Counting edges of different types in a local graph of a Grassmann graph

Ian Seong

University of Wisconsin-Madison / Williams College

June 26, 2025

Outline

Let V denote a finite-dimensional vector space over a finite field. The corresponding projective geometry P is the poset consisting of the subspaces of V, with partial order by inclusion.

A Grassmann graph Γ associated with P is known to be distance-regular.

Pick distinct vertices x,y of Γ that are not adjacent and at distance less than the diameter of Γ . Consider a two-vertex stabilizer $\operatorname{Stab}(x,y)$ in GL(V). It is known that there are five orbits of the $\operatorname{Stab}(x,y)$ -action on the local graph of x, denoted by $\Gamma(x)$.

Outline

In this talk we define three types of edges in $\Gamma(x)$, namely type 0, type +, type -. For adjacent vertices $w,z\in\Gamma(x)$ such that w,z are equidistant from y, the type of the edge wz depends on the subspaces $w+z,w,z,w\cap z$ and their intersections with y.

For each pair of orbits \mathcal{O}, \mathcal{N} in $\Gamma(x)$, and a given vertex $w \in \mathcal{O}$, we find the number of vertices $z \in \mathcal{N}$ adjacent to w such that the edge wz has (i) type 0, (ii) type +, (iii) type -. This is the main result of the talk.

To do this, we make heavy use of a subalgebra \mathcal{H} of $\mathrm{Mat}_P(\mathbb{C})$ that contains some matrices that are closely related to the five orbits in $\Gamma(x)$.

Preliminaries

Let $\Gamma = (X, E)$ denote a graph with no loops or multiple edges, vertex set X, edge set E, and path-length distance function ∂ .

By the diameter D of Γ , we mean the value $\max\{\partial(x,y)\mid x,y\in X\}$.

For a vertex $x \in X$, let the set $\Gamma(x)$ consist of vertices in X that are adjacent to x. By the *local graph of* x, we mean the subgraph of Γ induced on $\Gamma(x)$.

Distance-regular graph

Definition

We say that Γ is distance-regular whenever for all $0 \le h, i, j \le D$ and all $x, y \in X$ such that $\partial(x, y) = h$, the cardinality of the set

$${z \in X \mid \partial(x,z) = i, \ \partial(y,z) = j}$$

depends only on h, i, j. This cardinality is denoted by $p_{i,j}^h$.

From now on, we assume that Γ is distance-regular.

Projective geometry P

This talk is about a class of distance-regular graphs called the Grassmann graphs. These graphs are defined from projective geometries, which we describe below.

Let \mathbb{F}_q denote a finite field with q elements. Let $n \ge 1$. Let V denote a vector space of dimension n over \mathbb{F}_q .

Let the set $P = P_q(n)$ consist of the subspaces of V. The set P, together with inclusion partial order, is a poset called a *projective geometry*.

For $u, v \in P$, we say that v covers u whenever $u \subseteq v$ and $\dim v = \dim u + 1$.

The Grassmann graph $J_q(n, k)$

For $0 \le \ell \le n$, let the set P_ℓ consist of elements of P that have dimension ℓ . We have a partition

$$P = \bigcup_{\ell=0}^{n} P_{\ell}.$$

We now define the Grassmann graph $J_q(n, k)$.

Definition

For $n > k \geqslant 1$, the Grassmann graph $J_q(n,k)$ has vertex set $X = P_k$. Two vertices $x,y \in X$ are adjacent whenever $x \cap y \in P_{k-1}$.

The graph $J_q(n, k)$ is known to be distance-regular.

Ian Seong (University of Wisconsin-Madison Counting edges of different typesin a local gra

The Grassmann graph $J_q(n,k)$

The graph $J_q(n, k)$ is isomorphic to $J_q(n, n - k)$. Without loss, we assume that $n \ge 2k$.

The case n = 2k is somewhat special, so for the rest of the paper, we assume that n > 2k.

Under this assumption, the diameter of $J_q(n, k)$ is k.

From now on, we assume that $\Gamma = J_q(n, k)$ with $k \ge 3$.

Symmetry of *P*

Recall that GL(V) consists of invertible \mathbb{F}_q -linear maps from V to V.

The action of GL(V) on V induces a permutation action of GL(V) on P.

This action preserves dimension and the inclusion partial order.

The action of GL(V) on X preserves the path-length distance ∂ .

The stabilizer $\mathsf{Stab}(x,y)$ and its action on $\Gamma(x)$

Definition

For distinct $x, y \in X$ let $\operatorname{Stab}(x, y)$ denote the subgroup of GL(V) consisting of the elements that fix both x and y. We call $\operatorname{Stab}(x, y)$ the stabilizer of x and y.

Pick distinct $x, y \in X$. Our next goal is to describe the orbits of the $\operatorname{Stab}(x, y)$ -action on $\Gamma(x)$.

The cases $\partial(x,y)=1$ and $\partial(x,y)=k$ are somewhat special. For the rest of the talk, we assume that $1<\partial(x,y)< k$.

$\mathsf{Stab}(x,y)$ -action on $\Gamma(x)$

Definition

For $x, y \in X$ such that $1 < \partial(x, y) < k$, define

$$\mathcal{B}_{xy} = \{ z \in \Gamma(x) \mid \partial(z, y) = \partial(x, y) + 1 \},$$

$$\mathcal{C}_{xy} = \{ z \in \Gamma(x) \mid \partial(z, y) = \partial(x, y) - 1 \},$$

$$\mathcal{A}_{xy} = \{ z \in \Gamma(x) \mid \partial(z, y) = \partial(x, y) \}.$$

Lemma (S. 2024)

For $x, y \in X$ such that $1 < \partial(x, y) < k$, the sets $\mathcal{B}_{xy}, \mathcal{C}_{xy}$ are orbits of the Stab(x, y) action on $\Gamma(x)$.

As we will see, the set A_{xy} is the disjoint union of three orbits. To describe these orbits, we refine the partition of P described earlier.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕久○

Partition of P

Recall the partition

$$P = \bigcup_{\ell=0}^{n} P_{\ell}.$$

We now refine this partition. For $0 \le i \le k$ and $0 \le j \le n - k$, define

$$P_{i,j} = \{ u \in P \mid \dim(u \cap y) = i, \dim u = i + j \}.$$

Partitions of P

/-cover and \-cover

Earlier, we described the covering relation on P. We now give a refinement of this covering relation.

Lemma (S. 2025+)

Let $u, v \in P$ such that v covers u. Write

$$u \in P_{i,j}, \qquad v \in P_{r,s}.$$

Then either (i) r = i + 1 and s = j, or (ii) r = i and s = j + 1.

Definition

We say that $v / -covers \ u$ whenever (i) holds, and $v / -covers \ u$ whenever (ii) holds.

/-cover and \-cover

v /-covers u:

/-cover and \-cover

 $v \setminus -covers u$:

$\mathsf{Stab}(x,y)$ -action on $\Gamma(x)$

Definition

For $x, y \in X$ such that $1 < \partial(x, y) < k$, define

$$\mathcal{A}_{xy}^0 = \{ z \in \Gamma(x) \mid z + x \text{ /-covers each of } z \text{ and } x, \text{ which } \setminus \text{-covers } z \cap x \},$$

$$\mathcal{A}_{xy}^+ = \{ z \in \Gamma(x) \mid z + x \text{ \-covers each of } z \text{ and } x \},$$

$$\mathcal{A}_{xy}^- = \{ z \in \Gamma(x) \mid \text{ each of } z \text{ and } x \text{ } /\text{-covers } z \cap x \}.$$

Lemma (S. 2025+)

For $x, y \in X$ such that $1 < \partial(x, y) < k$, the set \mathcal{A}_{xy} is the disjoint union of the sets $\mathcal{A}_{xy}^0, \mathcal{A}_{xy}^+, \mathcal{A}_{xy}^-$.

4□ > 4□ > 4 = > 4 = > = 90

$\mathsf{Stab}(x,y)$ -action on $\mathsf{\Gamma}(x)$

 $z \in \mathcal{A}_{xy}^0$:

$\mathsf{Stab}(x,y)$ -action on $\Gamma(x)$

 $z \in \mathcal{A}_{xy}^+$:

$\mathsf{Stab}(x,y)$ -action on $\mathsf{\Gamma}(x)$

$$z \in \mathcal{A}_{xy}^-$$
:

$\mathsf{Stab}(x,y)$ -action on $\Gamma(x)$

Lemma (S. 2025+)

For $x, y \in X$ such that $1 < \partial(x, y) < k$, the following sets are orbits of the $\operatorname{Stab}(x, y)$ -action on $\Gamma(x)$:

$$\mathcal{B}_{xy}, \qquad \mathcal{C}_{xy}, \qquad \mathcal{A}_{xy}^0, \qquad \mathcal{A}_{xy}^+, \qquad \mathcal{A}_{xy}^-$$

Furthermore, these orbits form an equitable partition of $\Gamma(x)$.

Structure constants

We present the corresponding structure constants. In what follows, we use the notation

$$[m] = \frac{q^m - 1}{q - 1} \qquad (m \in \mathbb{Z}).$$

Referring to the table below, for each orbit $\mathcal O$ in the header column, and each orbit $\mathcal N$ in the header row, the $(\mathcal O,\mathcal N)$ -entry gives the number of vertices in $\mathcal N$ that are adjacent to a given vertex in $\mathcal O$. Write $i=\partial(x,y)$.

Structure constants

	\mathcal{B}_{xy}	\mathcal{C}_{xy}	\mathcal{A}_{xy}^0	\mathcal{A}_{xy}^+	\mathcal{A}_{xy}^{-}
\mathcal{B}_{xy}	$q^{i+1}[k-i] + q^{i+1}[n-k-i] - q - 1$	0	0	q[i]	q[i]
\mathcal{C}_{xy}	0	2q[i-1]	$2q^i-q-1$	$q^{i+1}[n-k-i]$	$q^{i+1}[k-i]$
\mathcal{A}_{xy}^0	0	2[i]-1	$2q^i-q-2$	$q^{i+1}[n-k-i]$	$q^{i+1}[k-i]$
\mathcal{A}_{xy}^+	$q^{i+1}[k-i]$	[i]	(q-1)[i]	q[n-k]-q-1	0
\mathcal{A}_{xy}^-	$q^{i+1}[n-k-i]$	[i]	(q-1)[i]	0	q[k]-q-1

Types of edges in $\Gamma(x)$

We now define three types of edges in $\Gamma(x)$; as we will see, these types are related to the orbits $\mathcal{A}_{xy}^0, \mathcal{A}_{xy}^+, \mathcal{A}_{xy}^-$.

Definition

Pick $x, y \in X$ such that $1 < \partial(x, y) < k$. For adjacent $w, z \in \Gamma(x)$ such that $\partial(w, y) = \partial(z, y)$, we say that the edge wz has

- (i) type 0 whenever w+z /-covers each of w and z, which \-covers $w \cap z$,
- (ii) type + whenever w + z \-covers each of w and z,
- (iii) type whenever each of w, z /-covers $z \cap x$.

For adjacent $w, z \in \Gamma(x)$ such that $\partial(w, y) = \partial(z, y)$, the edge wz has exactly one of the three types above.

Types of edges in $\Gamma(x)$

Assume that $1 < \partial(w, y) = \partial(z, y) < k$. The edge wz has

- (i) type 0 if and only if $w \in \mathcal{A}_{zy}^0$,
- (ii) type + if and only if $w \in \mathcal{A}_{zy}^+$,
- (iii) type if and only if $w \in \mathcal{A}_{zy}^-$.

Pick a pair of orbits \mathcal{O}, \mathcal{N} . Pick $w \in \mathcal{O}$. Our next goal is to find the number of vertices $z \in \mathcal{N}$ adjacent to w such that the edge wz has (i) type 0, (ii) type +, (iii) type -.

To do this, we make heavy use of the subalgebra \mathcal{H} of $Mat_{\mathcal{P}}(\mathbb{C})$.

Let $\operatorname{Mat}_P(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of the matrices with rows and columns indexed by P and all entries in \mathbb{C} .

Throughout the talk we use the following notation. For $u, v \in P$ and $M \in \operatorname{Mat}_P(\mathbb{C})$, let $M_{u,v}$ denote the (u,v)-entry of M.

Definition

We define diagonal matrices $K_1, K_2 \in \operatorname{Mat}_P(\mathbb{C})$ as follows. For $u \in P$ their (u, u)-entries are

$$(K_1)_{u,u} = q^{\frac{k}{2}-i}, \qquad (K_2)_{u,u} = q^{j-\frac{n-k}{2}},$$

where $u \in P_{i,j}$. Note that K_1, K_2 are invertible.

4□ > 4□ > 4□ > 4 = > 4 = > 9 < ○</p>

Definition

We define matrices $L_1, L_2, R_1, R_2 \in \operatorname{Mat}_P(\mathbb{C})$ as follows. For $u, v \in P$ their (u, v)-entries are

$$\begin{split} \left(L_1\right)_{u,v} &= \begin{cases} 1 & \text{if } v \text{ } /\text{-covers } u, \\ 0 & \text{if } v \text{ } \text{does not } /\text{-cover } u, \end{cases} \\ \left(L_2\right)_{u,v} &= \begin{cases} 1 & \text{if } v \text{ } \text{-covers } u, \\ 0 & \text{if } v \text{ } \text{does not } \text{ } \text{-cover } u, \end{cases} \\ \left(R_1\right)_{u,v} &= \begin{cases} 1 & \text{if } u \text{ } /\text{-covers } v, \\ 0 & \text{if } u \text{ } \text{does not } /\text{-cover } v, \end{cases} \\ \left(R_2\right)_{u,v} &= \begin{cases} 1 & \text{if } u \text{ } \text{-covers } v, \\ 0 & \text{if } u \text{ } \text{does not } \text{ } \text{-cover } v. \end{cases} \end{aligned}$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

Definition

Let $\mathcal H$ denote the subalgebra of $\operatorname{Mat}_P(\mathbb C)$ generated by $L_1,L_2,R_1,R_2,K_1^{\pm 1},K_2^{\pm 1}.$

Next we define matrices R, L, F^0, F^+, F^- .

Definition

Define

$$R = L_1 R_2, \qquad \qquad L = R_1 L_2.$$

Note that $R, L \in \mathcal{H}$.

Definition

Define matrices $F^0, F^+, F^- \in \mathrm{Mat}_P(\mathbb{C})$ as follows. For $u, v \in P$ their (u, v)-entries are

$$(F^-)_{u,v} = \begin{cases} 1 & \text{if each of } u \text{ and } v \text{ /-covers } u \cap v, \\ 0 & \text{otherwise.} \end{cases}$$

◆ロト ◆園 ト ◆ 園 ト ◆ 園 ・ 夕 Q (*)

$$(F^0)_{u,v}=1$$
:

$$(F^+)_{u,v}=1$$
:

$$(F^-)_{u,v}=1$$
:

Lemma (S. 2025+)

The matrices F^0 , F^+ , F^- are contained in \mathcal{H} .

Next we express F^0, F^+, F^- in terms of the generators of \mathcal{H} .

Lemma (S. 2025+)

The matrices F^0, F^+, F^- satisfy

$$\begin{split} F^0 &= L_1 R_1 - R_1 L_1 + (q-1)^{-1} \left(q^{\frac{n}{2}} K_1^{-1} K_2 - q^{\frac{k}{2}} K_1 - q^{\frac{n-k}{2}} K_2 + I \right) \\ &= R_2 L_2 - L_2 R_2 + (q-1)^{-1} \left(q^{\frac{n}{2}} K_1 K_2^{-1} - q^{\frac{k}{2}} K_1 - q^{\frac{n-k}{2}} K_2 + I \right), \\ F^+ &= L_2 R_2 - q^{\frac{k}{2}} (q-1)^{-1} K_1 \left(q^{\frac{n-k}{2}} K_2^{-1} - I \right), \\ F^- &= R_1 L_1 - q^{\frac{n-k}{2}} (q-1)^{-1} \left(q^{\frac{k}{2}} K_1^{-1} - I \right) K_2. \end{split}$$

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q @

Next we recall the generating set for the center of \mathcal{H} .

Lemma (S. 2025+)

The center of \mathcal{H} is generated by the following three elements:

$$\begin{split} \Omega_0 &= q^{-\frac{n}{2}} \bigg((q-1)F^0 K_1^{-1} K_2^{-1} + q^{\frac{n-k}{2}} K_1^{-1} + q^{\frac{k}{2}} K_2^{-1} - K_1^{-1} K_2^{-1} \bigg), \\ \Omega_1 &= q^{-\frac{n-k}{2}} \bigg(qF^0 K_2^{-1} + (q-1)F^- K_2^{-1} \\ &\qquad + (q-1)^{-1} \bigg(q^{\frac{k}{2}+1} K_1 K_2^{-1} + q^{\frac{n}{2}+1} K_1^{-1} - q K_2^{-1} \bigg) \bigg) - q (q-1)^{-1} I, \\ \Omega_2 &= q^{-\frac{k}{2}} \bigg(qF^0 K_1^{-1} + (q-1)F^+ K_1^{-1} \\ &\qquad + (q-1)^{-1} \bigg(q^{\frac{n-k}{2}+1} K_1^{-1} K_2 + q^{\frac{n}{2}+1} K_2^{-1} - q K_1^{-1} \bigg) \bigg) - q (q-1)^{-1} I. \end{split}$$

Lemma (S. 2025+)

We have

$$\begin{split} F^0 &= \frac{q^{\frac{n}{2}}\Omega_0 \textit{K}_1 \textit{K}_2 - q^{\frac{k}{2}} \textit{K}_1 - q^{\frac{n-k}{2}} \textit{K}_2 + \textit{I}}{q-1}, \\ F^+ &= \frac{q^{\frac{k}{2}}\Omega_2 - (q-1)^{-1} \bigg(q^{\frac{n}{2}+1} \Big(\Omega_0 \textit{K}_2 + \textit{K}_2^{-1} \Big) - 2 q^{\frac{k}{2}+1} \textit{I} \bigg)}{q-1} \textit{K}_1, \\ F^- &= \frac{q^{\frac{n-k}{2}}\Omega_1 - (q-1)^{-1} \bigg(q^{\frac{n}{2}+1} \Big(\Omega_0 \textit{K}_1 + \textit{K}_1^{-1} \Big) - 2 q^{\frac{n-k}{2}+1} \textit{I} \bigg)}{q-1} \textit{K}_2. \end{split}$$

The matrices F^0, F^+, F^- mutually commute.

→□ → → □ → → □ → ○ ○ ○

Relations that involve R, L, F^0, F^+, F^-

Next we present some useful relations that involve R, L, F^0, F^+, F^- .

Theorem (S. 2025+)

We have

$$\begin{split} q^2RF^0-F^0R+\left(q^{\frac{k}{2}}K_1+q^{\frac{n-k}{2}}K_2-(q+1)I\right)R=0;\\ qRF^+-F^+R-F^0R+(q-1)^{-1}\left(q^{\frac{n}{2}+1}K_2^{-1}K_1-q^{\frac{k}{2}}K_1-q^{\frac{n-k}{2}}K_2+I\right)R=0;\\ qRF^--F^-R-F^0R+(q-1)^{-1}\left(q^{\frac{n}{2}+1}K_1^{-1}K_2-q^{\frac{k}{2}}K_1-q^{\frac{n-k}{2}}K_2+I\right)R=0;\\ q^2F^0L-LF^0+\left(q^{\frac{k}{2}+1}K_1+q^{\frac{n-k}{2}+1}K_2-(q+1)I\right)L=0;\\ qF^+L-LF^+-LF^0+(q-1)^{-1}\left(q^{\frac{n}{2}+1}K_2^{-1}K_1-q^{\frac{k}{2}+1}K_1-q^{\frac{n-k}{2}+1}K_2+I\right)L=0;\\ qF^-L-LF^--LF^0+(q-1)^{-1}\left(q^{\frac{n}{2}+1}K_2^{-1}K_1-q^{\frac{k}{2}+1}K_1-q^{\frac{n-k}{2}+1}K_2+I\right)L=0. \end{split}$$

Relations that involve R, L, F^0, F^+, F^-

Theorem (S. 2025+)

We have

$$\begin{split} 0 &= LR - qF^{+}F^{-} - (q-1)^{-1} \Big(\big(q^{\frac{n}{2}+1} K_{1}^{-1} K_{2} - q^{\frac{n-k}{2}+1} K_{2} \big) F^{+} \\ &\quad + \big(q^{\frac{n}{2}+1} K_{1} K_{2}^{-1} - q^{\frac{k}{2}+1} K_{1} \big) F^{-} \Big) \\ &\quad - (q-1)^{-2} \Big(q^{\frac{n}{2}+1} K_{1} K_{2} - q^{n-\frac{k}{2}+1} K_{1} - q^{\frac{n+k}{2}+1} K_{2} + q^{n+1} I \Big); \end{split}$$

$$\begin{split} 0 &= qRL - \left(F^{0}\right)^{2} - F^{0}F^{+} - F^{0}F^{-} - F^{+}F^{-} \\ &- (q-1)^{-1} \left(\left(q^{\frac{k}{2}}K_{1} + q^{\frac{n-k}{2}}K_{2} - 2I\right)F^{0} + \left(q^{\frac{k}{2}}K_{1} - I\right)F^{+} \right. \\ &+ \left. \left(q^{\frac{n-k}{2}} - I\right)F^{-}\right) - (q-1)^{-2} \left(q^{\frac{n}{2}}K_{1}K_{2} - q^{\frac{k}{2}}K_{1} - q^{\frac{n-k}{2}}K_{2} + I\right). \end{split}$$

Entries of matrices that involve F^0, F^+, F^-

For $w \in \mathcal{A}_{xy}$, we find the (w,x)-entries of many matrices that involve F^0, F^+, F^- .

Theorem (S. 2025+)

Referring to the table below, for each matrix M in the header column and each orbit \mathcal{O} in the header row, the (M,\mathcal{O}) -entry gives the (w,x)-entry of M when $w \in \mathcal{O}$. Write $i = \partial(x,y)$.

Entries of matrices that involve F^0, F^+, F^-

	\mathcal{A}_{xy}^0	\mathcal{A}_{xy}^+	\mathcal{A}_{xy}^-
$\left(F^0\right)^2$	$2q^i-q-2$	0	0
F^0F^+	0	(q-1)[i]	0
F^0F^-	0	0	(q-1)[i]
F^+F^0	0	(q-1)[i]	0
$(F^{+})^{2}$	$q^{i+1}[n-k-i]$	$q[n-k]-q^i-q$	0
F^+F^-	0	0	0
F^-F^0	0	0	(q-1)[i]
F^-F^+	0	0	0
$\left(F^{-}\right)^{2}$	$q^{i+1}[k-i]$	0	$q[k]-q^i-q$

(ロ) (個) (重) (重) (回) (の)

Types of edges in $\Gamma(x)$

Theorem (S. 2025+)

Referring to the table below, for each orbit $\mathcal O$ in the header column, and each orbit $\mathcal N$ in the header row, the $(\mathcal O,\mathcal N)$ -entry gives a 3×1 -matrix that satisfies the following: each entry of the matrix corresponds to the number of vertices in $\mathcal N$ that share an edge of type 0,+,- respectively

with a given vertex in \mathcal{O} . We omit the entries $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Write $i = \partial(x, y)$.

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ ○巻 - 夕久で

Types of edges in $\Gamma(x)$

	\mathcal{B}_{xy}	\mathcal{C}_{xy}	${\cal A}^0_{xy}$	\mathcal{A}_{xy}^+	\mathcal{A}_{xy}^-
\mathcal{B}_{xy}	$\begin{pmatrix} 2q^{i+1} - q - 1 \\ q^{i+2}[n-k-i-1] \\ q^{i+2}[k-i-1] \end{pmatrix}$				
\mathcal{C}_{xy}		$\begin{pmatrix} 0 \\ q[i-1] \\ q[i-1] \end{pmatrix}$			
${\cal A}^0_{xy}$			$\begin{pmatrix} 2q^i-q-2\\0\\0\end{pmatrix}$	$\begin{pmatrix} 0 \\ q^{i+1}[n-k-i] \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ q^{i+1}[k-i] \end{pmatrix}$
\mathcal{A}_{xy}^+			$\begin{pmatrix} 0 \\ (q-1)[i] \\ 0 \end{pmatrix}$	$\begin{pmatrix} (q-1)[i] \\ q[n-k] - q^i - q \\ 0 \end{pmatrix}$	
\mathcal{A}_{xy}^-			$\begin{pmatrix} 0 \\ 0 \\ (q-1)[i] \end{pmatrix}$		$\begin{pmatrix} (q-1)[i] \\ 0 \\ q[k] - q^i - q \end{pmatrix}$

Summary

We recalled the projective geometry $P_q(n)$ and the Grassmann graph $J_q(n,k)$.

For vertices x, y such that $1 < \partial(x, y) < k$, we recalled the $\operatorname{Stab}(x, y)$ -action on $\Gamma(x)$ and its five orbits.

We defined three types of edges in $\Gamma(x)$. For each pair of orbits \mathcal{O}, \mathcal{N} and a given vertex $w \in \mathcal{O}$, we found the number of vertices $z \in \mathcal{N}$ adjacent to w such that the edge wz has (i) type 0, (ii) type +, (iii) type -.

To do this, we brought in the subalgebra \mathcal{H} of $\mathrm{Mat}_P(\mathbb{C})$; the algebra \mathcal{H} contains useful matrices like R, L, F^0, F^+, F^- . We presented many relations that involve R, L, F^0, F^+, F^- . For $w \in \mathcal{A}_{xy}$, we found the (w,x)-entries of many matrices that involve F^0, F^+, F^- .

Thank you for your attention.