q)/Sp(2n, q). (They are multiplicity-free.)
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SO(2n)/U(n)

GL(2n, q)/GL(n, q2). (Multiplicity-free.) Also,
GU(2n, q)/GL(n, q2) is a candidate.
It looks GU(2n, q)/GU(n, q2), GU(2n, q)/GU(n, q2) do not appear in the
list. (Am I correct? Yes.) Sp(4n, q)/Sp(2n, q2), O∗(2n, q)/O∗(n, q2) (3
kinds), O∗(2n, q)/GU(n, q) (3 kinds), could also be candidates. (I expect
some cases are likely to be multiplicity-free. Some cases are indeed so,
but need to check more carefully.) I am really hoping that the case
O∗(2n, q)/GU(n, q) (3 kinds) become actually multiplivity-free.

Sp(n)/U(n)
Sp(2n, q)/GU(n, q).
(There will be some overlaps with the case of SO(2n)/U(n).)
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There are many works try to study finite version of compact symmetric
spaces. First, let me mention two of them, for example.

Finite symmetric spaces. (Cf. G. Lusztig: Symmetric spaces over a finite
field (1990).) Let G be a (connected) reductive group over a finite field
Fq (q odd) with a given involution θ : G → G defined over Fq. The pair
(G, θ) will be called a symmetric space (over Fq); we shall fix a closed
subgroup K of the fixed point set Gθ such that K is defined over Fq and
K contains the identity component (Gθ)0 of Gθ. (So, the symmetric space
is essentially the homogeneous space G/K.)

Quandles. (Cf. D. Joyce: Simple quandles, J. Alg. (1982).) Let G be a
finite group and let ϕ be an automorphism of G. If K is a subgroup of
the fixed subgroup Gϕ of G, Then the homogeneous quandle Q = G/K
is determined by the quandle triple (G,K, ϕ).
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Although these definitions are reasonable, I noticed that many impor-
tant examples of Gelfand pairs are missing in this context. (Note that
compact symmetric spaces are classified and they are all Gelfand pairs.)
We could avoid this situation, if we consider the homogeneous space by
the normalizers of any subgroup. This is not the main point I want to
discuss today, but I believe we should consider general Gelfand pairs in
the finite case, hoping to classify them all at least for the primitive case.

Now, we want to discuss the classification problem of finite Gelfand
pairs (G,K), in particular, of finite primitive Gelfand pairs.

The classification of maximal subgroups, in particular for finite (al-
most) simple groups has been developed extensively using the classifica-
tion of finite simple groups. Notably, the O’Nan-Scott theorem and the
work of Aschbacher: On the maximal subgroups of the finite classsical
groups (1984). (These results are very involved and very difficult. Here,
we briefly review this situation.


