On the classification of thin distance-regular graphs with classical parameters

Hong-Jun Ge

University of Science and Technology of China ghj17000225@mail.ustc.edu.cn (Based on joint work with Jack H. Koolen) Terwilliger Fest

June 26, 2025

Outline

- Introduction
 - Definitions
 - Thin DRGs
- Our result
 - Twisted Latin Square graphs
 - Co-edge-regular graphs with $\lambda_{min} = -3$
 - Thin DRGs with b = 2
- Open problem

Outline

- Introduction
 - Definitions
 - Thin DRGs
- Our result
 - Twisted Latin Square graphs
 - Co-edge-regular graphs with $\lambda_{min} = -3$
 - Thin DRGs with b = 2
- Open problem

 $\Gamma = (V, E)$ is a graph with a vertex set V and an edge set $E \subseteq \binom{V}{2}$.

- The adjacency matrix $A(\Gamma)$ of a graph Γ is the matrix whose rows and columns are indexed by its vertices, such that $A_{xy}(\Gamma) = 1$ if xy is an edge and 0 otherwise.
- The eigenvalues of Γ are the eigenvalues of its adjacency matrix.
- An eigenvalue of a graph is called non-principal if it has an eigenvector orthogonal to the all-ones vector.
- Two graphs are called cospectral if they have the same spectrum.

 $\Gamma = (V, E)$ is a graph with a vertex set V and an edge set $E \subseteq \binom{V}{2}$.

- The adjacency matrix $A(\Gamma)$ of a graph Γ is the matrix whose rows and columns are indexed by its vertices, such that $A_{xy}(\Gamma) = 1$ if xy is an edge and 0 otherwise.
- The eigenvalues of Γ are the eigenvalues of its adjacency matrix.
- An eigenvalue of a graph is called non-principal if it has an eigenvector orthogonal to the all-ones vector.
- Two graphs are called cospectral if they have the same spectrum.
- A graph Γ is called k-regular if every vertex in Γ has k neighbours.
- The neighborhood N(x) of x is the set of vertices adjacent to x.
- For a vertex x of Γ, the subgraph induced on N(x) is called the local graph of Γ at x denoted by Γ₁(x).

A connected graph Γ with diameter D is called distance-regular if for $0 \le i \le D$ there are integers b_i and c_i such that for every pair of vertices $x,y \in V(\Gamma)$ with d(x,y)=i, among the neighbors of y, there are precisely c_i (resp. b_i) at distance i-1 (resp. i+1) from x.

A DRG Γ of diameter D has classical parameters (D,b,α,β) if the intersection numbers of Γ satisfy $c_i = {i\brack 1}_b (1+\alpha {i-1\brack 1}_b)$ and $b_i = ({D\brack 1}_b - {i\brack 1}_b)(\beta-\alpha {i\brack 1}_b)$ for $0 \le i \le D$, where ${i\brack 1}_b = \frac{b^i-1}{b-1}$.

A DRG Γ of diameter D has classical parameters (D,b,α,β) if the intersection numbers of Γ satisfy $c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_b (1 + \alpha \begin{bmatrix} i-1 \\ 1 \end{bmatrix}_b)$ and $b_i = (\begin{bmatrix} D \\ 1 \end{bmatrix}_b - \begin{bmatrix} i \\ 1 \end{bmatrix}_b)(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_b)$ for $0 \le i \le D$, where $\begin{bmatrix} i \\ 1 \end{bmatrix}_b = \frac{b^i-1}{b-1}$.

 There are a lot of DRGs with classical parameters such as the Johnson graphs, the Hamming graphs, the Grassmann graphs, the bilinear forms graphs and so on.

A DRG Γ of diameter D has classical parameters (D,b,α,β) if the intersection numbers of Γ satisfy $c_i = {i\brack 1}_b (1+\alpha {i-1\brack 1}_b)$ and $b_i = ({D\brack 1}_b - {i\brack 1}_b)(\beta-\alpha {i\brack 1}_b)$ for $0 \le i \le D$, where ${i\brack 1}_b = \frac{b^i-1}{b-1}$.

- There are a lot of DRGs with classical parameters such as the Johnson graphs, the Hamming graphs, the Grassmann graphs, the bilinear forms graphs and so on.
- All the known DRGs with diameter large enough are either DRGs with classical parameters or derived from DRGs with classical parameters

A co-edge-regular graph with parameters (v, k, μ) is a k-regular graph of order v, such that any two non-adjacent distinct vertices have exactly μ common neighbors.

A co-edge-regular graph with parameters (v, k, μ) is a k-regular graph of order v, such that any two non-adjacent distinct vertices have exactly μ common neighbors.

The 4-cycle

 is a co-edge-regular graph with parameters (4,2,2).

A co-edge-regular graph with parameters (v, k, μ) is a k-regular graph of order v, such that any two non-adjacent distinct vertices have exactly μ common neighbors.

• The 4-cycle \diamondsuit is a co-edge-regular graph with parameters (4,2,2).

Definition 5

For a pair x,y of adjacent vertices in a graph G, let $\lambda(x,y)$ be the number of common neighbours of x and y. We say that a co-edge-regular graph is of level t if $\#\{\lambda(x,y) \mid x,y \text{ are adjacent vertices }\} = t$.

A co-edge-regular graph with parameters (v, k, μ) is a k-regular graph of order v, such that any two non-adjacent distinct vertices have exactly μ common neighbors.

• The 4-cycle \diamondsuit is a co-edge-regular graph with parameters (4,2,2).

Definition 5

For a pair x,y of adjacent vertices in a graph G, let $\lambda(x,y)$ be the number of common neighbours of x and y. We say that a co-edge-regular graph is of level t if $\#\{\lambda(x,y)\,|\,x,y$ are adjacent vertices $\}=t$.

A co-edge-regular graph of level 1 is a strongly-regular graph

Outline

- Introduction
 - Definitions
 - Thin DRGs
- Our result
 - Twisted Latin Square graphs
 - Co-edge-regular graphs with $\lambda_{min} = -3$
 - Thin DRGs with b = 2
- Open problem

• Terwilliger showed that each local graph $\Gamma_1(x)$ of a thin Q-polynomial DRG Γ with classical parameters (D, b, α, β) has some good properties.

• Terwilliger showed that each local graph $\Gamma_1(x)$ of a thin Q-polynomial DRG Γ with classical parameters (D, b, α, β) has some good properties.

Proposition 1:
$$\Gamma_1(x)$$
 is Co-edge-regular with parameters (v,k,μ) where $v=b_0=\frac{b^D-1}{b-1}\beta$ and $k=a_1=\beta-1+\frac{b^D-b}{b-1}\alpha$.

• Terwilliger showed that each local graph $\Gamma_1(x)$ of a thin Q-polynomial DRG Γ with classical parameters (D, b, α, β) has some good properties.

Proposition 1: $\Gamma_1(x)$ is Co-edge-regular with parameters (v,k,μ) where $v=b_0=\frac{b^D-1}{b-1}\beta$ and $k=a_1=\beta-1+\frac{b^D-b}{b-1}\alpha$.

Proposition 2: The non-principal eigenvalues of $\Gamma_1(x)$ are in the set $\{\beta-\alpha-1, \frac{b^D-b}{b-1}\alpha-1, -1, -b-1\}$

P. Terwilliger, Lecture notes on Terwilliger algebra, 1993.

What is known about co-edge-regular graphs with at most five distinct eigenvalues and fixed smallest eigenvalue -b-1?

 If a complete classification of such graphs were established, it would greatly facilitate the classification of thin distance-regular graphs.

- If a complete classification of such graphs were established, it would greatly facilitate the classification of thin distance-regular graphs.
- In the case of at most three distinct eigenvalues, it is a strongly-regular graph.

- If a complete classification of such graphs were established, it would greatly facilitate the classification of thin distance-regular graphs.
- In the case of at most three distinct eigenvalues, it is a strongly-regular graph.
- We only need focus on co-edge-regular graph with at least four distinct eigenvalues.

- If a complete classification of such graphs were established, it would greatly facilitate the classification of thin distance-regular graphs.
- In the case of at most three distinct eigenvalues, it is a strongly-regular graph.
- We only need focus on co-edge-regular graph with at least four distinct eigenvalues.
- For example, clique-extensions of strongly-regular graphs (Sterner graphs or Latin Square graphs) have exactly four distinct eigenvalues and co-edge-regular.

For a positive integer s, the s-clique extension of a graph G is the graph \tilde{G} obtained from G by replacing each vertex $x \in V(G)$ by a clique \tilde{X} with s vertices, such that $\tilde{x} \sim \tilde{y}$ (for $\tilde{x} \in \tilde{X}, \ \tilde{y} \in \tilde{Y}$) in \tilde{G} if and only if $x \sim y$ in G.

For a positive integer s, the s-clique extension of a graph G is the graph \tilde{G} obtained from G by replacing each vertex $x \in V(G)$ by a clique \tilde{X} with s vertices, such that $\tilde{x} \sim \tilde{y}$ (for $\tilde{x} \in \tilde{X}$, $\tilde{y} \in \tilde{Y}$) in \tilde{G} if and only if $x \sim y$ in G.

$$A(\tilde{G}) = (A(G) + I_V) \otimes J_S - I_{SV}$$

Remark 1

If
$$Spec(G) = \{ [\theta_0]^{m_0}, [\theta_1]^{m_1}, \dots, [\theta_r]^{m_r} \}$$
, then

$$Spec(\tilde{G}) = \{[s(\theta_0+1)-1]^{m_0}, [s(\theta_1+1)-1]^{m_1}, \dots, [s(\theta_r+1)-1]^{m_r}, [-1]^{(s-1)\nu}\}.$$

Conjecture 1 (Tan-Koolen-Xia 2020)

Let G be a connected co-edge-regular graph with parameters (v,k,μ) and exactly four distinct eigenvalues. For fixed integer $t \ge 2$, there exists a constant n_t such that, if $\lambda_{\min}(G) \ge -t$, $v \ge n_t$ and $k < v - 2 - \frac{(t-1)^2}{4}$, then

- *G* is the s-clique extension of a strongly regular graph for $2 \le s \le t 1$, or
- G is a $p \times q$ -grid with $p > q \ge 2$.

Conjecture 1 (Tan-Koolen-Xia 2020)

Let G be a connected co-edge-regular graph with parameters (v,k,μ) and exactly four distinct eigenvalues. For fixed integer $t \ge 2$, there exists a constant n_t such that, if $\lambda_{\min}(G) \ge -t$, $v \ge n_t$ and $k < v - 2 - \frac{(t-1)^2}{4}$, then

- *G* is the s-clique extension of a strongly regular graph for $2 \le s \le t 1$, or
- *G* is a $p \times q$ -grid with $p > q \ge 2$.
- However, we will show that this conjecture is false, by providing an infinite family
 of co-edge-regular graphs, called twisted Latin square graphs.

Y. Tan and J.H. Koolen and Z. Xia, A spectral characterization of the s-clique extension of the triangular graphs. Discuss. Math. Graph Theory, 2020.

Outline

- Introduction
 - Definitions
 - Thin DRGs
- Our result
 - Twisted Latin Square graphs
 - Co-edge-regular graphs with $\lambda_{min} = -3$
 - Thin DRGs with b = 2
- Open problem

- In the following, *q* is a prime power.
- For each fixed q, there are infinite many n such that the twisted Latin square graph TLS(q, n) exists.

- In the following, *q* is a prime power.
- For each fixed q, there are infinite many n such that the twisted Latin square graph TLS(q, n) exists.

TLS(q, n) is co-edge-regular with the same parameters as the q-clique extension of Latin Square graphs $LS_{a+1}(qn)$.

- In the following, *q* is a prime power.
- For each fixed q, there are infinite many n such that the twisted Latin square graph TLS(q, n) exists.

TLS(q, n) is co-edge-regular with the same parameters as the q-clique extension of Latin Square graphs $LS_{q+1}(qn)$.

• Notably, TLS(q, n) is level 3 or 4, whereas the q-clique extension of $LS_{q+1}(qn)$ is only level 2.

- In the following, *q* is a prime power.
- For each fixed q, there are infinite many n such that the twisted Latin square graph TLS(q, n) exists.

TLS(q, n) is co-edge-regular with the same parameters as the q-clique extension of Latin Square graphs $LS_{q+1}(qn)$.

• Notably, TLS(q, n) is level 3 or 4, whereas the q-clique extension of $LS_{q+1}(qn)$ is only level 2.

Theorem 2 (Ge-Koolen 2025+)

TLS(q, n) is cospectral with the q-clique extension of Latin Square graphs $LS_{q+1}(qn)$.

- In the following, *q* is a prime power.
- For each fixed q, there are infinite many n such that the twisted Latin square graph TLS(q, n) exists.

TLS(q,n) is co-edge-regular with the same parameters as the q-clique extension of Latin Square graphs $LS_{q+1}(qn)$.

• Notably, TLS(q, n) is level 3 or 4, whereas the q-clique extension of $LS_{q+1}(qn)$ is only level 2.

Theorem 2 (Ge-Koolen 2025+)

TLS(q,n) is cospectral with the q-clique extension of Latin Square graphs $LS_{q+1}(qn)$.

• The non-principal eigenvalues of TLS(q, n) are $q^2(n-1)-1$, -1, and $-q^2-1$, corresponding to the classical parameters $\alpha = b = q^2$.

H.-J. Ge and J.H. Koolen, On co-edge-regular graphs with 4 distinct eigenvalues. arXiv:2503.12025, 2025+.

Condition 2: Cospectrum with clique-extensions of Latin Square graph (4 e.v. and $\theta_2 = -1$)

Condition 2: Cospectrum with clique-extensions of Latin Square graph (4 e.v. and $\theta_2 = -1$)

Condition 3: smallest eigenvalue is $\theta_3 = -q^2 - 1$

Condition 2: Cospectrum with clique-extensions of Latin Square graph (4 e.v. and $\theta_2 = -1$)

Condition 3: smallest eigenvalue is $\theta_3 = -q^2 - 1$

Condition 1: Co-edge-regular with given parameters

Condition 2: Cospectrum with clique-extensions of Latin Square graph ($\theta_2 = -1$)

Condition 3: smallest eigenvalue is $\theta_3 = -q^2 - 1$

Problem 2

What is known about co-edge-regular graphs with at most five distinct eigenvalues and smallest eigenvalue equal to -3 or -4?

Outline

- Introduction
 - Definitions
 - Thin DRGs
- Our result
 - Twisted Latin Square graphs
 - Co-edge-regular graphs with $\lambda_{min} = -3$
 - Thin DRGs with b = 2
- Open problem

Theorem 3 (Ge-Koolen 2025+)

Let G be a co-edge-regular graph with parameters (v,k,μ) and non-principal eigenvalues in the set $\{\beta-\alpha-1,(2^D-2)\alpha-1,-1,-3\}$, where $v=(2^D-1)\beta$ and $k=\beta-1+(2^D-2)\alpha$. There exists a positive integer κ such that if $k\geq \kappa$, then one of the following holds:

- $\mathbf{0}$ $\mu = 6$, $\alpha = 2$, and G is the Latin square graph;
- 2 $\mu = 9$, $\alpha = 3$, and G is the Steiner graph;
- **3** $\mu = 4$, $\alpha = 2$, and G is the 2-clique extension of the $(\frac{k+3}{4} \times \frac{k+3}{4})$ -grid;
- $\mu=8,~\alpha=4,$ and G is the 2-clique extension of the triangular graph $T(\frac{k+7}{4});$
- **5** $\mu = 4$, $\alpha = 2$, and G is the 2-clique extension of the $(\frac{\beta}{2} \times (2^D 1))$ -grid.

Outline

- Introduction
 - Definitions
 - Thin DRGs
- Our result
 - Twisted Latin Square graphs
 - Co-edge-regular graphs with $\lambda_{min} = -3$
 - Thin DRGs with b = 2
- Open problem

Case 1: $\Gamma_1(x)$ is a strongly-regular graph

Case 1: $\Gamma_1(x)$ is a strongly-regular graph

Lemma 7 (Jurišić-Koolen-Terwilliger 2000)

If Γ is a distance-regular graph with classical parameters (D,b,α,β) . Then Γ is tight if and only if there exists a vertex x such that $\Gamma_1(x)$ is connected strongly-regular with eigenvalues $\{a_1,\beta-\alpha-1,-b-1\}$.

Case 1: $\Gamma_1(x)$ is a strongly-regular graph

Lemma 7 (Jurišić-Koolen-Terwilliger 2000)

If Γ is a distance-regular graph with classical parameters (D,b,α,β) . Then Γ is tight if and only if there exists a vertex x such that $\Gamma_1(x)$ is connected strongly-regular with eigenvalues $\{a_1,\beta-\alpha-1,-b-1\}$.

Theorem 8 (Koolen-Abdullah-Gebremichel-Lee 2024)

Let Γ be a tight distance-regular graph with classical parameters (D,b,α,β) . If $D \ge 10$, then one of the following holds:

- Γ is a Johnson graph J(2D, D),
- Γ is a halved ℓ -cube where $\ell \in \{2D, 2D+1\}$,

A. Jurišić and J. H. Koolen and P. Terwilliger, Tight distance-regular graphs. J. Algebraic Combin., 2000.

J.H. Koolen and M. Abdullah and B. Gebremichel and J.-H. Lee, Towards a classification of 1-homogeneous distance-regular graphs with positive intersection number a_1 , 2024.

Case 2: $\Gamma_1(x)$ has 4 distinct eigenvalues

Case 2: $\Gamma_1(x)$ has 4 distinct eigenvalues

Theorem 9 (Ge-Koolen 2025+)

Let Γ be a thin Q-polynomial DRG with classical parameters (D,b,α,β) , where $D \geq 12$, $b \geq 2$ and $\alpha > 0$. Assume that $\Gamma_1(x)$ is (b_0,a_1,μ) -co-edge-regular with exactly four eigenvalues $a_1 = \theta_0 > \theta_1 > -1 > -b-1$. If $\mu = 2\alpha$. Then Γ is the Grassmann graph $J_{\alpha}(2D,D)$.

Case 2: $\Gamma_1(x)$ has 4 distinct eigenvalues

Theorem 9 (Ge-Koolen 2025+)

Let Γ be a thin Q-polynomial DRG with classical parameters (D,b,α,β) , where $D\geq 12,\,b\geq 2$ and $\alpha>0$. Assume that $\Gamma_1(x)$ is (b_0,a_1,μ) -co-edge-regular with exactly four eigenvalues $a_1=\theta_0>\theta_1>-1>-b-1$. If $\mu=2\alpha$. Then Γ is the Grassmann graph $J_q(2D,D)$.

Theorem 10 (Ge-Koolen 2025+)

Let Γ be a thin Q-polynomial DRG with classical parameters (D,b,α,β) , where $D\geq 12,\,b\geq 2$ and $\alpha>0$. If $\Gamma_1(x)$ has exactly four eigenvalues, then it must contains -1 as an eigenvalue.

Brouwer, A.E. and Cohen, A.M. and Neumaier, A., Distance-Regular Graphs. Springer-Verlag, 1989.

Case 3: $\Gamma_1(x)$ is a clique-extensions of $p \times q$ -grid

Case 3: $\Gamma_1(x)$ is a clique-extensions of $p \times q$ -grid

Theorem 11 (Numata-Cohen-Cooperstein)

Let Γ be a finite connected graph such that

- $\mu_{\Gamma}(x,y) = \Gamma[N(x) \cap N(y)]$ is a non-degenerate grid for every pair of vertices x and y with distance 2.
- ② If $\{x,y,z\} \subset V(\Gamma)$ is an independent set, then $N(x) \cap N(y) \cap N(z)$ is an independent set.

Then Γ is isomorphic to one of the following graphs:

- A complete graph K_t,
- A Johnson graph J(n,k),
- A folded Johnson graph,
- A Grassmann graph $J_{\alpha}(n, D)$.

Theorem 4 (Ge-Koolen 2025+)

Let Γ be a thin Q-polynomial DRG with classical parameters (D,b,α,β) , where $D \ge 12$, b = 2 and $\alpha \ge 0$.

- α = 0 and Γ is a dual polar graph;
- ② $\alpha = 2$ and Γ is a Grassmann graph $J_2(n, D)$.

Let G be a co-edge-regular graph with level t and exactly d+1 distinct eigenvalues. Is t < f(d) bounded by a function of d? Even for d = 3 we do not know it.

Let G be a co-edge-regular graph with level t and exactly d+1 distinct eigenvalues. Is $t \le f(d)$ bounded by a function of d? Even for d=3 we do not know it.

Problem 4

Let $\Gamma_1(x)$ be a local graph of a thin Q-polynomial DRG. If $\Gamma_1(x)$ has only four distinct eigenvalues, can we show that its level is only 2.

Let G be a co-edge-regular graph with level t and exactly d+1 distinct eigenvalues. Is $t \le f(d)$ bounded by a function of d? Even for d=3 we do not know it.

Problem 4

Let $\Gamma_1(x)$ be a local graph of a thin Q-polynomial DRG. If $\Gamma_1(x)$ has only four distinct eigenvalues, can we show that its level is only 2.

Problem 5

Does there exist a function $\mu = \mu(D, b, \alpha, \beta)$ such that $\Gamma_1(x)$ is co-edge-regular with parameters (b_0, a_1, μ) .

Let G be a co-edge-regular graph with level t and exactly d+1 distinct eigenvalues. Is $t \le f(d)$ bounded by a function of d? Even for d=3 we do not know it.

Problem 4

Let $\Gamma_1(x)$ be a local graph of a thin Q-polynomial DRG. If $\Gamma_1(x)$ has only four distinct eigenvalues, can we show that its level is only 2.

Problem 5

Does there exist a function $\mu = \mu(D, b, \alpha, \beta)$ such that $\Gamma_1(x)$ is co-edge-regular with parameters (b_0, a_1, μ) .

Thanks for your attention!

