Eigenspace embeddings of imprimitive association schemes

Janoš Vidali

University of Ljubljana Faculty of Mathematics and Physics

June 26, 2025

Relation schemes

- Let X be a set of n vertices and $\mathcal{R} = \{R_i \mid i \in \mathcal{I}\}$ a set of symmetric relations partitioning X^2 such that $R_0 = \mathrm{id}_X \in \mathcal{R}$.
- ▶ A = (X, R) is said to be a *d-class relation scheme* if $|\mathcal{I}| = d + 1$.
- We define the *relation graphs* $\Gamma_i = (X, R_i)$ $(i \in \mathcal{I})$ and denote their adjacency matrices by $A_i \in \{0, 1\}^{X \times X}$.
- Note that for a subset $Y \subseteq X$, the *induced subscheme* $A|_Y = (Y, \mathcal{R}|_Y)$ is again a relation scheme.

Association schemes

- ▶ Let A = (X, R) be a *d*-class relation scheme.
- ▶ \mathcal{A} is said to be a *d-class association scheme* if there exist numbers p_{ij}^h $(h, i, j \in \mathcal{I})$ such that, for all $x, y \in X$,

$$x R_h y \Rightarrow |\{z \in X \mid x R_i z R_j y\}| = p_{ij}^h$$

- ▶ We call the numbers p_{ij}^h $(h, i, j \in \mathcal{I})$ the *intersection numbers*.
- ► The values $k_i = p_{ii}^0$ ($i \in \mathcal{I}$) are called the *valencies* of the relations of \mathcal{A} .

Examples

Bose-Mesner algebra

- ▶ The adjacency matrices of \mathcal{A} can be diagonalized simultaneously and they share d+1 eigenspaces $\{S_j \mid j \in \mathcal{J}\}$ with multiplicities m_j $(j \in \mathcal{J})$.
- ▶ Let $P \in \mathbb{R}^{\mathcal{J} \times \mathcal{I}}$ be a matrix with P_{ji} being the eigenvalue of A_i corresponding to the eigenspace S_j .
- ▶ Let $Q \in \mathbb{R}^{\mathcal{I} \times \mathcal{J}}$ be such that PQ = nI.
- We call P the eigenmatrix, and Q the dual eigenmatrix.
- ▶ The matrices $\{A_i \mid i \in \mathcal{I}\}$ are the basis of the *Bose-Mesner algebra* \mathcal{M} , which has a second basis $\{E_j \mid j \in \mathcal{J}\}$ of minimal idempotents for each eigenspace.

Krein parameters

► In the Bose-Mesner algebra M, the following relations are satisfied:

$$A_i = \sum_{j \in \mathcal{J}} P_{ji} E_j$$
 and $E_j = \frac{1}{n} \sum_{i \in \mathcal{I}} Q_{ij} A_i$.

We also have

$$A_i A_j = \sum_{h \in \mathcal{I}} p_{ij}^h A_h$$
 and $E_i \circ E_j = \frac{1}{n} \sum_{h \in \mathcal{J}} q_{ij}^h E_h$,

where o is the entrywise matrix product.

- ► The numbers q_{ij}^h are called the *Krein parameters* and are nonnegative algebraic real numbers.
- ► Each of the parameter sets p_{ij}^h , P, Q and q_{ij}^h determines the others.

Imprimitivity

- Let $\tilde{0} \subseteq \mathcal{I}$ be such that $R_{\tilde{0}} := \bigcup_{i \in \tilde{0}} R_i$ is an equivalence relation, and let $\tilde{X} = \{X_\ell \mid 1 \le \ell \le \tilde{n}\}$ be its equivalence classes.
- ▶ Then $|X_{\ell}| = \overline{n} \ (1 \le \ell \le \widetilde{n})$ such that $n = \overline{n} \cdot \widetilde{n}$, and the *subschemes* $\mathcal{A}|_{X_{\ell}} \ (1 \le \ell \le \widetilde{n})$ are association schemes with parameters determined by those of \mathcal{A} .
- ▶ This relation induces an equivalence relation on \mathcal{I} whose equivalence classes index the relations of the *quotient scheme* $\mathcal{A}/\tilde{0} = (\tilde{X}, \{\tilde{R}_{\tilde{i}} \mid i \in \mathcal{I}\})$, whose parameters are also determined by those of \mathcal{A} .
- ▶ A is called *imprimitive* if there is such a nontrivial imprimitivity set $\tilde{0}$ with $2 \le |\tilde{0}| \le d$.

Quotient-polynomial graphs (QPGs)

Definition ([Fio16])

An undirected graph $\Gamma = (X, R)$ with adjacency matrix A is *quotient-polynomial* if $\langle A \rangle$ is the Bose-Mesner algebra of an association scheme $\mathcal{A} = (X, \mathcal{R})$.

- ▶ Γ is a relational QPG if $R \in \mathcal{R}$.
- ► The parameters of a relational QPG are determined by its *parameter array* [HM24]

$$[[k_1, k_2, \dots, k_d], \\ [p_{11}^2, p_{11}^3, \dots p_{11}^d; p_{12}^3, p_{12}^4, \dots p_{12}^d; \dots; p_{1,d-2}^{d-1}, p_{1,d-2}^d; p_{1,d-1}^d]].$$

► Special case of QPGs: distance-regular graphs.

Tables of feasible parameter arrays

- Recently, tables of parameter arrays for relational QPGs have been published [HM23a].
- Each parameter array is marked as
 - existent, if a corresponding association scheme has been constructed.
 - nonexistent, if some existence condition is not met, or
 - feasible, if no construction has been found.
- Using sage-drg [Vid19], we check for many more existence conditions and show nonexistence for many cases marked as feasible.
- In some cases, we find constructions as products of smaller association schemes.
- ► We will consider cases that remain feasible after performing the above checks.

Spherical representations

- ▶ Let S_j be an eigenspace of an association scheme $A = (X, \mathcal{R} = \{R_i \mid i \in \mathcal{I}\})$.
- ► The vectors $\mathbf{u}_{x} = \sqrt{\frac{n}{m_{j}}} E_{j} \mathbb{1}_{x} \ (x \in X)$ are unit vectors such that

$$(x,y) \in R_i \Rightarrow \langle u_x, u_y \rangle = \frac{Q_{ij}}{m_j}.$$

The map $x \mapsto u_x$ is called a *spherical representation* of A in S_j .

Embeddings of subschemes

- ▶ Let $\mathcal{A}' = (Y, \mathcal{R}' = \{R'_i \mid i \in \mathcal{I}'\})$ be a relation scheme such that $Y \subseteq X$ and $\mathcal{I}' \subseteq \mathcal{I}$.
- ▶ A' admits an embedding into S_j if there exist unit vectors $u'_x \in S_j$ $(x \in Y)$ such that

$$(x,y) \in R'_i \Rightarrow \langle u'_x, u'_y \rangle = \frac{Q_{ij}}{m_i}.$$

- ► Clearly, a relation scheme isomorphic to $A|_Y$ admits an embedding into S_i .
- ▶ Conversely, if \mathcal{A}' does not admit an embedding into S_j , then \mathcal{A}' is not isomorphic to a subscheme of \mathcal{A} .

Finding embeddings

- Let $U \in \mathbb{R}^{Y \times m_j}$ be a matrix whose rows contain coefficients of the vectors u'_{\times} w.r.t. an orthonormal basis of S_j .
- We may attempt to build *U* incrementally and thus obtain a matrix in reduced column echelon form.
- ▶ If $Q \in \mathbb{F}^{\mathcal{I} \times \mathcal{J}}$ for some field $\mathbb{F} \subseteq \mathbb{R}$, then the *h*-th column of *U* has entries from $\mathbb{F}\sqrt{\beta_h}$ for some $\beta_h \in \mathbb{F}$ with $\beta_h > 0$.

Embeddings of imprimitive association schemes

- ▶ Let \mathcal{A} be imprimitive with imprimitivity set $\tilde{0}$, and let $\{X_{\ell} \mid 1 \leq \ell \leq \tilde{n}\}$ be the equivalence classes of $R_{\tilde{0}}$.
- If the subschemes $\mathcal{A}|_{X_{\ell}}$ $(1 \leq \ell \leq \tilde{n})$ are characterized by their parameters, this gives us their embeddings into eigenspaces of \mathcal{A} .
- We may attempt to find *candidate subschemes* on a *small number* of X_{ℓ} $(1 \le \ell \le \tilde{n})$ such that they admit embeddings into eigenspaces of \mathcal{A} .
- If there are no candidates for an induced subscheme on a subset of X, then A does not exist.
- ▶ On the other hand, if we find an embedding such that *U* has full column rank, then we may consider all candidates vectors for the remaining vertices of *A*.

Results

Using such a technique, we derive the following results.

- Nonexistence for two parameter sets of 4-class association schemes and one parameter set of 5-class association schemes.
- Uniqueness for two parameter sets of 5-class association schemes.

QPG with parameter array [[12, 4, 4, 24], [6, 0, 3; 0, 1; 2]]

- A has 45 vertices
 and is imprimitive with imprimitivity set {0, 2, 3}.
- ► The five subschemes are isomorphic to the Hamming scheme H(2,3).
- ▶ The graphs $\Gamma_1|_{X_{\ell} \cup X_{\ell'}}$ are isomorphic to $3K_{3,3}$.
- ► There are six nonisomorphic candidates for $A|_{X_1 \cup X_2 \cup X_3}$, but only one admits an embedding into S_1 .
- ► The resulting matrix of coefficients has full column rank, but no further vectors can be found among 216 candidates.
- ▶ We therefore conclude that A does not exist.

QPG with parameter array [[8, 8, 4, 24], [1, 0, 2; 2, 1; 1]]

- ▶ A has 45 vertices, is imprimitive with imprimitivity set {0,3} and has noncyclotomic eigenvalues [HM23b].
- ▶ The nine subschemes are 5-cliques.
- ► The graph Γ_1 is triangle-free, while Γ_2 does have triangles; their restriction to two subschemes are matchings.
- ▶ We find 6665 nonisomorphic candidates for $A|_{X_1 \cup X_2 \cup X_3}$, of which 100 admit an embedding into S_1 .
- ► The resulting matrices of coefficients have full column rank, but no further vectors can be found among 100 · 8000 candidates.
- We therefore conclude that A does not exist.

QPG with array [[6, 18, 2, 6, 12], [1, 0, 2, 0; 0, 0, 3; 0, 1; 2]]

- A has 45 vertices and is imprimitive with $\tilde{0} = \{0, 3, 4\}$, $\tilde{1} = \{1, 5\}$, $\tilde{2} = \{2\}$.
- ▶ The five subschemes are isomorphic to the scheme of $K_{3\times3}$, and the quotient scheme is the cyclic scheme C_5 .
- ► The graph $\Gamma_1|_{X_1 \cup X_2}$ such that $(X_1, X_2) \in \tilde{R}_{\tilde{1}}$ is a bipartite cubic graph whose distance-2 graph is 3-colorable.
- We find 18 such graphs, of which 7 corresponding schemes admit an embedding into S_1 .
- ▶ However, none of the extensions to $\mathcal{A}|_{X_1 \cup X_2 \cup X_3}$ with $(X_1, X_3), (X_2, X_3) \in \tilde{R}_{\tilde{2}}$ admits an embedding into S_1 .
- ▶ We therefore conclude that A does not exist.

QPG with array [[12, 2, 1, 12, 12], [6, 0, 4, 1; 0, 0, 1; 0, 1; 4]]

- A has 40 vertices and is imprimitive with $\tilde{0} = \{0, 2, 3\}$, $\tilde{1} = \{1, 5\}$, $\tilde{4} = \{4\}$.
- ▶ The five subschemes are isomorphic to the cyclic scheme C_4 , and the quotient scheme is the Johnson scheme J(5,2).
- ► The graph $\Gamma_1|_{X_1 \cup X_2}$ such that $(X_1, X_2) \in \tilde{R}_{\tilde{1}}$ must be isomorphic to C_8 or $2C_4$.
- ► The extension to $\mathcal{A}|_{X_1 \cup X_2 \cup X_3}$ with $(X_1, X_3), (X_2, X_3) \in \tilde{R}_{\tilde{4}}$ admits an embedding into S_1 only if $\Gamma_1|_{X_1 \cup X_2} \cong 2C_4$.
- ► The resulting matrix of coefficients has full column rank, and we find 28 more vectors among 112 candidates.

Construction

- ▶ The resulting vectors form an association scheme with the parameters of A.
- We therefore conclude that there is, up to isomorphism, precisely one such association scheme.
- A nicer construction is given by the vectors $\frac{\sqrt{2}}{2}(\pm e_i \pm e_j)$ $(1 \le i < j \le 5)$ with
 - $(u,v) \in R_1 \Leftrightarrow \langle u,v \rangle = \frac{1}{2},$
 - $(u,v) \in R_2 \Leftrightarrow \langle u,v \rangle = \overline{0} \wedge \operatorname{supp}(u) = \operatorname{supp}(v),$
 - $(u,v) \in R_3 \Leftrightarrow \langle u,v \rangle = -1,$
 - $(u,v) \in R_4 \Leftrightarrow \langle u,v \rangle = 0 \land \operatorname{supp}(u) \cap \operatorname{supp}(v) = \emptyset,$
 - $(u,v) \in R_5 \Leftrightarrow \langle u,v \rangle = -\frac{1}{2}.$

QPG with array [[6, 4, 4, 12, 18], [3, 0, 0, 1; 0, 1, 0; 2, 0; 2]]

- A has 45 vertices and is imprimitive with $\tilde{0} = \{0, 2, 3\}$, $\tilde{1} = \{1, 4\}$, $\tilde{5} = \{5\}$.
- ▶ The five subschemes are isomorphic to the Hamming scheme H(2,3), and the quotient scheme is the cyclic scheme C_5 .
- ► The graphs $\Gamma_1|_{X_{\ell} \cup X_{\ell'}}$ are isomorphic to $3K_{3,3}$.
- ▶ There is a unique scheme $A|_{X_1 \cup X_2 \cup X_3}$ with $(X_1, X_2) \in \tilde{R}_{\tilde{1}}$ and $(X_1, X_3), (X_2, X_3) \in \tilde{R}_{\tilde{5}}$, and it admits an embedding into S_1 .
- ► The resulting matrix of coefficients has full column rank, and we find 36 more vectors among 72 candidates.

Construction

- ▶ We find two subsets of 18 vectors extending $A|_{X_1 \cup X_2 \cup X_3}$ into an association scheme with the parameters of A.
- Since the two obtained schemes are isomorphic, we conclude that there is, up to isomorphism, precisely one such association scheme.

The obtained association scheme

The graph Γ_1 is the Praeger-Xu graph C(3,5,2) [PX89].

References I

[Fio16] Miquel Àngel Fiol. "Quotient-polynomial graphs".

In: Linear Algebra Appl. 488 (2016).

doi:10.1016/j.laa.2015.09.053, pp. 363-376.

[HM23a] Allen Herman and Roghayeh Maleki.

QPG database.

https://github.com/RoghayehMaleki/QPGdatabase-. 2023.

[HM23b] Allen Herman and Roghayeh Maleki.

"The search for small association schemes with noncyclotomic eigenvalues".

In: Ars Math. Contemp. 23.3 (2023). doi:10.26493/1855-3974.2724.83d. P3.02.

[HM24] Allen Herman and Roghayeh Maleki.

"Parameters of Quotient-Polynomial Graphs".

In: *Graphs Combin.* 40 (3 2024).

doi:10.1007/s00373-024-02789-2, p. 60.

References II

2019.

```
[PX89] Cheryl E. Praeger and Ming-Yao Xu.

"A Characterization of a Class of Symmetric Graphs of Twice Prime Valency".

In: European J. Combin. 10 (1 1989).

doi:10.1016/S0195-6698(89)80037-X, pp. 91-102.

[Vid19] Janoš Vidali.

jaanos/sage-drg: sage-drg Sage package v0.9.

https://github.com/jaanos/sage-drg/,
doi:0.5281/zenodo.3350856.
```