Complex Hadamard Matrices and Quantum Symmetry

TerwilligerFest

Combinatorics around the q-Onsager algebra

Ada Chan York University June 26, 2025

Joint work with Chris Godsil and Thomás Jung Spier

Quantum symmetry

Happy belated 70th Birthday, Paul!!!

Thank you, Blas, Giusy, Mark, Rene, Safet and Štefko, for organizing this celebration!!!

2/25

Ouantum symmetr

Two graphs X and Y are isomorphic if there exists a permutation matrix P s.t.

$$A(X)P = PA(Y).$$

3 / 25

Quantum symmet

quantum

Two graphs X and Y are isomorphic if there exists a permutation matrix \mathcal{P} s.t.

$$A(X)$$
 $\mathbb{Q} = \mathbb{Q}A(Y).$

Theorem (Gromada, 2024; Chan and Martin, 2024)

Any two Hadamard graphs of the same order are quantum isomorphic.

quantum

quantum

Two graphs X and Y are isomorphic if there exists a permutation matrix \mathbf{P} s.t.

$$A(X)$$
 $\mathbb{Q} = \mathbb{Q}A(Y)$.

Theorem (Gromada, 2024; Chan and Martin, 2024)

Any two Hadamard graphs of the same order are quantum isomorphic.

When X = Y:

Theorem (Schmidt, 2020)

The Higman-Sims graph has quantum symmetry.

Remark

The Bose-Mesner algebras of Hadamard graphs and the Higman-Sims graph contain spin models.

3 / 25

イロト イポト イヨト イヨト

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/icta

Leonard pairs, spin models, and distance-regular graphs

Kazumasa Nomura a,*, Paul Terwilliger b

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: https://www.sciencedirect.com/journal/ european-journal-of-combinatorics

Spin models and distance-regular graphs of q-Racah type

Kazumasa Nomura a. Paul Terwilliger b

Definition (Wang, 1998)

Let \mathcal{A} be a C^* -algebra with unity **1**.

A quantum permutation matrix is an $n \times n$ matrix Q with entries in \mathcal{A} satisfying

i.
$$Q_{ij}^* = Q_{ij} = Q_{ij}^2$$
, and

ii.
$$\sum_{k=1}^{n} Q_{ik} = \sum_{k=1}^{n} Q_{kj} = 1$$
, for $1 \le i, j \le n$.

Remark:

If \mathcal{A} is finite dimensional then $Q_{ij} \in M_d(\mathbb{C})$, for some d, and $Q_{ij}^* = \overline{Q_{ij}}^T$.

Duantum symmetry 5/25

Example

Q is a permutation matrix.

Example

$$Q = \begin{bmatrix} \mathbf{p} & \mathbf{1} - \mathbf{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} - \mathbf{p} & \mathbf{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{q} & \mathbf{1} - \mathbf{q} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} - \mathbf{q} & \mathbf{q} \end{bmatrix},$$

for orthogonal projections $\mathbf{p}, \mathbf{q} \in M_d(\mathbb{C})$.

6/25

Quantum symmetr

Example

Q is a permutation matrix.

$$Q_{ij} \in \{0,1\} \quad \Longrightarrow \quad Q_{ij}Q_{rs} = Q_{rs}Q_{ij}, \quad \forall i,j,r,s.$$

Example

$$Q = \begin{bmatrix} \mathbf{p} & \mathbf{1} - \mathbf{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} - \mathbf{p} & \mathbf{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{q} & \mathbf{1} - \mathbf{q} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} - \mathbf{q} & \mathbf{q} \end{bmatrix}, \quad \text{for orthogonal projections } \mathbf{p}, \mathbf{q} \in M_d(\mathbb{C}).$$

e.g.
$$\mathbf{p} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $\mathbf{q} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \implies \mathbf{p} \mathbf{q} \neq \mathbf{q} \mathbf{p}$.

6/25

Theorem (Weber, 2023)

Let $\mathcal{A} \subset M_d(\mathbb{C})$, and $Q \in M_n(\mathcal{A})$ be a quantum permutation matrix.

If all Q_{ij} 's commute, then there exist permutation matrices $P_1, \ldots, P_d \in M_n(\mathbb{C})$ such that Q is unitarily equivalent to

$$\begin{bmatrix} P_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_d \end{bmatrix}.$$

7/25

Quantum symmetr

Definition (Banica, 2005)

The quantum automorphism group of X is the compact matrix quantum group $(C(G_{aut}^+(X)), U)$, where $C(G_{aut}^+(X))$ is the *universal* C^* -algebra with generators U_{ij} , $1 \le i, j \le n$, and relations

i.
$$U_{ij} = (U_{ij})^* = (U_{ij})^2$$
, $\forall i, j$,

ii.
$$\sum_{k=1}^{n} U_{ik} = 1 = \sum_{k=1}^{n} U_{kj}, \quad \forall i, j,$$

iii.
$$AU = UA$$
.

 \implies U is a quantum permutation matrix that commutes with A.

8 / 25

Definition (Banica and Bichon, 2007)

The graph *X* has no quantum symmetry if

$$C\left(G_{aut}^+(X)\right) = C\left(Aut(X)\right),$$

equivalently, $U_{ij}U_{rs} = U_{rs}U_{ij}$, $\forall i, j, r, s$.

Example $(X = K_2)$

The rows and columns of U sum to $\mathbf{1}$

$$\implies U = \begin{bmatrix} \mathbf{p} & \mathbf{1} - \mathbf{p} \\ \mathbf{1} - \mathbf{p} & \mathbf{p} \end{bmatrix}.$$

- \implies The entries of U commute.
- \implies K_2 has no quantum symmetry.

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९♡

9/25

Example $(X = C_4)$

$$Q = \begin{bmatrix} \mathbf{p} & \mathbf{1} - \mathbf{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} - \mathbf{p} & \mathbf{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{q} & \mathbf{1} - \mathbf{q} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} - \mathbf{q} & \mathbf{q} \end{bmatrix}, \text{ with } \mathbf{p} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{q} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

 $\mathbf{pq} \neq \mathbf{qp} \implies C_4$ has quantum symmetry.

Remark

If $Q_{ij} \in M_d(\mathbb{C})$ then AQ = QA becomes

$$(A \otimes I_d) O = O(A \otimes I_d)$$
.

Quantum symmetry 10 / 25

Theorem (Schmidt, 2020)

The Hamming graph H(n, q) has quantum symmetry if and only if

- i. $n \ge 2$ and q = 2, or
- ii. $n \ge 1$ and $q \ge 4$.

We prove Schmidt's result for q = 2, q = 4 and $q \ge 6$:

- construct a quantum permutation matrix Q from a complex Hadamard matrix,
- determine A's satisfying QA = AQ,
- determine when $\exists i, j, k, l$ where $Q_{ij}Q_{kl} \neq Q_{kl}Q_{ij}$.

Quantum symmetry 11/25

Definition

An $n \times n$ matrix W is type-II if

$$WW^{(-)T} = nI,$$

where $W^{(-)}$ denotes the Schur-inverse of W.

Equivalently,

$$\sum_{k=1}^n \frac{W_{ki}}{W_{kj}} = n\delta_{ij} = \sum_{k=1}^n \frac{W_{ik}}{W_{jk}}.$$

Definition

A complex Hadamard matrix is a type-II matrix W with $|W_{ij}| = 1$, $\forall i, j$.

uantum symmetry 12 / 25

Example

Spin models and four-weight spin models are type-II matrices.

Example

For
$$\lambda \neq 0$$
,
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & \lambda & -\lambda \\ 1 & -1 & -\lambda & \lambda \end{vmatrix}$$
 is type II.

It is a complex Hadamard matrix if $|\lambda| = 1$.

Example

The character table of a finite Abelian group is a complex Hadamard matrix.

<□ > <**□** > < **亘** > < **亘** > < **亘** > < **亘** < **♡** < ○

Ouantum symmetry 13 / 25

For type-II matrix W, define $W_{i/j} = \begin{bmatrix} \frac{W_{1i}}{W_{1j}} \\ \vdots \\ \frac{W_{ni}}{W_{nj}} \end{bmatrix}$ $(i, j = 1, \dots, n)$

Example:
$$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & \lambda & -\lambda \\ 1 & -1 & -\lambda & \lambda \end{bmatrix}$$
 $W_{3/1} = \begin{bmatrix} 1 \\ -1 \\ \lambda \\ -\lambda \end{bmatrix}$, $W_{1/3} = (W_{3/1})^{(-)} = \begin{bmatrix} 1 \\ -1 \\ \frac{1}{\lambda} \\ -\frac{1}{\lambda} \end{bmatrix}$

Ouantum symmetry 14/25

For type-II matrix W, define $W_{i/j} = \begin{bmatrix} \frac{\mathbf{w}_{1i}}{W_{1j}} \\ \vdots \\ \frac{W_{ni}}{W_{ni}} \end{bmatrix}$ $(i, j = 1, \dots, n)$

Example:
$$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & \lambda & -\lambda \\ 1 & -1 & -\lambda & \lambda \end{bmatrix}$$
 $W_{3/1} = \begin{bmatrix} 1 \\ -1 \\ \lambda \\ -\lambda \end{bmatrix}$, $W_{1/3} = (W_{3/1})^{(-)} = \begin{bmatrix} 1 \\ -1 \\ \frac{1}{\lambda} \\ -\frac{1}{\lambda} \end{bmatrix}$

Observe:
$$\begin{bmatrix} w_{1/3} & w_{2/3} & w_{3/3} & w_{4/3} \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & -1 & & & \\ & & \frac{1}{A} & & \\ & & -\frac{1}{A} \end{bmatrix} W$$
$$\begin{bmatrix} w_{3/1} & w_{3/2} & w_{3/3} & w_{3/4} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & -1 & & \\ & & \lambda & \\ & & & \lambda \end{bmatrix} W^{(-)}$$

 \Longrightarrow $\{W_{1/j}, \ldots, W_{n/j}\}$ and $\{W_{j/1}, \ldots, W_{j/n}\}$ are bases of \mathbb{C}^n

From Soffía's talk:

Definition (Musto and Vicary, 2015)

A quantum Latin square is an $n \times n$ array of elements in \mathbb{C}^n such that every row and every column is an orthonormal basis of \mathbb{C}^n .

Theorem (Godsil, < 2020)

Let W be a complex Hadamard matrix of order n. Then

$$\mathcal{L} = \left[\frac{1}{\sqrt{n}} W_{i/j} \right]_{i,j}$$

is a quantum Latin square.

15 / 25

Duantum symmetry

Type-II matrices to Association schemes:

Definition (Nomura, 1997)

Let W be a type-II matrix. The Nomura algebra of W is

$$\mathcal{N}_W = \Big\{ M \in M_n(\mathbb{C}) : W_{i/j} \text{ is an eigenvector of } M, \text{ for } i, j = 1, \dots, n \Big\}.$$

Theorem (Jaeger, Matsumoto, Nomura, 1998)

Let W be a type-II matrix. Then \mathcal{N}_W and \mathcal{N}_{W^T} are a formally dual pair of Bose-Mesner algebras.

Moreover, $W \in \mathcal{N}_W$ if and only if cW is a spin model, for some $c \in \mathbb{C}$.

Quantum symmetry

Example (Jaeger, Matsumoto, Nomura, 1998)

Let
$$W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & \lambda & -\lambda \\ 1 & -1 & -\lambda & \lambda \end{bmatrix}$$
. Then dim $\mathcal{N}_W = \begin{cases} 4 & \text{if } \lambda^4 = 1, \\ 3 & \text{otherwise.} \end{cases}$

Example (Jaeger, Matsumoto, Nomura, 1998)

Let W be a type-II matrix of order n.

Then dim $\mathcal{N}_W = n$ if and only if W is type-II equivalent to the character table of an abelian group of order n.

Construction of quantum permutation matrix:

Definition

Let *W* be a type-II matrix of order *n*. For i, j = 1, ..., n, let $Y_{ij} = \frac{1}{n} W_{i/j} W_{j/i}^T$.

The matrix of idempotent of W is the $n \times n$ block matrix

$$\mathcal{Y} = \left[Y_{ij}\right]_{i,j}.$$

Example (Complex Hadamard matrix H)

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & e^{i\theta} & -e^{i\theta} \\ 1 & -1 & -e^{i\theta} & e^{i\theta} \end{bmatrix}$$

$$H_{1/3} = \overline{H_{3/1}} \implies Y_{31} = \frac{1}{n} H_{3/1} H_{3/1}^* = \begin{bmatrix} 1 & -1 & e^{-i\theta} & -e^{-i\theta} \\ -1 & 1 & -e^{-i\theta} & e^{-i\theta} \\ e^{i\theta} & -e^{i\theta} & 1 & -1 \\ -e^{i\theta} & e^{i\theta} & -1 & 1 \end{bmatrix}.$$

◆ロト ◆@ ▶ ◆ 臺 ▶ ◆ 臺 → 釣へで

Quantum symmetry 18 / 25

Let *H* be a complex Hadamard matrix of order $n \implies H_{j/i} = \overline{H_{i/j}}$.

•
$$Y_{ij}^* = \frac{1}{n} \left(H_{i/j} H_{i/j}^* \right)^* = Y_{ij}$$

$$\bullet \ Y_{ij}^2 = \left(\tfrac{1}{n} H_{i/j} H_{i/j}^* \right) \left(\tfrac{1}{n} H_{i/j} H_{i/j}^* \right) = Y_{ij}$$

Quantum symmetry 19/25

Let *H* be a complex Hadamard matrix of order $n \implies H_{j/i} = \overline{H_{i/j}}$.

•
$$Y_{ij}^* = \frac{1}{n} \left(H_{i/j} H_{i/j}^* \right)^* = Y_{ij}$$

$$\bullet \ Y_{ij}^2 = \left(\frac{1}{n} H_{i/j} H_{i/j}^*\right) \left(\frac{1}{n} H_{i/j} H_{i/j}^*\right) = Y_{ij}$$

$$\bullet \left(\sum_{k=1}^{n} Y_{ik}\right)_{rs} = \frac{1}{n} \sum_{k=1}^{n} \frac{H_{ri}}{H_{rk}} \frac{H_{sk}}{H_{si}} = \delta_{rs} \implies \sum_{k} Y_{ik} = I_{n}.$$

• Similarly,
$$\sum_{k} Y_{kj} = I_n$$
.

Quantum symmetry 19 / 25

Let *H* be a complex Hadamard matrix of order $n \implies H_{j/i} = \overline{H_{i/j}}$.

•
$$Y_{ij}^* = \frac{1}{n} \left(H_{i/j} H_{i/j}^* \right)^* = Y_{ij}$$

•
$$Y_{ij}^2 = \left(\frac{1}{n}H_{i/j}H_{i/j}^*\right)\left(\frac{1}{n}H_{i/j}H_{i/j}^*\right) = Y_{ij}$$

$$\bullet \left(\sum_{k=1}^{n} Y_{ik}\right)_{rs} = \frac{1}{n} \sum_{k=1}^{n} \frac{H_{ri}}{H_{rk}} \frac{H_{sk}}{H_{si}} = \delta_{rs} \implies \sum_{k} Y_{ik} = I_{n}.$$

• Similarly, $\sum_{k} Y_{kj} = I_n$.

Lemma

The matrix of idempotent \mathcal{Y} of H is a quantum permutation matrix.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Quantum symmetry 19 / 25

Lemma

Let W be a type-II matrix. Then

$$\mathcal{N}_W = \left\{ M : (I_n \otimes M) \mathcal{Y} = \mathcal{Y} (I_n \otimes M) \right\}, \text{ and}$$

$$\mathcal{N}_{W^T} = \left\{ N : (N \otimes I_n) \mathcal{Y} = \mathcal{Y} (N \otimes I_n) \right\}$$

Any 01-matrix $A \in \mathcal{N}_{W^T}$ satisfies $(A \otimes I_n) \mathcal{Y} = \mathcal{Y} (A \otimes I_n)$.

20 / 25

Quantum symmetry

Lemma

Let *W* be a type-II matrix. Then

$$\mathcal{N}_W = \left\{ M : (I_n \otimes M) \mathcal{Y} = \mathcal{Y} (I_n \otimes M) \right\}, \text{ and}$$

$$\mathcal{N}_{W^T} = \left\{ N : (N \otimes I_n) \mathcal{Y} = \mathcal{Y} (N \otimes I_n) \right\}$$

Any 01-matrix $A \in \mathcal{N}_{W^T}$ satisfies $(A \otimes I_n) \mathcal{Y} = \mathcal{Y} (A \otimes I_n)$.

Lemma

Let H be a complex Hadamard matrix of order n.

Then $\exists i, j, k, l$ such that $Y_{ij}Y_{kl} \neq Y_{kl}Y_{ij}$ if and only if dim $\mathcal{N}_H < n$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ◆ ○○○

20 / 25

antum symmetry

Theorem

If H be a complex Hadamard matrix that is inequivalent to the character table of a finite Abelian group, then every graph in \mathcal{N}_{H^T} has quantum symmetry.

21 / 25

Theorem (de la Harpe and Jones, 1990; Munemasa and Watatani, 1992)

For every prime $p \ge 7$, there exists a circulant matrix of order p, inequivalent to the Fourier matrix of order p.

Theorem (Craigen, 1991)

If n is a composite, then there an uncountable number of equivalence classes of complex Hadamard matrices of order n.

When $n \in \{2, 3, 5\}$, the Fourier matrix is the unique complex Hadamard matrix, up to equivalence.

22 / 25

uantum symmetry

Theorem

For n = 4 or $n \ge 6$, the Hamming graph H(n, q) has quantum symmetry.

Proof. Let H be a complex Hadamard matrix of order q that is inequivalent to the character table of a finite abelian group. Then

$$A(H(n,q)) \in (\mathcal{N}_{H^T})^{\otimes n} = \mathcal{N}_{(H^T)^{\otimes n}},$$

and dim $\mathcal{N}_{(H^T)^{\otimes n}} < q^n$.

Theorem

For $n \ge 2$ and q = 2, the Hamming graph H(n, q) has quantum symmetry.

Proof. Use
$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & e^{\frac{2\pi i}{3}} & -e^{\frac{2\pi i i}{3}} \\ 1 & -1 & -e^{\frac{2\pi i}{3}} & e^{\frac{2\pi i i}{3}} \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{\otimes (n-2)}.$$

4□ > 4Ē > 4Ē > Ē 9Q€

П

Theorem (Schmidt, 2020)

The Higman-Sims graph has quantum symmetry.

Question: Quantum permutation matrix??

(The Higman-Sims spin model is not a complex Hadamard matrix.)

24 / 25

Thank you for your attention!

