Four bases for the Onsager Lie algebra related by a $\mathbb{Z}_2 \times \mathbb{Z}_2$ action

Jae-Ho Lee

University of North Florida

TerwilligerFest – Combinatorics around the q-Onsager Algebra Kranjska Gora, Slovenia June 26, 2025

The Onsager Lie algebra

Let \mathbb{F} denote a field of characteristic zero.

Definition (Onsager 1944, Perk 1987)

Let O denote the Lie algebra over $\mathbb F$ with generators A,B and relations

$$[A, [A, [A, B]]] = 4[A, B], \tag{1}$$

$$[B, [B, A]] = 4[B, A].$$
 (2)

We call O the Onsager Lie algebra. We call A, B the standard generators for O.

The relations (1), (2) are called the Dolan-Grady relations.

The tetrahedron algebra

The Onsager Lie algebra O is closely related to a Lie algebra \boxtimes , called the tetrahedron algebra. Define the set $\mathbb{I}=\{0,1,2,3\}$.

Definition (Hartwig, Terwilliger 2007)

Let oxtimes denote the Lie algebra over $\Bbb F$ that has generators

$$\{x_{ij} \mid i, j \in \mathbb{I}, \quad i \neq j\}$$

and the following relations:

(i) For distinct $i, j \in \mathbb{I}$,

$$x_{ij} + x_{ji} = 0.$$

(ii) For mutually distinct $h, i, j \in \mathbb{I}$,

$$[x_{hi}, x_{ij}] = 2x_{hi} + 2x_{ij}.$$

(iii) For mutually distinct $h, i, j, k \in \mathbb{I}$,

$$[x_{hi}, [x_{hi}, [x_{hi}, x_{jk}]]] = 4[x_{hi}, x_{jk}].$$

We call \boxtimes the tetrahedron algebra, and x_{ij} the standard generators for \boxtimes .

An S_4 -action on \boxtimes

• Consider the symmetric group S_4 on the set $\mathbb{I} = \{0, 1, 2, 3\}$, with generators

$$\rho = (12)(30), \quad \tau = (12), \quad \mu = (23)(10), \quad \varphi = (123).$$

• The group S_4 acts on the generators x_{ij} of \boxtimes by permuting indices:

$$\beta(x_{ij}) = x_{\beta(i)\beta(j)} \qquad (\beta \in S_4, \ i \neq j \in \mathbb{I}).$$

 This action induces an injective group homomorphism (Hartwig, Terwilliger 2007):

$$S_4 \hookrightarrow \operatorname{Aut}(\boxtimes)$$
.

Relationship between O and \boxtimes (Hartwig, Terwilliger 2007)

 \bullet For mutually distinct $h,i,j,k\in\mathbb{I},$ there exists an injective Lie algebra homomorphism from O to \boxtimes that sends

$$A \to x_{ij}, \qquad B \to x_{hk}.$$

- Call the image of O under this homomorphism an Onsager subalgebra of \boxtimes .
- Let \mathbb{O} , \mathbb{O}' , \mathbb{O}'' be the subalgebras of \boxtimes such that

$$0 = \langle x_{ij}, x_{hk} \rangle, \qquad 0' = \langle x_{jk}, x_{hi} \rangle, \qquad 0'' = \langle x_{ki}, x_{hj} \rangle.$$

Each of \mathbb{O} , \mathbb{O}' , \mathbb{O}'' is isomorphic to O.

ullet The \mathbb{F} -vector space oxtimes satisfies

$$\boxtimes = 0 + 0' + 0'' \qquad \text{(direct sum)}$$

(Illustration)

The three-point \mathfrak{sl}_2 loop algebra $L(\mathfrak{sl}_2)^+$

Recall

• The Lie algebra \mathfrak{sl}_2 over \mathbb{F} has a basis e, f, h and Lie brackets

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

• The Lie algebra \mathfrak{sl}_2 has another basis called the equitable basis x, y, z (Hartwig, Terwilliger 2007):

$$x = 2e - h, \qquad y = -2f - h, \qquad z = h,$$

with Lie brackets

$$[x,y] = 2x + 2y,$$
 $[y,z] = 2y + 2z,$ $[z,x] = 2z + 2x.$

Define

$$A = \mathbb{F}[t, t^{-1}, (t-1)^{-1}].$$

- There exists a unique \mathbb{F} -algebra automorphism \prime of $\mathcal A$ that sends t to $1-t^{-1}$.
- Note that

$$t' = 1 - t^{-1}, t'' = (1 - t)^{-1}, t''' = t.$$

Definition (Hartwig, Terwilliger 2007)

Let $L(\mathfrak{sl}_2)^+$ denote the Lie algebra over $\mathbb F$ consisting of the $\mathbb F$ -vector space

$$\mathfrak{sl}_2 \otimes \mathcal{A}, \qquad \otimes = \otimes_{\mathbb{F}}$$

and Lie bracket

$$[u \otimes a, v \otimes b] = [u, v] \otimes ab, \qquad u, v \in \mathfrak{sl}_2, \quad a, b \in \mathcal{A}.$$

We call $L(\mathfrak{sl}_2)^+$ the three-point \mathfrak{sl}_2 loop algebra.

• Note that the algebra $L(\mathfrak{sl}_2)^+$ is a right \mathcal{A} -module with the action map:

$$L(\mathfrak{sl}_2)^+ \times \mathcal{A} \longrightarrow L(\mathfrak{sl}_2)^+, \qquad (u \otimes a, b) \longmapsto u \otimes ab.$$

The elements

$$u\otimes 1,\quad u\otimes t^n,\quad u\otimes (t')^n,\quad u\otimes (t'')^n,\qquad u\in \{x,y,z\},\quad n\in \mathbb{N}^+$$
 form a basis for $L(\mathfrak{sl}_2)^+.$

Lemma (Hartwig, Terwilliger 2007)

There exists a unique Lie algebra isomorphism

$$\sigma: \boxtimes \longrightarrow L(\mathfrak{sl}_2)^+$$

that sends

$$x_{12} \longmapsto x \otimes 1,$$
 $x_{03} \longmapsto y \otimes t + z \otimes (t-1),$
 $x_{23} \longmapsto y \otimes 1,$ $x_{01} \longmapsto z \otimes t' + x \otimes (t'-1),$
 $x_{31} \longmapsto z \otimes 1,$ $x_{02} \longmapsto x \otimes t'' + y \otimes (t''-1),$

where x,y,z is the equitable basis for \mathfrak{sl}_2 .

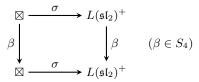
We call x_{ij}^{σ} the standard generators for $L(\mathfrak{sl}_2)^+$.

An S_4 -action on $L(\mathfrak{sl}_2)^+$ (Elduque, 2007)

- Recall the S_4 -action on \boxtimes and the embedding $S_4 \hookrightarrow \operatorname{Aut}(\boxtimes)$.
- Using the Lie algebra isomorphism $\sigma: \boxtimes \to L(\mathfrak{sl}_2)^+$, an S_4 -action is induced on $L(\mathfrak{sl}_2)^+$ as group automorphisms.
- For $\beta \in S_4$ and the standard generators x_{ij}^{σ} in $L(\mathfrak{sl}_2)^+$,

$$\beta(x_{ij}^{\sigma}) = x_{\beta(i)\beta(j)}^{\sigma} \qquad (i, j \in \mathbb{I}, \quad i \neq j).$$

In other words, the following diagram commutes:



Actions of ρ and τ on $L(\mathfrak{sl}_2)^+$

Recall $\rho = (12)(30)$ and $\tau = (12)$.

ullet ho is the automorphism of $L(\mathfrak{sl}_2)^+$ given by

$$\rho(u \otimes a) = \rho(u \otimes 1)a$$

for all $u \in \mathfrak{sl}_2$ and $a \in \mathcal{A}$, where

$$\rho(x \otimes 1) = -x \otimes 1,$$

$$\rho(y \otimes 1) = (x \otimes 1 + z \otimes (1 - t))t^{-1},$$

$$\rho(z \otimes 1) = (x \otimes 1 + y \otimes t)(1 - t)^{-1}.$$

• $\tau = \tau_{\mathfrak{sl}_2} \otimes \tau_{\mathcal{A}}$ is the automorphism of $L(\mathfrak{sl}_2)^+$ given by

$$au(u\otimes a)= au_{\mathfrak{sl}_2}(a)\otimes au_{\mathcal{A}}(a)$$

for all $u\in\mathfrak{sl}_2$ and $a\in\mathcal{A}$, where $\tau_{\mathfrak{sl}_2}$ is the order 2 automorphism of \mathfrak{sl}_2 given by

$$\tau_{\mathfrak{sl}_2}(x) = -x, \qquad \tau_{\mathfrak{sl}_2}(y) = -z, \qquad \tau_{\mathfrak{sl}_2}(z) = -y,$$

and τ_A is the order 2 automorphism of A determined by $\tau_A(t) = 1 - t$.

Actions of μ and φ on $L(\mathfrak{sl}_2)^+$

Recall $\mu = (23)(10)$ and $\varphi = (123)$.

 \bullet μ is the automorphism of $L(\mathfrak{sl}_2)^+$ given by

$$\mu(u \otimes a) = \mu(u \otimes 1)a$$

for all $u \in \mathfrak{sl}_2$ and $a \in \mathcal{A}$, where

$$\mu(x \otimes 1) = y \otimes t + z \otimes (t - 1),$$

$$\mu(y \otimes 1) = -y \otimes 1,$$

$$\mu(z \otimes 1) = (x \otimes 1 + y \otimes t)(t - 1)^{-1}.$$

• $\varphi = \varphi_{\mathfrak{sl}_2} \otimes \varphi_{\mathcal{A}}$ is the automorphism of $L(\mathfrak{sl}_2)^+$ given by

$$\varphi(u\otimes a)=\varphi_{\mathfrak{sl}_2}(a)\otimes\varphi_{\mathcal{A}}(a)$$

for all $u\in\mathfrak{sl}_2$ and $a\in\mathcal{A}$, where $\varphi_{\mathfrak{sl}_2}$ is the order 3 automorphism of \mathfrak{sl}_2 given by

$$\varphi_{\mathfrak{sl}_2}(x) = y, \qquad \varphi_{\mathfrak{sl}_2}(y) = z, \qquad \varphi_{\mathfrak{sl}_2}(z) = x,$$

and φ_A is the order 3 automorphism of A determined by $\varphi_A(t) = 1 - t^{-1}$.

Onsager subalgebras of $L(\mathfrak{sl}_2)^+$

- ullet Recall the Onsager Lie algebra O with the standard generators A and B.
- By an Onsager subalgebra of $L(\mathfrak{sl}_2)^+$, we mean the σ -image of an Onsager subalgebra of \boxtimes .
- For the rest of this talk, we identify O with one of the three Onsager subalgebras of $L(\mathfrak{sl}_2)^+$, namely,

$$O = \langle A, B \rangle \subset L(\mathfrak{sl}_2)^+,$$

where

$$A = x_{12}^{\sigma} = x \otimes 1, \qquad B = x_{03}^{\sigma} = y \otimes t + z \otimes (t - 1).$$

The subgroup G of S_4

Define the subgroup G of S_4 :

$$G = \langle \rho, \tau \rangle \approx \mathbb{Z}_2 \times \mathbb{Z}_2,$$

where $\rho = (12)(30)$ and $\tau = (12)$.

Lemma

Recall the standard generators A, B of O. Then ρ , τ act on A, B as follows:

$$\rho(A) = -A, \qquad \rho(B) = -B,$$

$$\tau(A) = A, \qquad \tau(B) = -B.$$

Moreover, O is invariant under the G-action.

Remark:

- The action of $\varphi = (123)$ on O was studied (L., 2024).
- The action of $\mu = (23)(10)$ fixes O and interchanges A and B.

The x_{ij} -like elements in \boxtimes

Defintion

By an x_{ij} -like element in \boxtimes , we mean an element ξ in \boxtimes that satisfies the following conditions:

$$[x_{ij}, \xi] = 0,$$

$$[x_{hk}, [x_{hk}, [x_{hk}, \xi]]] = 4[x_{hk}, \xi],$$

where $h,i,j,k\in\mathbb{I}$ are mutually distinct .

- X_{ij} : the subset of \boxtimes consisting of all x_{ij} -like elements in \boxtimes .
- Note that X_{ij} is a subspace of \boxtimes .

Lemma

For mutually distinct $h,i,j,k\in\mathbb{I}$, the vector space \boxtimes satisfies

$$\boxtimes = X_{kh} + X_{hi} + X_{ij}$$
 (direct sum).

Proof. Sufficient to show that $L(\mathfrak{sl}_2)^+ = X_{03}^{\sigma} + X_{31}^{\sigma} + X_{12}^{\sigma}$ is a direct sum.

Consider the decomposition:

$$\boxtimes = X_{03} + X_{31} + X_{12}.$$

We will use this decomposition to analyze the structure of the Onsager Lie algebra ${\cal O}$ and present four decompositions of ${\cal O}$.

To this end, we carry out our computations in $L(\mathfrak{sl}_2)^+$.

Recall the Onsager subalgebra $O = \langle A, B \rangle$ of $L(\mathfrak{sl}_2)^+$, where

$$A = x_{12}^{\sigma} = x \otimes 1, \qquad B = x_{03}^{\sigma} = y \otimes t + z \otimes (t-1).$$

Lemma

We have

$$O = (X_{03}^{\sigma} \cap O) + (X_{31}^{\sigma} \cap O) + (X_{12}^{\sigma} \cap O) \qquad \text{(direct sum)}.$$

The following (i)-(iii) hold.

- (i) $X_{03}^{\sigma} \cap O$ has a basis $\{(y \otimes t + z \otimes (t-1))t^n\}_{n \in \mathbb{N}}$.
- (ii) $X_{31}^{\sigma} \cap O$ has a basis $\{z \otimes (t-1)t^n\}_{n \in \mathbb{N}}$.
- (iii) $X_{12}^{\sigma} \cap O$ has a basis $\{x \otimes t^n\}_{n \in \mathbb{N}}$.

By the G-action on O, we have

$$\begin{split} O &= O^{\rho} = (X_{30}^{\sigma} \cap O) + (X_{02}^{\sigma} \cap O) + (X_{21}^{\sigma} \cap O), \\ O &= O^{\tau} = (X_{03}^{\sigma} \cap O) + (X_{32}^{\sigma} \cap O) + (X_{21}^{\sigma} \cap O), \\ O &= O^{\rho\tau} = (X_{30}^{\sigma} \cap O) + (X_{01}^{\sigma} \cap O) + (X_{12}^{\sigma} \cap O). \end{split}$$

Each of the three sums above is direct.

Four direct sum decompositions of O

Corollary

In \boxtimes , we have

$$O = (X_{03} \cap O) + (X_{31} \cap O) + (X_{12} \cap O)$$

= $(X_{30} \cap O) + (X_{02} \cap O) + (X_{21} \cap O)$
= $(X_{03} \cap O) + (X_{32} \cap O) + (X_{21} \cap O)$
= $(X_{30} \cap O) + (X_{01} \cap O) + (X_{12} \cap O)$.

Each of the four sums above is direct.

Next goal: For each decomposition, we provide a basis for each summand.

A basis [0312] for O

Consider the direct sum decomposition of *O*:

$$\begin{split} O &= (X_{03}^{\sigma} \cap O) + (X_{31}^{\sigma} \cap O) + (X_{12}^{\sigma} \cap O) \\ &= x_{03}^{\sigma} \mathbb{F}[t] + x_{31}^{\sigma}(t-1)\mathbb{F}[t] + x_{12}^{\sigma} \mathbb{F}[t]. \end{split}$$

Define the elements $A_i^{\uparrow\uparrow}, B_i^{\uparrow\uparrow}, \psi_i^{\uparrow\uparrow} \in L(\mathfrak{sl}_2)^+$ as follows.

$$A_i^{\uparrow\uparrow} := x_{12}^{\sigma}(t-1)^i, \quad B_i^{\uparrow\uparrow} := x_{03}^{\sigma}(t-1)^i, \quad \psi_i^{\uparrow\uparrow} := x_{31}^{\sigma}(t-1)^i \quad (i \geq 0).$$

Observe that

$$A_0^{\uparrow\uparrow}=x_{12}^{\sigma}=A, \qquad B_0^{\uparrow\uparrow}=x_{03}^{\sigma}=B, \qquad \psi_0^{\uparrow\uparrow}=x_{31}^{\sigma}\notin O.$$

Lemma

Subspace U	$X_{03}^{\sigma} \cap O$	$X_{31}^{\sigma}\cap O$	$X_{12}^{\sigma}\cap O$
Basis for U	$\{B_i^{\uparrow\uparrow}\}_{i\in\mathbb{N}}$	$\{\psi_{i+1}^{\uparrow\uparrow}\}_{i\in\mathbb{N}}$	$\{A_i^{\uparrow\uparrow}\}_{i\in\mathbb{N}}$

A basis [0312] for O (Cont'd)

Theorem (L. 2025+)

The Onsager Lie algebra O has a basis

$$A_i^{\uparrow\uparrow}, \qquad B_i^{\uparrow\uparrow}, \qquad \psi_{i+1}^{\uparrow\uparrow}, \qquad \qquad i \in \mathbb{N},$$

where $A_0^{\uparrow\uparrow}=A$, $B_0^{\uparrow\uparrow}=B$.

The Lie bracket acts on this basis as follows. For $i, j \in \mathbb{N}$,

$$\begin{split} &[A_i^{\uparrow\uparrow},A_j^{\uparrow\uparrow}]=0,\\ &[B_i^{\uparrow\uparrow},B_j^{\uparrow\uparrow}]=0,\\ &[\psi_i^{\uparrow\uparrow},\psi_j^{\uparrow\uparrow}]=0,\\ &[\psi_i^{\uparrow\uparrow},A_j^{\uparrow\uparrow}]=2\psi_{i+j}^{\uparrow\uparrow}+2A_{i+j}^{\uparrow\uparrow},\\ &[B_i^{\uparrow\uparrow},\psi_j^{\uparrow\uparrow}]=2B_{i+j}^{\uparrow\uparrow}+2\psi_{i+j}^{\uparrow\uparrow},\\ &[A_i^{\uparrow\uparrow},B_j^{\uparrow\uparrow}]=2A_{i+j}^{\uparrow\uparrow}+2B_{i+j}^{\uparrow\uparrow}-4\psi_{i+j+1}^{\uparrow\uparrow}. \end{split}$$

We denote this basis by [0312].

A basis [0312] for O (Cont'd)

By Theorem, the basis $\left[0312\right]$ for O is recursively obtained in the following order

$$A_0^{\uparrow\uparrow}, \quad B_0^{\uparrow\uparrow}, \quad \psi_1^{\uparrow\uparrow}, \quad A_1^{\uparrow\uparrow}, \quad B_1^{\uparrow\uparrow}, \quad \psi_2^{\uparrow\uparrow}, \quad A_2^{\uparrow\uparrow}, \quad B_2^{\uparrow\uparrow}, \quad \psi_3^{\uparrow\uparrow}, \quad \dots$$

using $A_0^{\uparrow\uparrow}=A$, $B_0^{\uparrow\uparrow}=B$ and the following equations for $i\geq 1$:

$$\begin{split} \psi_i^{\uparrow\uparrow} &= \frac{A_{i-1}^{\uparrow\uparrow}}{2} + \frac{B_{i-1}^{\uparrow\uparrow}}{2} - \frac{[A_{i-1}^{\uparrow\uparrow}, B]}{4}, \\ A_i^{\uparrow\uparrow} &= \frac{[\psi_i^{\uparrow\uparrow}, A]}{2} - \psi_i^{\uparrow\uparrow}, \\ B_i^{\uparrow\uparrow} &= \frac{[B, \psi_i^{\uparrow\uparrow}]}{2} - \psi_i^{\uparrow\uparrow}. \end{split}$$

Example: $A_i^{\uparrow\uparrow}$, $B_i^{\uparrow\uparrow}$, $\psi_{i+1}^{\uparrow\uparrow}$ for $0 \le i \le 2$

Set

$$A_0^{\uparrow\uparrow} = A, \qquad \qquad B_0^{\uparrow\uparrow} = B.$$

Then,

$$\begin{split} &\psi_1^{\uparrow\uparrow} = \frac{A}{2} + \frac{B}{2} - \frac{1}{4}[A,B], \\ &A_1^{\uparrow\uparrow} = -\frac{A}{2} - \frac{B}{2} - \frac{1}{8}[A,[B,A]], \\ &B_1^{\uparrow\uparrow} = -\frac{A}{2} - \frac{B}{2} - \frac{1}{8}[B,[A,B]], \\ &\psi_2^{\uparrow\uparrow} = -\frac{A}{2} - \frac{B}{2} - \frac{1}{8}[B,A] - \frac{1}{16}[A,[B,A]] - \frac{1}{16}[B,[A,B]] - \frac{1}{32}[B,[A,[B,A]]], \\ &A_2^{\uparrow\uparrow} = \frac{A}{2} + \frac{B}{2} + \frac{1}{8}[A,[B,A]] + \frac{1}{16}[B,[A,B]] + \frac{1}{64}[A,[B,[A,B,A]]], \\ &B_2^{\uparrow\uparrow} = \frac{A}{2} + \frac{B}{2} + \frac{1}{8}[B,[A,B]] + \frac{1}{16}[A,[B,A]] + \frac{1}{64}[B,[A,[B,A,B]]], \\ &\psi_3^{\uparrow\uparrow} = \frac{A}{2} + \frac{B}{2} + \frac{1}{16}[B,A] + \frac{3}{32}[A,[B,A]] + \frac{3}{32}[B,[A,B]] + \frac{1}{128}[B,[A,B,A]] + \frac{1}{128}[A,[B,A,B]] + \frac{1}{128}[B,[A,B,A]]] + \frac{1}{128}[B,[A,B,A]]] + \frac{1}{128}[B,[A,B,A]]] + \frac{1}{128}[B,[A,B,A]]] + \frac{1}{128}[B,[A,B,A]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]]] + \frac{1}{128}[B,[A,B,A]]]] + \frac{1}{128}[B,[A,B,A]]]$$

A basis [3021] for O

Apply
$$\rho=(12)(03)$$
 to $A_i^{\uparrow\uparrow}$, $B_i^{\uparrow\uparrow}$, $\psi_i^{\uparrow\uparrow}$ $(i\geq 0)$:

$$\begin{split} A_i^{\uparrow\uparrow} &= x_{12}^\sigma(t-1)^i & A_i^{\downarrow\downarrow} := x_{21}^\sigma(t-1)^i \\ B_i^{\uparrow\uparrow} &= x_{03}^\sigma(t-1)^i & \xrightarrow{\rho} & B_i^{\downarrow\downarrow} := x_{30}^\sigma(t-1)^i \\ \psi_i^{\uparrow\uparrow} &= x_{31}^\sigma(t-1)^i & \psi_i^{\downarrow\downarrow} := x_{02}^\sigma(t-1)^i \end{split}$$

Note that

The Onsager Lie algebra O has a basis

$$A_i^{\downarrow\downarrow}, \qquad B_i^{\downarrow\downarrow}, \qquad \psi_{i+1}^{\downarrow\downarrow}, \qquad \qquad i \in \mathbb{N},$$

where
$$A_0^{\downarrow\downarrow}=-A$$
, $B_0^{\downarrow\downarrow}=-B$.

We denote this basis by [3021].

A basis [0321] for O

Apply
$$au=(12)$$
 to $A_i^{\uparrow\uparrow}$, $B_i^{\uparrow\uparrow}$, $\psi_i^{\uparrow\uparrow}$ $(i\geq 0)$:

$$\begin{split} A_i^{\uparrow\uparrow} &= x_{12}^\sigma(t-1)^i & A_i^{\downarrow\uparrow} := x_{21}^\sigma(-t)^i \\ B_i^{\uparrow\uparrow} &= x_{03}^\sigma(t-1)^i & \xrightarrow{\tau} & B_i^{\downarrow\uparrow} := x_{03}^\sigma(-t)^i \\ \psi_i^{\uparrow\uparrow} &= x_{31}^\sigma(t-1)^i & \psi_i^{\downarrow\uparrow} := x_{32}^\sigma(-t)^i \end{split}$$

Note that

$$\begin{array}{c|cccc} \text{Subspace U} & X_{03}^{\sigma} \cap O & X_{32}^{\sigma} \cap O & X_{21}^{\sigma} \cap O \\ \\ \text{Basis for U} & \{B_i^{\downarrow \uparrow}\}_{i \in \mathbb{N}} & \{\psi_{i+1}^{\downarrow \uparrow}\}_{i \in \mathbb{N}} & \{A_i^{\downarrow \uparrow}\}_{i \in \mathbb{N}} \end{array}$$

The Onsager Lie algebra O has a basis

$$A_i^{\downarrow\uparrow}, \qquad B_i^{\downarrow\uparrow}, \qquad \psi_{i+1}^{\downarrow\uparrow}, \qquad \qquad i \in \mathbb{N},$$

where
$$A_0^{\downarrow\uparrow}=-A$$
, $B_0^{\downarrow\uparrow}=B$.

We denote this basis by [0321].

A basis [3012] for O

Apply
$$\rho \tau = (03)$$
 to $A_i^{\uparrow\uparrow}$, $B_i^{\uparrow\uparrow}$, $\psi_i^{\uparrow\uparrow}$ $(i \ge 0)$:

$$\begin{split} A_i^{\uparrow\uparrow} &= x_{12}^\sigma(t-1)^i & A_i^{\uparrow\downarrow} := x_{12}^\sigma(-t)^i \\ B_i^{\uparrow\uparrow} &= x_{03}^\sigma(t-1)^i & \xrightarrow{-\rho\tau} & B_i^{\uparrow\downarrow} := x_{30}^\sigma(-t)^i \\ \psi_i^{\uparrow\uparrow} &= x_{31}^\sigma(t-1)^i & \psi_i^{\uparrow\downarrow} := x_{01}^\sigma(-t)^i \end{split}$$

Note that

The Onsager Lie algebra O has a basis

$$A_i^{\uparrow\downarrow}, \qquad B_i^{\uparrow\downarrow}, \qquad \psi_{i+1}^{\uparrow\downarrow}, \qquad \qquad i \in \mathbb{N},$$

where
$$A_0^{\uparrow\downarrow} = A$$
, $B_0^{\uparrow\downarrow} = -B$.

We denote this basis by [0321].

Table summarizing the four bases

[khij]	$X_{kh} \cap O$	$X_{hi} \cap O$	$X_{ij} \cap O$
[0312]	$\{B_i^{\uparrow\uparrow}\}_{i\in\mathbb{N}}$	$\{\psi_{i+1}^{\uparrow\uparrow}\}_{i\in\mathbb{N}}$	$\{A_i^{\uparrow\uparrow}\}_{i\in\mathbb{N}}$
[3021]	$\{B_i^{\downarrow\downarrow}\}_{i\in\mathbb{N}}$	$\{\psi_{i+1}^{\downarrow\downarrow}\}_{i\in\mathbb{N}}$	$\{A_i^{\downarrow\downarrow}\}_{i\in\mathbb{N}}$
[0321]	$\{B_i^{\downarrow\uparrow}\}_{i\in\mathbb{N}}$	$\{\psi_{i+1}^{\downarrow\uparrow}\}_{i\in\mathbb{N}}$	$\{A_i^{\downarrow\uparrow}\}_{i\in\mathbb{N}}$
[3012]	$\{B_i^{\uparrow\downarrow}\}_{i\in\mathbb{N}}$	$\{\psi_{i+1}^{\uparrow\downarrow}\}_{i\in\mathbb{N}}$	$\{A_i^{\uparrow\downarrow}\}_{i\in\mathbb{N}}$

• [khij]: a label that describes the direct sum decomposition of O:

$$O = (X_{kh} \cap O) + (X_{hi} \cap O) + (X_{ij} \cap O).$$

- The four main rows correspond to the four decompositions of O.
- For each entry of the table, the vectors displayed form a basis for the column-index summand in the row-index decomposition.
- ullet In each row, the union of the vectors displayed forms a basis for O.

The action of G on the basis is summarized in the following diagram:

$$[0312] \stackrel{\rho}{\longleftrightarrow} [3021]$$

$$\tau \downarrow \qquad \qquad \uparrow \tau$$

$$[0321] \stackrel{\rho}{\longleftrightarrow} [3012]$$

Moreover, A, B of O are expressed in the following basis elements:

basis	[0312]	[3021]	[0321]	[3012]
A	$A_0^{\uparrow\uparrow}$	$-A_0^{\downarrow\downarrow}$	$-A_0^{\downarrow\uparrow}$	$A_0^{\uparrow\downarrow}$
B	$B_0^{\uparrow\uparrow}$	$-B_0^{\downarrow\downarrow}$	$B_0^{\downarrow\uparrow}$	$-B_0^{\uparrow\downarrow}$

Next, we display the transition matrices between each pair of the four bases that are adjacent in the above diagram.

Transition matrices between [0312] and [3021]

Recall the bases for O:

$$[0312]: \quad \{A_i^{\uparrow\uparrow}, \quad B_i^{\uparrow\uparrow}, \quad \psi_{i+1}^{\uparrow\uparrow}\}_{i\in\mathbb{N}},$$

$$[3021]: \quad \{A_i^{\downarrow\downarrow}, \quad B_i^{\downarrow\downarrow}, \quad \psi_{i+1}^{\downarrow\downarrow}\}_{i\in\mathbb{N}},$$

The transition matrix from [0312] to [3021] is given as follows.

$$\begin{split} A_i^{\downarrow\downarrow} &= -A_i^{\uparrow\uparrow}, \\ B_i^{\downarrow\downarrow} &= -B_i^{\uparrow\uparrow}, \\ \psi_{i+1}^{\downarrow\downarrow} &= -A_i^{\uparrow\uparrow} - B_i^{\uparrow\uparrow} + \psi_{i+1}^{\uparrow\uparrow}. \end{split}$$

Moreover, the transition matrix from [3021] to [0312] is given as follows.

$$\begin{split} A_i^{\uparrow\uparrow} &= -A_i^{\downarrow\downarrow}, \\ B_i^{\uparrow\uparrow} &= -B_i^{\downarrow\downarrow}, \\ \psi_{i+1}^{\uparrow\uparrow} &= -A_i^{\downarrow\downarrow} - B_i^{\downarrow\downarrow} + \psi_{i+1}^{\downarrow\downarrow}. \end{split}$$

Transition matrices between [0321] and [3012]

Recall the bases for O:

$$[0321]: \quad \{A_i^{\downarrow\uparrow}, \quad B_i^{\downarrow\uparrow}, \quad \psi_{i+1}^{\downarrow\uparrow}\}_{i\in\mathbb{N}},$$
$$[3012]: \quad \{A_i^{\downarrow\downarrow}, \quad B_i^{\uparrow\downarrow}, \quad \psi_{i+1}^{\downarrow\downarrow}\}_{i\in\mathbb{N}}$$

The transition matrix from [0321] to [3012] is given as follows.

$$\begin{split} A_i^{\uparrow\downarrow} &= -A_i^{\downarrow\uparrow}, \\ B_i^{\uparrow\downarrow} &= -B_i^{\downarrow\uparrow}, \\ \psi_{i+1}^{\uparrow\downarrow} &= -A_i^{\downarrow\uparrow} - B_i^{\downarrow\uparrow} + \psi_{i+1}^{\downarrow\uparrow}. \end{split}$$

Moreover, the transition matrix from [3012] to [0321] is given as follows.

$$\begin{split} A_i^{\downarrow\uparrow} &= -A_i^{\uparrow\downarrow}, \\ B_i^{\downarrow\uparrow} &= -B_i^{\uparrow\downarrow}, \\ \psi_{i+1}^{\downarrow\uparrow} &= -A_i^{\uparrow\downarrow} - B_i^{\uparrow\downarrow} + \psi_{i+1}^{\uparrow\downarrow}. \end{split}$$

Transition matrices between [0312] and [0321]

The transition matrix from $\left[0312\right]$ to $\left[0321\right]$ is given as follows.

$$\begin{split} A_i^{\downarrow\uparrow} &= (-1)^{i+1} \sum_{j=0}^i \binom{i}{j} A_j^{\uparrow\uparrow}, \\ B_i^{\downarrow\uparrow} &= (-1)^i \sum_{j=0}^i \binom{i}{j} B_j^{\uparrow\uparrow}, \\ \psi_{i+1}^{\downarrow\uparrow} &= (-1)^i \sum_{i=0}^i \binom{i}{j} B_j^{\uparrow\uparrow} + (-1)^{i+1} \sum_{i=0}^i \binom{i}{j} \psi_{j+1}^{\uparrow\uparrow} \\ \end{split} \qquad (i \in \mathbb{N}).$$

Moreover, the transition matrix from [0321] to [0312] is given as follows.

$$\begin{split} A_i^{\uparrow\uparrow} &= (-1)^{i+1} \sum_{j=0}^i \binom{i}{j} A_j^{\downarrow\uparrow}, \\ B_i^{\uparrow\uparrow} &= (-1)^i \sum_{j=0}^i \binom{i}{j} B_j^{\downarrow\uparrow}, \\ \psi_{i+1}^{\uparrow\uparrow} &= (-1)^i \sum_{i=0}^i \binom{i}{j} B_j^{\downarrow\uparrow} + (-1)^{i+1} \sum_{i=0}^i \binom{i}{j} \psi_{j+1}^{\downarrow\uparrow} \\ \end{split} \qquad (i \in \mathbb{N}).$$

Transition matrices between [3021] and [3012]

The transition matrix from $\left[3021\right]$ to $\left[3012\right]$ is given as follows.

$$\begin{split} A_i^{\uparrow\downarrow} &= (-1)^{i+1} \sum_{j=0}^i \binom{i}{j} A_j^{\downarrow\downarrow}, \\ B_i^{\uparrow\downarrow} &= (-1)^i \sum_{j=0}^i \binom{i}{j} B_j^{\downarrow\downarrow}, \\ \psi_{i+1}^{\uparrow\downarrow} &= (-1)^i \sum_{i=0}^i \binom{i}{j} B_j^{\downarrow\downarrow} + (-1)^{i+1} \sum_{i=0}^i \binom{i}{j} \psi_{j+1}^{\downarrow\downarrow} \\ &\qquad (i \in \mathbb{N}). \end{split}$$

Moreover, the transition matrix from [3012] to [3021] is given as follows.

$$\begin{split} A_i^{\downarrow\downarrow} &= (-1)^{i+1} \sum_{j=0}^i \binom{i}{j} A_j^{\uparrow\downarrow}, \\ B_i^{\downarrow\downarrow} &= (-1)^i \sum_{j=0}^i \binom{i}{j} B_j^{\uparrow\downarrow}, \\ \psi_{i+1}^{\downarrow\downarrow} &= (-1)^i \sum_{i=0}^i \binom{i}{j} B_j^{\uparrow\downarrow} + (-1)^{i+1} \sum_{i=0}^i \binom{i}{j} \psi_{j+1}^{\uparrow\downarrow} \\ &\qquad (i \in \mathbb{N}). \end{split}$$

Summary

- We reviewed the definitions of the Onsager Lie algebra O, the tetrahedron algebra \boxtimes , and the three-point \mathfrak{sl}_2 loop algebra $L(\mathfrak{sl}_2)^+$.
- We showed that the vector space \boxtimes decomposes into a direct sum of three subspaces, each consisting of x_{ij} -like, x_{jk} -like, and x_{kh} -like elements.
- We obtained four direct sum decompositions of O, each with three summands.
- We examined the action of $G(\approx \mathbb{Z}_2 \times \mathbb{Z}_2)$ on these decompositions and provided a basis for each summand.
- ullet Moreover, we described the Lie bracket action on these bases and showed how they are recursively constructed from the standard generators A,B of O.
- ullet Finally we showed the action of G on these four bases and displayed some transition matrices among the bases.

Thank you for your attention.

31 / 32

Happy 70th Birthday, Professor Paul Terwilliger!

Celebrating a lifetime of inspiration, mathematical excellence, and lasting impact.